MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2a Structured version   Visualization version   GIF version

Theorem sylow2a 19651
Description: A named lemma of Sylow's second and third theorems. If 𝐺 is a finite 𝑃-group that acts on the finite set 𝑌, then the set 𝑍 of all points of 𝑌 fixed by every element of 𝐺 has cardinality equivalent to the cardinality of 𝑌, mod 𝑃. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x 𝑋 = (Base‘𝐺)
sylow2a.m (𝜑 ∈ (𝐺 GrpAct 𝑌))
sylow2a.p (𝜑𝑃 pGrp 𝐺)
sylow2a.f (𝜑𝑋 ∈ Fin)
sylow2a.y (𝜑𝑌 ∈ Fin)
sylow2a.z 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
sylow2a.r = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow2a (𝜑𝑃 ∥ ((♯‘𝑌) − (♯‘𝑍)))
Distinct variable groups:   ,   𝑔,,𝑢,𝑥,𝑦   𝑔,𝐺,𝑥,𝑦   ,𝑔,,𝑢,𝑥,𝑦   𝑔,𝑋,,𝑢,𝑥,𝑦   𝜑,   𝑔,𝑌,,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑢,𝑔)   𝑃(𝑥,𝑦,𝑢,𝑔,)   (𝑥,𝑦,𝑢,𝑔)   𝐺(𝑢,)   𝑍(𝑥,𝑦,𝑢,𝑔,)

Proof of Theorem sylow2a
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2a.x . . 3 𝑋 = (Base‘𝐺)
2 sylow2a.m . . 3 (𝜑 ∈ (𝐺 GrpAct 𝑌))
3 sylow2a.p . . 3 (𝜑𝑃 pGrp 𝐺)
4 sylow2a.f . . 3 (𝜑𝑋 ∈ Fin)
5 sylow2a.y . . 3 (𝜑𝑌 ∈ Fin)
6 sylow2a.z . . 3 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
7 sylow2a.r . . 3 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
81, 2, 3, 4, 5, 6, 7sylow2alem2 19650 . 2 (𝜑𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧))
9 inass 4235 . . . . . . 7 (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ((𝑌 / ) ∩ (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍)))
10 disjdif 4477 . . . . . . . 8 (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅
1110ineq2i 4224 . . . . . . 7 ((𝑌 / ) ∩ (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍))) = ((𝑌 / ) ∩ ∅)
12 in0 4400 . . . . . . 7 ((𝑌 / ) ∩ ∅) = ∅
139, 11, 123eqtri 2766 . . . . . 6 (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅
1413a1i 11 . . . . 5 (𝜑 → (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅)
15 inundif 4484 . . . . . . 7 (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍)) = (𝑌 / )
1615eqcomi 2743 . . . . . 6 (𝑌 / ) = (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍))
1716a1i 11 . . . . 5 (𝜑 → (𝑌 / ) = (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍)))
18 pwfi 9354 . . . . . . 7 (𝑌 ∈ Fin ↔ 𝒫 𝑌 ∈ Fin)
195, 18sylib 218 . . . . . 6 (𝜑 → 𝒫 𝑌 ∈ Fin)
207, 1gaorber 19338 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
212, 20syl 17 . . . . . . 7 (𝜑 Er 𝑌)
2221qsss 8816 . . . . . 6 (𝜑 → (𝑌 / ) ⊆ 𝒫 𝑌)
2319, 22ssfid 9298 . . . . 5 (𝜑 → (𝑌 / ) ∈ Fin)
245adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑌 ∈ Fin)
2522sselda 3994 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ 𝒫 𝑌)
2625elpwid 4613 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧𝑌)
2724, 26ssfid 9298 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ Fin)
28 hashcl 14391 . . . . . . 7 (𝑧 ∈ Fin → (♯‘𝑧) ∈ ℕ0)
2927, 28syl 17 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 / )) → (♯‘𝑧) ∈ ℕ0)
3029nn0cnd 12586 . . . . 5 ((𝜑𝑧 ∈ (𝑌 / )) → (♯‘𝑧) ∈ ℂ)
3114, 17, 23, 30fsumsplit 15773 . . . 4 (𝜑 → Σ𝑧 ∈ (𝑌 / )(♯‘𝑧) = (Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)))
3221, 5qshash 15859 . . . 4 (𝜑 → (♯‘𝑌) = Σ𝑧 ∈ (𝑌 / )(♯‘𝑧))
33 inss1 4244 . . . . . . . 8 ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ (𝑌 / )
34 ssfi 9211 . . . . . . . 8 (((𝑌 / ) ∈ Fin ∧ ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ (𝑌 / )) → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin)
3523, 33, 34sylancl 586 . . . . . . 7 (𝜑 → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin)
36 ax-1cn 11210 . . . . . . 7 1 ∈ ℂ
37 fsumconst 15822 . . . . . . 7 ((((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1 = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
3835, 36, 37sylancl 586 . . . . . 6 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1 = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
39 elin 3978 . . . . . . . . . . 11 (𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍) ↔ (𝑧 ∈ (𝑌 / ) ∧ 𝑧 ∈ 𝒫 𝑍))
40 eqid 2734 . . . . . . . . . . . . 13 (𝑌 / ) = (𝑌 / )
41 sseq1 4020 . . . . . . . . . . . . . . 15 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧𝑍))
42 velpw 4609 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝒫 𝑍𝑧𝑍)
4341, 42bitr4di 289 . . . . . . . . . . . . . 14 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧 ∈ 𝒫 𝑍))
44 breq1 5150 . . . . . . . . . . . . . 14 ([𝑤] = 𝑧 → ([𝑤] ≈ 1o𝑧 ≈ 1o))
4543, 44imbi12d 344 . . . . . . . . . . . . 13 ([𝑤] = 𝑧 → (([𝑤] 𝑍 → [𝑤] ≈ 1o) ↔ (𝑧 ∈ 𝒫 𝑍𝑧 ≈ 1o)))
4621adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → Er 𝑌)
47 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → 𝑤𝑌)
4846, 47erref 8763 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑌) → 𝑤 𝑤)
49 vex 3481 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
5049, 49elec 8789 . . . . . . . . . . . . . . . 16 (𝑤 ∈ [𝑤] 𝑤 𝑤)
5148, 50sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑌) → 𝑤 ∈ [𝑤] )
52 ssel 3988 . . . . . . . . . . . . . . 15 ([𝑤] 𝑍 → (𝑤 ∈ [𝑤] 𝑤𝑍))
5351, 52syl5com 31 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → ([𝑤] 𝑍𝑤𝑍))
541, 2, 3, 4, 5, 6, 7sylow2alem1 19649 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑍) → [𝑤] = {𝑤})
5549ensn1 9059 . . . . . . . . . . . . . . . . 17 {𝑤} ≈ 1o
5654, 55eqbrtrdi 5186 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑍) → [𝑤] ≈ 1o)
5756ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤𝑍 → [𝑤] ≈ 1o))
5857adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → (𝑤𝑍 → [𝑤] ≈ 1o))
5953, 58syld 47 . . . . . . . . . . . . 13 ((𝜑𝑤𝑌) → ([𝑤] 𝑍 → [𝑤] ≈ 1o))
6040, 45, 59ectocld 8822 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 / )) → (𝑧 ∈ 𝒫 𝑍𝑧 ≈ 1o))
6160impr 454 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝑌 / ) ∧ 𝑧 ∈ 𝒫 𝑍)) → 𝑧 ≈ 1o)
6239, 61sylan2b 594 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ≈ 1o)
63 en1b 9063 . . . . . . . . . 10 (𝑧 ≈ 1o𝑧 = { 𝑧})
6462, 63sylib 218 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 = { 𝑧})
6564fveq2d 6910 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (♯‘𝑧) = (♯‘{ 𝑧}))
66 vuniex 7757 . . . . . . . . 9 𝑧 ∈ V
67 hashsng 14404 . . . . . . . . 9 ( 𝑧 ∈ V → (♯‘{ 𝑧}) = 1)
6866, 67ax-mp 5 . . . . . . . 8 (♯‘{ 𝑧}) = 1
6965, 68eqtrdi 2790 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (♯‘𝑧) = 1)
7069sumeq2dv 15734 . . . . . 6 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) = Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1)
716ssrab3 4091 . . . . . . . . . . 11 𝑍𝑌
72 ssfi 9211 . . . . . . . . . . 11 ((𝑌 ∈ Fin ∧ 𝑍𝑌) → 𝑍 ∈ Fin)
735, 71, 72sylancl 586 . . . . . . . . . 10 (𝜑𝑍 ∈ Fin)
74 hashcl 14391 . . . . . . . . . 10 (𝑍 ∈ Fin → (♯‘𝑍) ∈ ℕ0)
7573, 74syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝑍) ∈ ℕ0)
7675nn0cnd 12586 . . . . . . . 8 (𝜑 → (♯‘𝑍) ∈ ℂ)
7776mulridd 11275 . . . . . . 7 (𝜑 → ((♯‘𝑍) · 1) = (♯‘𝑍))
786, 5rabexd 5345 . . . . . . . . 9 (𝜑𝑍 ∈ V)
79 eqid 2734 . . . . . . . . . 10 (𝑤𝑍 ↦ {𝑤}) = (𝑤𝑍 ↦ {𝑤})
807relopabiv 5832 . . . . . . . . . . . . . . 15 Rel
81 relssdmrn 6289 . . . . . . . . . . . . . . 15 (Rel ⊆ (dom × ran ))
8280, 81ax-mp 5 . . . . . . . . . . . . . 14 ⊆ (dom × ran )
83 erdm 8753 . . . . . . . . . . . . . . . . 17 ( Er 𝑌 → dom = 𝑌)
8421, 83syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom = 𝑌)
8584, 5eqeltrd 2838 . . . . . . . . . . . . . . 15 (𝜑 → dom ∈ Fin)
86 errn 8765 . . . . . . . . . . . . . . . . 17 ( Er 𝑌 → ran = 𝑌)
8721, 86syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ran = 𝑌)
8887, 5eqeltrd 2838 . . . . . . . . . . . . . . 15 (𝜑 → ran ∈ Fin)
8985, 88xpexd 7769 . . . . . . . . . . . . . 14 (𝜑 → (dom × ran ) ∈ V)
90 ssexg 5328 . . . . . . . . . . . . . 14 (( ⊆ (dom × ran ) ∧ (dom × ran ) ∈ V) → ∈ V)
9182, 89, 90sylancr 587 . . . . . . . . . . . . 13 (𝜑 ∈ V)
92 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑍) → 𝑤𝑍)
9371, 92sselid 3992 . . . . . . . . . . . . 13 ((𝜑𝑤𝑍) → 𝑤𝑌)
94 ecelqsg 8810 . . . . . . . . . . . . 13 (( ∈ V ∧ 𝑤𝑌) → [𝑤] ∈ (𝑌 / ))
9591, 93, 94syl2an2r 685 . . . . . . . . . . . 12 ((𝜑𝑤𝑍) → [𝑤] ∈ (𝑌 / ))
9654, 95eqeltrrd 2839 . . . . . . . . . . 11 ((𝜑𝑤𝑍) → {𝑤} ∈ (𝑌 / ))
97 snelpwi 5453 . . . . . . . . . . . 12 (𝑤𝑍 → {𝑤} ∈ 𝒫 𝑍)
9897adantl 481 . . . . . . . . . . 11 ((𝜑𝑤𝑍) → {𝑤} ∈ 𝒫 𝑍)
9996, 98elind 4209 . . . . . . . . . 10 ((𝜑𝑤𝑍) → {𝑤} ∈ ((𝑌 / ) ∩ 𝒫 𝑍))
100 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))
101100elin2d 4214 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ∈ 𝒫 𝑍)
102101elpwid 4613 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧𝑍)
10364, 102eqsstrrd 4034 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → { 𝑧} ⊆ 𝑍)
10466snss 4789 . . . . . . . . . . 11 ( 𝑧𝑍 ↔ { 𝑧} ⊆ 𝑍)
105103, 104sylibr 234 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧𝑍)
106 sneq 4640 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → {𝑤} = { 𝑧})
107106eqeq2d 2745 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑧 = {𝑤} ↔ 𝑧 = { 𝑧}))
10864, 107syl5ibrcom 247 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (𝑤 = 𝑧𝑧 = {𝑤}))
109108adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))) → (𝑤 = 𝑧𝑧 = {𝑤}))
110 unieq 4922 . . . . . . . . . . . 12 (𝑧 = {𝑤} → 𝑧 = {𝑤})
111 unisnv 4931 . . . . . . . . . . . 12 {𝑤} = 𝑤
112110, 111eqtr2di 2791 . . . . . . . . . . 11 (𝑧 = {𝑤} → 𝑤 = 𝑧)
113109, 112impbid1 225 . . . . . . . . . 10 ((𝜑 ∧ (𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))) → (𝑤 = 𝑧𝑧 = {𝑤}))
11479, 99, 105, 113f1o2d 7686 . . . . . . . . 9 (𝜑 → (𝑤𝑍 ↦ {𝑤}):𝑍1-1-onto→((𝑌 / ) ∩ 𝒫 𝑍))
11578, 114hasheqf1od 14388 . . . . . . . 8 (𝜑 → (♯‘𝑍) = (♯‘((𝑌 / ) ∩ 𝒫 𝑍)))
116115oveq1d 7445 . . . . . . 7 (𝜑 → ((♯‘𝑍) · 1) = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
11777, 116eqtr3d 2776 . . . . . 6 (𝜑 → (♯‘𝑍) = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
11838, 70, 1173eqtr4rd 2785 . . . . 5 (𝜑 → (♯‘𝑍) = Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧))
119118oveq1d 7445 . . . 4 (𝜑 → ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)))
12031, 32, 1193eqtr4rd 2785 . . 3 (𝜑 → ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (♯‘𝑌))
121 hashcl 14391 . . . . . 6 (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0)
1225, 121syl 17 . . . . 5 (𝜑 → (♯‘𝑌) ∈ ℕ0)
123122nn0cnd 12586 . . . 4 (𝜑 → (♯‘𝑌) ∈ ℂ)
124 diffi 9213 . . . . . 6 ((𝑌 / ) ∈ Fin → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
12523, 124syl 17 . . . . 5 (𝜑 → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
126 eldifi 4140 . . . . . 6 (𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍) → 𝑧 ∈ (𝑌 / ))
127126, 30sylan2 593 . . . . 5 ((𝜑𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)) → (♯‘𝑧) ∈ ℂ)
128125, 127fsumcl 15765 . . . 4 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧) ∈ ℂ)
129123, 76, 128subaddd 11635 . . 3 (𝜑 → (((♯‘𝑌) − (♯‘𝑍)) = Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧) ↔ ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (♯‘𝑌)))
130120, 129mpbird 257 . 2 (𝜑 → ((♯‘𝑌) − (♯‘𝑍)) = Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧))
1318, 130breqtrrd 5175 1 (𝜑𝑃 ∥ ((♯‘𝑌) − (♯‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  cdif 3959  cun 3960  cin 3961  wss 3962  c0 4338  𝒫 cpw 4604  {csn 4630  {cpr 4632   cuni 4911   class class class wbr 5147  {copab 5209  cmpt 5230   × cxp 5686  dom cdm 5688  ran crn 5689  Rel wrel 5693  cfv 6562  (class class class)co 7430  1oc1o 8497   Er wer 8740  [cec 8741   / cqs 8742  cen 8980  Fincfn 8983  cc 11150  1c1 11153   + caddc 11155   · cmul 11157  cmin 11489  0cn0 12523  chash 14365  Σcsu 15718  cdvds 16286  Basecbs 17244   GrpAct cga 19319   pGrp cpgp 19558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-ec 8745  df-qs 8749  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-dvds 16287  df-gcd 16528  df-prm 16705  df-pc 16870  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-eqg 19155  df-ga 19320  df-od 19560  df-pgp 19562
This theorem is referenced by:  sylow2blem3  19654  sylow3lem6  19664
  Copyright terms: Public domain W3C validator