MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2a Structured version   Visualization version   GIF version

Theorem sylow2a 18474
Description: A named lemma of Sylow's second and third theorems. If 𝐺 is a finite 𝑃-group that acts on the finite set 𝑌, then the set 𝑍 of all points of 𝑌 fixed by every element of 𝐺 has cardinality equivalent to the cardinality of 𝑌, mod 𝑃. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x 𝑋 = (Base‘𝐺)
sylow2a.m (𝜑 ∈ (𝐺 GrpAct 𝑌))
sylow2a.p (𝜑𝑃 pGrp 𝐺)
sylow2a.f (𝜑𝑋 ∈ Fin)
sylow2a.y (𝜑𝑌 ∈ Fin)
sylow2a.z 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
sylow2a.r = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow2a (𝜑𝑃 ∥ ((♯‘𝑌) − (♯‘𝑍)))
Distinct variable groups:   ,   𝑔,,𝑢,𝑥,𝑦   𝑔,𝐺,𝑥,𝑦   ,𝑔,,𝑢,𝑥,𝑦   𝑔,𝑋,,𝑢,𝑥,𝑦   𝜑,   𝑔,𝑌,,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑢,𝑔)   𝑃(𝑥,𝑦,𝑢,𝑔,)   (𝑥,𝑦,𝑢,𝑔)   𝐺(𝑢,)   𝑍(𝑥,𝑦,𝑢,𝑔,)

Proof of Theorem sylow2a
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2a.x . . 3 𝑋 = (Base‘𝐺)
2 sylow2a.m . . 3 (𝜑 ∈ (𝐺 GrpAct 𝑌))
3 sylow2a.p . . 3 (𝜑𝑃 pGrp 𝐺)
4 sylow2a.f . . 3 (𝜑𝑋 ∈ Fin)
5 sylow2a.y . . 3 (𝜑𝑌 ∈ Fin)
6 sylow2a.z . . 3 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
7 sylow2a.r . . 3 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
81, 2, 3, 4, 5, 6, 7sylow2alem2 18473 . 2 (𝜑𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧))
9 inass 4116 . . . . . . 7 (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ((𝑌 / ) ∩ (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍)))
10 disjdif 4335 . . . . . . . 8 (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅
1110ineq2i 4106 . . . . . . 7 ((𝑌 / ) ∩ (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍))) = ((𝑌 / ) ∩ ∅)
12 in0 4265 . . . . . . 7 ((𝑌 / ) ∩ ∅) = ∅
139, 11, 123eqtri 2823 . . . . . 6 (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅
1413a1i 11 . . . . 5 (𝜑 → (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅)
15 inundif 4341 . . . . . . 7 (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍)) = (𝑌 / )
1615eqcomi 2804 . . . . . 6 (𝑌 / ) = (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍))
1716a1i 11 . . . . 5 (𝜑 → (𝑌 / ) = (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍)))
18 pwfi 8665 . . . . . . 7 (𝑌 ∈ Fin ↔ 𝒫 𝑌 ∈ Fin)
195, 18sylib 219 . . . . . 6 (𝜑 → 𝒫 𝑌 ∈ Fin)
207, 1gaorber 18179 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
212, 20syl 17 . . . . . . 7 (𝜑 Er 𝑌)
2221qsss 8208 . . . . . 6 (𝜑 → (𝑌 / ) ⊆ 𝒫 𝑌)
2319, 22ssfid 8587 . . . . 5 (𝜑 → (𝑌 / ) ∈ Fin)
245adantr 481 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑌 ∈ Fin)
2522sselda 3889 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ 𝒫 𝑌)
2625elpwid 4465 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧𝑌)
2724, 26ssfid 8587 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ Fin)
28 hashcl 13567 . . . . . . 7 (𝑧 ∈ Fin → (♯‘𝑧) ∈ ℕ0)
2927, 28syl 17 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 / )) → (♯‘𝑧) ∈ ℕ0)
3029nn0cnd 11805 . . . . 5 ((𝜑𝑧 ∈ (𝑌 / )) → (♯‘𝑧) ∈ ℂ)
3114, 17, 23, 30fsumsplit 14930 . . . 4 (𝜑 → Σ𝑧 ∈ (𝑌 / )(♯‘𝑧) = (Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)))
3221, 5qshash 15015 . . . 4 (𝜑 → (♯‘𝑌) = Σ𝑧 ∈ (𝑌 / )(♯‘𝑧))
33 inss1 4125 . . . . . . . 8 ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ (𝑌 / )
34 ssfi 8584 . . . . . . . 8 (((𝑌 / ) ∈ Fin ∧ ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ (𝑌 / )) → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin)
3523, 33, 34sylancl 586 . . . . . . 7 (𝜑 → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin)
36 ax-1cn 10441 . . . . . . 7 1 ∈ ℂ
37 fsumconst 14978 . . . . . . 7 ((((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1 = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
3835, 36, 37sylancl 586 . . . . . 6 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1 = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
39 elin 4090 . . . . . . . . . . 11 (𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍) ↔ (𝑧 ∈ (𝑌 / ) ∧ 𝑧 ∈ 𝒫 𝑍))
40 eqid 2795 . . . . . . . . . . . . 13 (𝑌 / ) = (𝑌 / )
41 sseq1 3913 . . . . . . . . . . . . . . 15 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧𝑍))
42 selpw 4460 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝒫 𝑍𝑧𝑍)
4341, 42syl6bbr 290 . . . . . . . . . . . . . 14 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧 ∈ 𝒫 𝑍))
44 breq1 4965 . . . . . . . . . . . . . 14 ([𝑤] = 𝑧 → ([𝑤] ≈ 1o𝑧 ≈ 1o))
4543, 44imbi12d 346 . . . . . . . . . . . . 13 ([𝑤] = 𝑧 → (([𝑤] 𝑍 → [𝑤] ≈ 1o) ↔ (𝑧 ∈ 𝒫 𝑍𝑧 ≈ 1o)))
4621adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → Er 𝑌)
47 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → 𝑤𝑌)
4846, 47erref 8159 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑌) → 𝑤 𝑤)
49 vex 3440 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
5049, 49elec 8183 . . . . . . . . . . . . . . . 16 (𝑤 ∈ [𝑤] 𝑤 𝑤)
5148, 50sylibr 235 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑌) → 𝑤 ∈ [𝑤] )
52 ssel 3883 . . . . . . . . . . . . . . 15 ([𝑤] 𝑍 → (𝑤 ∈ [𝑤] 𝑤𝑍))
5351, 52syl5com 31 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → ([𝑤] 𝑍𝑤𝑍))
541, 2, 3, 4, 5, 6, 7sylow2alem1 18472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑍) → [𝑤] = {𝑤})
5549ensn1 8421 . . . . . . . . . . . . . . . . 17 {𝑤} ≈ 1o
5654, 55syl6eqbr 5001 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑍) → [𝑤] ≈ 1o)
5756ex 413 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤𝑍 → [𝑤] ≈ 1o))
5857adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → (𝑤𝑍 → [𝑤] ≈ 1o))
5953, 58syld 47 . . . . . . . . . . . . 13 ((𝜑𝑤𝑌) → ([𝑤] 𝑍 → [𝑤] ≈ 1o))
6040, 45, 59ectocld 8214 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 / )) → (𝑧 ∈ 𝒫 𝑍𝑧 ≈ 1o))
6160impr 455 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝑌 / ) ∧ 𝑧 ∈ 𝒫 𝑍)) → 𝑧 ≈ 1o)
6239, 61sylan2b 593 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ≈ 1o)
63 en1b 8425 . . . . . . . . . 10 (𝑧 ≈ 1o𝑧 = { 𝑧})
6462, 63sylib 219 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 = { 𝑧})
6564fveq2d 6542 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (♯‘𝑧) = (♯‘{ 𝑧}))
66 vuniex 7324 . . . . . . . . 9 𝑧 ∈ V
67 hashsng 13579 . . . . . . . . 9 ( 𝑧 ∈ V → (♯‘{ 𝑧}) = 1)
6866, 67ax-mp 5 . . . . . . . 8 (♯‘{ 𝑧}) = 1
6965, 68syl6eq 2847 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (♯‘𝑧) = 1)
7069sumeq2dv 14893 . . . . . 6 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) = Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1)
716ssrab3 3978 . . . . . . . . . . 11 𝑍𝑌
72 ssfi 8584 . . . . . . . . . . 11 ((𝑌 ∈ Fin ∧ 𝑍𝑌) → 𝑍 ∈ Fin)
735, 71, 72sylancl 586 . . . . . . . . . 10 (𝜑𝑍 ∈ Fin)
74 hashcl 13567 . . . . . . . . . 10 (𝑍 ∈ Fin → (♯‘𝑍) ∈ ℕ0)
7573, 74syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝑍) ∈ ℕ0)
7675nn0cnd 11805 . . . . . . . 8 (𝜑 → (♯‘𝑍) ∈ ℂ)
7776mulid1d 10504 . . . . . . 7 (𝜑 → ((♯‘𝑍) · 1) = (♯‘𝑍))
786, 5rabexd 5127 . . . . . . . . . 10 (𝜑𝑍 ∈ V)
79 inss2 4126 . . . . . . . . . . 11 ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ 𝒫 𝑍
8073pwexd 5171 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑍 ∈ V)
81 ssexg 5118 . . . . . . . . . . 11 ((((𝑌 / ) ∩ 𝒫 𝑍) ⊆ 𝒫 𝑍 ∧ 𝒫 𝑍 ∈ V) → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ V)
8279, 80, 81sylancr 587 . . . . . . . . . 10 (𝜑 → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ V)
837relopabi 5580 . . . . . . . . . . . . . . . . 17 Rel
84 relssdmrn 5996 . . . . . . . . . . . . . . . . 17 (Rel ⊆ (dom × ran ))
8583, 84ax-mp 5 . . . . . . . . . . . . . . . 16 ⊆ (dom × ran )
86 erdm 8149 . . . . . . . . . . . . . . . . . . 19 ( Er 𝑌 → dom = 𝑌)
8721, 86syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom = 𝑌)
8887, 5eqeltrd 2883 . . . . . . . . . . . . . . . . 17 (𝜑 → dom ∈ Fin)
89 errn 8161 . . . . . . . . . . . . . . . . . . 19 ( Er 𝑌 → ran = 𝑌)
9021, 89syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ran = 𝑌)
9190, 5eqeltrd 2883 . . . . . . . . . . . . . . . . 17 (𝜑 → ran ∈ Fin)
9288, 91xpexd 7331 . . . . . . . . . . . . . . . 16 (𝜑 → (dom × ran ) ∈ V)
93 ssexg 5118 . . . . . . . . . . . . . . . 16 (( ⊆ (dom × ran ) ∧ (dom × ran ) ∈ V) → ∈ V)
9485, 92, 93sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 ∈ V)
9594adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑍) → ∈ V)
96 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑍) → 𝑤𝑍)
9771, 96sseldi 3887 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑍) → 𝑤𝑌)
98 ecelqsg 8202 . . . . . . . . . . . . . 14 (( ∈ V ∧ 𝑤𝑌) → [𝑤] ∈ (𝑌 / ))
9995, 97, 98syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑤𝑍) → [𝑤] ∈ (𝑌 / ))
10054, 99eqeltrrd 2884 . . . . . . . . . . . 12 ((𝜑𝑤𝑍) → {𝑤} ∈ (𝑌 / ))
101 snelpwi 5228 . . . . . . . . . . . . 13 (𝑤𝑍 → {𝑤} ∈ 𝒫 𝑍)
102101adantl 482 . . . . . . . . . . . 12 ((𝜑𝑤𝑍) → {𝑤} ∈ 𝒫 𝑍)
103100, 102elind 4092 . . . . . . . . . . 11 ((𝜑𝑤𝑍) → {𝑤} ∈ ((𝑌 / ) ∩ 𝒫 𝑍))
104103ex 413 . . . . . . . . . 10 (𝜑 → (𝑤𝑍 → {𝑤} ∈ ((𝑌 / ) ∩ 𝒫 𝑍)))
105 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))
10679, 105sseldi 3887 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ∈ 𝒫 𝑍)
107106elpwid 4465 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧𝑍)
10864, 107eqsstrrd 3927 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → { 𝑧} ⊆ 𝑍)
10966snss 4625 . . . . . . . . . . . 12 ( 𝑧𝑍 ↔ { 𝑧} ⊆ 𝑍)
110108, 109sylibr 235 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧𝑍)
111110ex 413 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍) → 𝑧𝑍))
112 sneq 4482 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → {𝑤} = { 𝑧})
113112eqeq2d 2805 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → (𝑧 = {𝑤} ↔ 𝑧 = { 𝑧}))
11464, 113syl5ibrcom 248 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (𝑤 = 𝑧𝑧 = {𝑤}))
115114adantrl 712 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))) → (𝑤 = 𝑧𝑧 = {𝑤}))
116 unieq 4753 . . . . . . . . . . . . 13 (𝑧 = {𝑤} → 𝑧 = {𝑤})
11749unisn 4761 . . . . . . . . . . . . 13 {𝑤} = 𝑤
118116, 117syl6req 2848 . . . . . . . . . . . 12 (𝑧 = {𝑤} → 𝑤 = 𝑧)
119115, 118impbid1 226 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))) → (𝑤 = 𝑧𝑧 = {𝑤}))
120119ex 413 . . . . . . . . . 10 (𝜑 → ((𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (𝑤 = 𝑧𝑧 = {𝑤})))
12178, 82, 104, 111, 120en3d 8394 . . . . . . . . 9 (𝜑𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍))
122 hashen 13557 . . . . . . . . . 10 ((𝑍 ∈ Fin ∧ ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin) → ((♯‘𝑍) = (♯‘((𝑌 / ) ∩ 𝒫 𝑍)) ↔ 𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍)))
12373, 35, 122syl2anc 584 . . . . . . . . 9 (𝜑 → ((♯‘𝑍) = (♯‘((𝑌 / ) ∩ 𝒫 𝑍)) ↔ 𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍)))
124121, 123mpbird 258 . . . . . . . 8 (𝜑 → (♯‘𝑍) = (♯‘((𝑌 / ) ∩ 𝒫 𝑍)))
125124oveq1d 7031 . . . . . . 7 (𝜑 → ((♯‘𝑍) · 1) = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
12677, 125eqtr3d 2833 . . . . . 6 (𝜑 → (♯‘𝑍) = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
12738, 70, 1263eqtr4rd 2842 . . . . 5 (𝜑 → (♯‘𝑍) = Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧))
128127oveq1d 7031 . . . 4 (𝜑 → ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)))
12931, 32, 1283eqtr4rd 2842 . . 3 (𝜑 → ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (♯‘𝑌))
130 hashcl 13567 . . . . . 6 (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0)
1315, 130syl 17 . . . . 5 (𝜑 → (♯‘𝑌) ∈ ℕ0)
132131nn0cnd 11805 . . . 4 (𝜑 → (♯‘𝑌) ∈ ℂ)
133 diffi 8596 . . . . . 6 ((𝑌 / ) ∈ Fin → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
13423, 133syl 17 . . . . 5 (𝜑 → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
135 eldifi 4024 . . . . . 6 (𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍) → 𝑧 ∈ (𝑌 / ))
136135, 30sylan2 592 . . . . 5 ((𝜑𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)) → (♯‘𝑧) ∈ ℂ)
137134, 136fsumcl 14923 . . . 4 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧) ∈ ℂ)
138132, 76, 137subaddd 10863 . . 3 (𝜑 → (((♯‘𝑌) − (♯‘𝑍)) = Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧) ↔ ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (♯‘𝑌)))
139129, 138mpbird 258 . 2 (𝜑 → ((♯‘𝑌) − (♯‘𝑍)) = Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧))
1408, 139breqtrrd 4990 1 (𝜑𝑃 ∥ ((♯‘𝑌) − (♯‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wral 3105  wrex 3106  {crab 3109  Vcvv 3437  cdif 3856  cun 3857  cin 3858  wss 3859  c0 4211  𝒫 cpw 4453  {csn 4472  {cpr 4474   cuni 4745   class class class wbr 4962  {copab 5024   × cxp 5441  dom cdm 5443  ran crn 5444  Rel wrel 5448  cfv 6225  (class class class)co 7016  1oc1o 7946   Er wer 8136  [cec 8137   / cqs 8138  cen 8354  Fincfn 8357  cc 10381  1c1 10384   + caddc 10386   · cmul 10388  cmin 10717  0cn0 11745  chash 13540  Σcsu 14876  cdvds 15440  Basecbs 16312   GrpAct cga 18160   pGrp cpgp 18385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-disj 4931  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-omul 7958  df-er 8139  df-ec 8141  df-qs 8145  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-acn 9217  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-xnn0 11816  df-z 11830  df-uz 12094  df-q 12198  df-rp 12240  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-sum 14877  df-dvds 15441  df-gcd 15677  df-prm 15845  df-pc 16003  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-0g 16544  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-grp 17864  df-minusg 17865  df-sbg 17866  df-mulg 17982  df-subg 18030  df-eqg 18032  df-ga 18161  df-od 18387  df-pgp 18389
This theorem is referenced by:  sylow2blem3  18477  sylow3lem6  18487
  Copyright terms: Public domain W3C validator