MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2a Structured version   Visualization version   GIF version

Theorem sylow2a 18234
Description: A named lemma of Sylow's second and third theorems. If 𝐺 is a finite 𝑃-group that acts on the finite set 𝑌, then the set 𝑍 of all points of 𝑌 fixed by every element of 𝐺 has cardinality equivalent to the cardinality of 𝑌, mod 𝑃. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x 𝑋 = (Base‘𝐺)
sylow2a.m (𝜑 ∈ (𝐺 GrpAct 𝑌))
sylow2a.p (𝜑𝑃 pGrp 𝐺)
sylow2a.f (𝜑𝑋 ∈ Fin)
sylow2a.y (𝜑𝑌 ∈ Fin)
sylow2a.z 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
sylow2a.r = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow2a (𝜑𝑃 ∥ ((♯‘𝑌) − (♯‘𝑍)))
Distinct variable groups:   ,   𝑔,,𝑢,𝑥,𝑦   𝑔,𝐺,𝑥,𝑦   ,𝑔,,𝑢,𝑥,𝑦   𝑔,𝑋,,𝑢,𝑥,𝑦   𝜑,   𝑔,𝑌,,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑢,𝑔)   𝑃(𝑥,𝑦,𝑢,𝑔,)   (𝑥,𝑦,𝑢,𝑔)   𝐺(𝑢,)   𝑍(𝑥,𝑦,𝑢,𝑔,)

Proof of Theorem sylow2a
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2a.x . . 3 𝑋 = (Base‘𝐺)
2 sylow2a.m . . 3 (𝜑 ∈ (𝐺 GrpAct 𝑌))
3 sylow2a.p . . 3 (𝜑𝑃 pGrp 𝐺)
4 sylow2a.f . . 3 (𝜑𝑋 ∈ Fin)
5 sylow2a.y . . 3 (𝜑𝑌 ∈ Fin)
6 sylow2a.z . . 3 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
7 sylow2a.r . . 3 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
81, 2, 3, 4, 5, 6, 7sylow2alem2 18233 . 2 (𝜑𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧))
9 inass 3972 . . . . . . 7 (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ((𝑌 / ) ∩ (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍)))
10 disjdif 4182 . . . . . . . 8 (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅
1110ineq2i 3962 . . . . . . 7 ((𝑌 / ) ∩ (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍))) = ((𝑌 / ) ∩ ∅)
12 in0 4112 . . . . . . 7 ((𝑌 / ) ∩ ∅) = ∅
139, 11, 123eqtri 2797 . . . . . 6 (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅
1413a1i 11 . . . . 5 (𝜑 → (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅)
15 inundif 4188 . . . . . . 7 (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍)) = (𝑌 / )
1615eqcomi 2780 . . . . . 6 (𝑌 / ) = (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍))
1716a1i 11 . . . . 5 (𝜑 → (𝑌 / ) = (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍)))
18 pwfi 8415 . . . . . . 7 (𝑌 ∈ Fin ↔ 𝒫 𝑌 ∈ Fin)
195, 18sylib 208 . . . . . 6 (𝜑 → 𝒫 𝑌 ∈ Fin)
207, 1gaorber 17941 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
212, 20syl 17 . . . . . . 7 (𝜑 Er 𝑌)
2221qsss 7958 . . . . . 6 (𝜑 → (𝑌 / ) ⊆ 𝒫 𝑌)
2319, 22ssfid 8337 . . . . 5 (𝜑 → (𝑌 / ) ∈ Fin)
245adantr 466 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑌 ∈ Fin)
2522sselda 3752 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ 𝒫 𝑌)
2625elpwid 4309 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧𝑌)
2724, 26ssfid 8337 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ Fin)
28 hashcl 13342 . . . . . . 7 (𝑧 ∈ Fin → (♯‘𝑧) ∈ ℕ0)
2927, 28syl 17 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 / )) → (♯‘𝑧) ∈ ℕ0)
3029nn0cnd 11553 . . . . 5 ((𝜑𝑧 ∈ (𝑌 / )) → (♯‘𝑧) ∈ ℂ)
3114, 17, 23, 30fsumsplit 14672 . . . 4 (𝜑 → Σ𝑧 ∈ (𝑌 / )(♯‘𝑧) = (Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)))
3221, 5qshash 14759 . . . 4 (𝜑 → (♯‘𝑌) = Σ𝑧 ∈ (𝑌 / )(♯‘𝑧))
33 inss1 3981 . . . . . . . 8 ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ (𝑌 / )
34 ssfi 8334 . . . . . . . 8 (((𝑌 / ) ∈ Fin ∧ ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ (𝑌 / )) → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin)
3523, 33, 34sylancl 574 . . . . . . 7 (𝜑 → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin)
36 ax-1cn 10194 . . . . . . 7 1 ∈ ℂ
37 fsumconst 14722 . . . . . . 7 ((((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1 = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
3835, 36, 37sylancl 574 . . . . . 6 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1 = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
39 elin 3947 . . . . . . . . . . 11 (𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍) ↔ (𝑧 ∈ (𝑌 / ) ∧ 𝑧 ∈ 𝒫 𝑍))
40 eqid 2771 . . . . . . . . . . . . 13 (𝑌 / ) = (𝑌 / )
41 sseq1 3775 . . . . . . . . . . . . . . 15 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧𝑍))
42 selpw 4304 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝒫 𝑍𝑧𝑍)
4341, 42syl6bbr 278 . . . . . . . . . . . . . 14 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧 ∈ 𝒫 𝑍))
44 breq1 4789 . . . . . . . . . . . . . 14 ([𝑤] = 𝑧 → ([𝑤] ≈ 1𝑜𝑧 ≈ 1𝑜))
4543, 44imbi12d 333 . . . . . . . . . . . . 13 ([𝑤] = 𝑧 → (([𝑤] 𝑍 → [𝑤] ≈ 1𝑜) ↔ (𝑧 ∈ 𝒫 𝑍𝑧 ≈ 1𝑜)))
4621adantr 466 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → Er 𝑌)
47 simpr 471 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → 𝑤𝑌)
4846, 47erref 7914 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑌) → 𝑤 𝑤)
49 vex 3354 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
5049, 49elec 7936 . . . . . . . . . . . . . . . 16 (𝑤 ∈ [𝑤] 𝑤 𝑤)
5148, 50sylibr 224 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑌) → 𝑤 ∈ [𝑤] )
52 ssel 3746 . . . . . . . . . . . . . . 15 ([𝑤] 𝑍 → (𝑤 ∈ [𝑤] 𝑤𝑍))
5351, 52syl5com 31 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → ([𝑤] 𝑍𝑤𝑍))
541, 2, 3, 4, 5, 6, 7sylow2alem1 18232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑍) → [𝑤] = {𝑤})
5549ensn1 8171 . . . . . . . . . . . . . . . . 17 {𝑤} ≈ 1𝑜
5654, 55syl6eqbr 4825 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑍) → [𝑤] ≈ 1𝑜)
5756ex 397 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤𝑍 → [𝑤] ≈ 1𝑜))
5857adantr 466 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → (𝑤𝑍 → [𝑤] ≈ 1𝑜))
5953, 58syld 47 . . . . . . . . . . . . 13 ((𝜑𝑤𝑌) → ([𝑤] 𝑍 → [𝑤] ≈ 1𝑜))
6040, 45, 59ectocld 7964 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 / )) → (𝑧 ∈ 𝒫 𝑍𝑧 ≈ 1𝑜))
6160impr 442 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝑌 / ) ∧ 𝑧 ∈ 𝒫 𝑍)) → 𝑧 ≈ 1𝑜)
6239, 61sylan2b 581 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ≈ 1𝑜)
63 en1b 8175 . . . . . . . . . 10 (𝑧 ≈ 1𝑜𝑧 = { 𝑧})
6462, 63sylib 208 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 = { 𝑧})
6564fveq2d 6334 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (♯‘𝑧) = (♯‘{ 𝑧}))
66 vuniex 7099 . . . . . . . . 9 𝑧 ∈ V
67 hashsng 13354 . . . . . . . . 9 ( 𝑧 ∈ V → (♯‘{ 𝑧}) = 1)
6866, 67ax-mp 5 . . . . . . . 8 (♯‘{ 𝑧}) = 1
6965, 68syl6eq 2821 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (♯‘𝑧) = 1)
7069sumeq2dv 14634 . . . . . 6 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) = Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1)
71 ssrab2 3836 . . . . . . . . . . . 12 {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢} ⊆ 𝑌
726, 71eqsstri 3784 . . . . . . . . . . 11 𝑍𝑌
73 ssfi 8334 . . . . . . . . . . 11 ((𝑌 ∈ Fin ∧ 𝑍𝑌) → 𝑍 ∈ Fin)
745, 72, 73sylancl 574 . . . . . . . . . 10 (𝜑𝑍 ∈ Fin)
75 hashcl 13342 . . . . . . . . . 10 (𝑍 ∈ Fin → (♯‘𝑍) ∈ ℕ0)
7674, 75syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝑍) ∈ ℕ0)
7776nn0cnd 11553 . . . . . . . 8 (𝜑 → (♯‘𝑍) ∈ ℂ)
7877mulid1d 10257 . . . . . . 7 (𝜑 → ((♯‘𝑍) · 1) = (♯‘𝑍))
796, 5rabexd 4947 . . . . . . . . . 10 (𝜑𝑍 ∈ V)
80 inss2 3982 . . . . . . . . . . 11 ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ 𝒫 𝑍
81 pwexg 4980 . . . . . . . . . . . 12 (𝑍 ∈ Fin → 𝒫 𝑍 ∈ V)
8274, 81syl 17 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑍 ∈ V)
83 ssexg 4938 . . . . . . . . . . 11 ((((𝑌 / ) ∩ 𝒫 𝑍) ⊆ 𝒫 𝑍 ∧ 𝒫 𝑍 ∈ V) → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ V)
8480, 82, 83sylancr 575 . . . . . . . . . 10 (𝜑 → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ V)
857relopabi 5382 . . . . . . . . . . . . . . . . 17 Rel
86 relssdmrn 5798 . . . . . . . . . . . . . . . . 17 (Rel ⊆ (dom × ran ))
8785, 86ax-mp 5 . . . . . . . . . . . . . . . 16 ⊆ (dom × ran )
88 erdm 7904 . . . . . . . . . . . . . . . . . . 19 ( Er 𝑌 → dom = 𝑌)
8921, 88syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom = 𝑌)
9089, 5eqeltrd 2850 . . . . . . . . . . . . . . . . 17 (𝜑 → dom ∈ Fin)
91 errn 7916 . . . . . . . . . . . . . . . . . . 19 ( Er 𝑌 → ran = 𝑌)
9221, 91syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ran = 𝑌)
9392, 5eqeltrd 2850 . . . . . . . . . . . . . . . . 17 (𝜑 → ran ∈ Fin)
94 xpexg 7105 . . . . . . . . . . . . . . . . 17 ((dom ∈ Fin ∧ ran ∈ Fin) → (dom × ran ) ∈ V)
9590, 93, 94syl2anc 573 . . . . . . . . . . . . . . . 16 (𝜑 → (dom × ran ) ∈ V)
96 ssexg 4938 . . . . . . . . . . . . . . . 16 (( ⊆ (dom × ran ) ∧ (dom × ran ) ∈ V) → ∈ V)
9787, 95, 96sylancr 575 . . . . . . . . . . . . . . 15 (𝜑 ∈ V)
9897adantr 466 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑍) → ∈ V)
99 simpr 471 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑍) → 𝑤𝑍)
10072, 99sseldi 3750 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑍) → 𝑤𝑌)
101 ecelqsg 7952 . . . . . . . . . . . . . 14 (( ∈ V ∧ 𝑤𝑌) → [𝑤] ∈ (𝑌 / ))
10298, 100, 101syl2anc 573 . . . . . . . . . . . . 13 ((𝜑𝑤𝑍) → [𝑤] ∈ (𝑌 / ))
10354, 102eqeltrrd 2851 . . . . . . . . . . . 12 ((𝜑𝑤𝑍) → {𝑤} ∈ (𝑌 / ))
104 snelpwi 5040 . . . . . . . . . . . . 13 (𝑤𝑍 → {𝑤} ∈ 𝒫 𝑍)
105104adantl 467 . . . . . . . . . . . 12 ((𝜑𝑤𝑍) → {𝑤} ∈ 𝒫 𝑍)
106103, 105elind 3949 . . . . . . . . . . 11 ((𝜑𝑤𝑍) → {𝑤} ∈ ((𝑌 / ) ∩ 𝒫 𝑍))
107106ex 397 . . . . . . . . . 10 (𝜑 → (𝑤𝑍 → {𝑤} ∈ ((𝑌 / ) ∩ 𝒫 𝑍)))
108 simpr 471 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))
10980, 108sseldi 3750 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ∈ 𝒫 𝑍)
110109elpwid 4309 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧𝑍)
11164, 110eqsstr3d 3789 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → { 𝑧} ⊆ 𝑍)
11266snss 4451 . . . . . . . . . . . 12 ( 𝑧𝑍 ↔ { 𝑧} ⊆ 𝑍)
113111, 112sylibr 224 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧𝑍)
114113ex 397 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍) → 𝑧𝑍))
115 sneq 4326 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → {𝑤} = { 𝑧})
116115eqeq2d 2781 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → (𝑧 = {𝑤} ↔ 𝑧 = { 𝑧}))
11764, 116syl5ibrcom 237 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (𝑤 = 𝑧𝑧 = {𝑤}))
118117adantrl 695 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))) → (𝑤 = 𝑧𝑧 = {𝑤}))
119 unieq 4582 . . . . . . . . . . . . 13 (𝑧 = {𝑤} → 𝑧 = {𝑤})
12049unisn 4589 . . . . . . . . . . . . 13 {𝑤} = 𝑤
121119, 120syl6req 2822 . . . . . . . . . . . 12 (𝑧 = {𝑤} → 𝑤 = 𝑧)
122118, 121impbid1 215 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))) → (𝑤 = 𝑧𝑧 = {𝑤}))
123122ex 397 . . . . . . . . . 10 (𝜑 → ((𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (𝑤 = 𝑧𝑧 = {𝑤})))
12479, 84, 107, 114, 123en3d 8144 . . . . . . . . 9 (𝜑𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍))
125 hashen 13332 . . . . . . . . . 10 ((𝑍 ∈ Fin ∧ ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin) → ((♯‘𝑍) = (♯‘((𝑌 / ) ∩ 𝒫 𝑍)) ↔ 𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍)))
12674, 35, 125syl2anc 573 . . . . . . . . 9 (𝜑 → ((♯‘𝑍) = (♯‘((𝑌 / ) ∩ 𝒫 𝑍)) ↔ 𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍)))
127124, 126mpbird 247 . . . . . . . 8 (𝜑 → (♯‘𝑍) = (♯‘((𝑌 / ) ∩ 𝒫 𝑍)))
128127oveq1d 6806 . . . . . . 7 (𝜑 → ((♯‘𝑍) · 1) = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
12978, 128eqtr3d 2807 . . . . . 6 (𝜑 → (♯‘𝑍) = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
13038, 70, 1293eqtr4rd 2816 . . . . 5 (𝜑 → (♯‘𝑍) = Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧))
131130oveq1d 6806 . . . 4 (𝜑 → ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)))
13231, 32, 1313eqtr4rd 2816 . . 3 (𝜑 → ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (♯‘𝑌))
133 hashcl 13342 . . . . . 6 (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0)
1345, 133syl 17 . . . . 5 (𝜑 → (♯‘𝑌) ∈ ℕ0)
135134nn0cnd 11553 . . . 4 (𝜑 → (♯‘𝑌) ∈ ℂ)
136 diffi 8346 . . . . . 6 ((𝑌 / ) ∈ Fin → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
13723, 136syl 17 . . . . 5 (𝜑 → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
138 eldifi 3883 . . . . . 6 (𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍) → 𝑧 ∈ (𝑌 / ))
139138, 30sylan2 580 . . . . 5 ((𝜑𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)) → (♯‘𝑧) ∈ ℂ)
140137, 139fsumcl 14665 . . . 4 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧) ∈ ℂ)
141135, 77, 140subaddd 10610 . . 3 (𝜑 → (((♯‘𝑌) − (♯‘𝑍)) = Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧) ↔ ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (♯‘𝑌)))
142132, 141mpbird 247 . 2 (𝜑 → ((♯‘𝑌) − (♯‘𝑍)) = Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧))
1438, 142breqtrrd 4814 1 (𝜑𝑃 ∥ ((♯‘𝑌) − (♯‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  {crab 3065  Vcvv 3351  cdif 3720  cun 3721  cin 3722  wss 3723  c0 4063  𝒫 cpw 4297  {csn 4316  {cpr 4318   cuni 4574   class class class wbr 4786  {copab 4846   × cxp 5247  dom cdm 5249  ran crn 5250  Rel wrel 5254  cfv 6029  (class class class)co 6791  1𝑜c1o 7704   Er wer 7891  [cec 7892   / cqs 7893  cen 8104  Fincfn 8107  cc 10134  1c1 10137   + caddc 10139   · cmul 10141  cmin 10466  0cn0 11492  chash 13314  Σcsu 14617  cdvds 15182  Basecbs 16057   GrpAct cga 17922   pGrp cpgp 18146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-omul 7716  df-er 7894  df-ec 7896  df-qs 7900  df-map 8009  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-acn 8966  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-n0 11493  df-xnn0 11564  df-z 11578  df-uz 11887  df-q 11990  df-rp 12029  df-fz 12527  df-fzo 12667  df-fl 12794  df-mod 12870  df-seq 13002  df-exp 13061  df-fac 13258  df-bc 13287  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-clim 14420  df-sum 14618  df-dvds 15183  df-gcd 15418  df-prm 15586  df-pc 15742  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-0g 16303  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-eqg 17794  df-ga 17923  df-od 18148  df-pgp 18150
This theorem is referenced by:  sylow2blem3  18237  sylow3lem6  18247
  Copyright terms: Public domain W3C validator