MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2a Structured version   Visualization version   GIF version

Theorem sylow2a 18242
Description: A named lemma of Sylow's second and third theorems. If 𝐺 is a finite 𝑃-group that acts on the finite set 𝑌, then the set 𝑍 of all points of 𝑌 fixed by every element of 𝐺 has cardinality equivalent to the cardinality of 𝑌, mod 𝑃. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x 𝑋 = (Base‘𝐺)
sylow2a.m (𝜑 ∈ (𝐺 GrpAct 𝑌))
sylow2a.p (𝜑𝑃 pGrp 𝐺)
sylow2a.f (𝜑𝑋 ∈ Fin)
sylow2a.y (𝜑𝑌 ∈ Fin)
sylow2a.z 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
sylow2a.r = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow2a (𝜑𝑃 ∥ ((♯‘𝑌) − (♯‘𝑍)))
Distinct variable groups:   ,   𝑔,,𝑢,𝑥,𝑦   𝑔,𝐺,𝑥,𝑦   ,𝑔,,𝑢,𝑥,𝑦   𝑔,𝑋,,𝑢,𝑥,𝑦   𝜑,   𝑔,𝑌,,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑢,𝑔)   𝑃(𝑥,𝑦,𝑢,𝑔,)   (𝑥,𝑦,𝑢,𝑔)   𝐺(𝑢,)   𝑍(𝑥,𝑦,𝑢,𝑔,)

Proof of Theorem sylow2a
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow2a.x . . 3 𝑋 = (Base‘𝐺)
2 sylow2a.m . . 3 (𝜑 ∈ (𝐺 GrpAct 𝑌))
3 sylow2a.p . . 3 (𝜑𝑃 pGrp 𝐺)
4 sylow2a.f . . 3 (𝜑𝑋 ∈ Fin)
5 sylow2a.y . . 3 (𝜑𝑌 ∈ Fin)
6 sylow2a.z . . 3 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
7 sylow2a.r . . 3 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
81, 2, 3, 4, 5, 6, 7sylow2alem2 18241 . 2 (𝜑𝑃 ∥ Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧))
9 inass 4031 . . . . . . 7 (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ((𝑌 / ) ∩ (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍)))
10 disjdif 4247 . . . . . . . 8 (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅
1110ineq2i 4021 . . . . . . 7 ((𝑌 / ) ∩ (𝒫 𝑍 ∩ ((𝑌 / ) ∖ 𝒫 𝑍))) = ((𝑌 / ) ∩ ∅)
12 in0 4177 . . . . . . 7 ((𝑌 / ) ∩ ∅) = ∅
139, 11, 123eqtri 2843 . . . . . 6 (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅
1413a1i 11 . . . . 5 (𝜑 → (((𝑌 / ) ∩ 𝒫 𝑍) ∩ ((𝑌 / ) ∖ 𝒫 𝑍)) = ∅)
15 inundif 4253 . . . . . . 7 (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍)) = (𝑌 / )
1615eqcomi 2826 . . . . . 6 (𝑌 / ) = (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍))
1716a1i 11 . . . . 5 (𝜑 → (𝑌 / ) = (((𝑌 / ) ∩ 𝒫 𝑍) ∪ ((𝑌 / ) ∖ 𝒫 𝑍)))
18 pwfi 8507 . . . . . . 7 (𝑌 ∈ Fin ↔ 𝒫 𝑌 ∈ Fin)
195, 18sylib 209 . . . . . 6 (𝜑 → 𝒫 𝑌 ∈ Fin)
207, 1gaorber 17949 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
212, 20syl 17 . . . . . . 7 (𝜑 Er 𝑌)
2221qsss 8050 . . . . . 6 (𝜑 → (𝑌 / ) ⊆ 𝒫 𝑌)
2319, 22ssfid 8429 . . . . 5 (𝜑 → (𝑌 / ) ∈ Fin)
245adantr 468 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑌 ∈ Fin)
2522sselda 3809 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ 𝒫 𝑌)
2625elpwid 4374 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧𝑌)
2724, 26ssfid 8429 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 / )) → 𝑧 ∈ Fin)
28 hashcl 13372 . . . . . . 7 (𝑧 ∈ Fin → (♯‘𝑧) ∈ ℕ0)
2927, 28syl 17 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 / )) → (♯‘𝑧) ∈ ℕ0)
3029nn0cnd 11626 . . . . 5 ((𝜑𝑧 ∈ (𝑌 / )) → (♯‘𝑧) ∈ ℂ)
3114, 17, 23, 30fsumsplit 14701 . . . 4 (𝜑 → Σ𝑧 ∈ (𝑌 / )(♯‘𝑧) = (Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)))
3221, 5qshash 14788 . . . 4 (𝜑 → (♯‘𝑌) = Σ𝑧 ∈ (𝑌 / )(♯‘𝑧))
33 inss1 4040 . . . . . . . 8 ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ (𝑌 / )
34 ssfi 8426 . . . . . . . 8 (((𝑌 / ) ∈ Fin ∧ ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ (𝑌 / )) → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin)
3523, 33, 34sylancl 576 . . . . . . 7 (𝜑 → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin)
36 ax-1cn 10286 . . . . . . 7 1 ∈ ℂ
37 fsumconst 14751 . . . . . . 7 ((((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1 = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
3835, 36, 37sylancl 576 . . . . . 6 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1 = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
39 elin 4006 . . . . . . . . . . 11 (𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍) ↔ (𝑧 ∈ (𝑌 / ) ∧ 𝑧 ∈ 𝒫 𝑍))
40 eqid 2817 . . . . . . . . . . . . 13 (𝑌 / ) = (𝑌 / )
41 sseq1 3834 . . . . . . . . . . . . . . 15 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧𝑍))
42 selpw 4369 . . . . . . . . . . . . . . 15 (𝑧 ∈ 𝒫 𝑍𝑧𝑍)
4341, 42syl6bbr 280 . . . . . . . . . . . . . 14 ([𝑤] = 𝑧 → ([𝑤] 𝑍𝑧 ∈ 𝒫 𝑍))
44 breq1 4858 . . . . . . . . . . . . . 14 ([𝑤] = 𝑧 → ([𝑤] ≈ 1𝑜𝑧 ≈ 1𝑜))
4543, 44imbi12d 335 . . . . . . . . . . . . 13 ([𝑤] = 𝑧 → (([𝑤] 𝑍 → [𝑤] ≈ 1𝑜) ↔ (𝑧 ∈ 𝒫 𝑍𝑧 ≈ 1𝑜)))
4621adantr 468 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → Er 𝑌)
47 simpr 473 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑌) → 𝑤𝑌)
4846, 47erref 8006 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑌) → 𝑤 𝑤)
49 vex 3405 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
5049, 49elec 8028 . . . . . . . . . . . . . . . 16 (𝑤 ∈ [𝑤] 𝑤 𝑤)
5148, 50sylibr 225 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑌) → 𝑤 ∈ [𝑤] )
52 ssel 3803 . . . . . . . . . . . . . . 15 ([𝑤] 𝑍 → (𝑤 ∈ [𝑤] 𝑤𝑍))
5351, 52syl5com 31 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → ([𝑤] 𝑍𝑤𝑍))
541, 2, 3, 4, 5, 6, 7sylow2alem1 18240 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤𝑍) → [𝑤] = {𝑤})
5549ensn1 8263 . . . . . . . . . . . . . . . . 17 {𝑤} ≈ 1𝑜
5654, 55syl6eqbr 4894 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝑍) → [𝑤] ≈ 1𝑜)
5756ex 399 . . . . . . . . . . . . . . 15 (𝜑 → (𝑤𝑍 → [𝑤] ≈ 1𝑜))
5857adantr 468 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑌) → (𝑤𝑍 → [𝑤] ≈ 1𝑜))
5953, 58syld 47 . . . . . . . . . . . . 13 ((𝜑𝑤𝑌) → ([𝑤] 𝑍 → [𝑤] ≈ 1𝑜))
6040, 45, 59ectocld 8056 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 / )) → (𝑧 ∈ 𝒫 𝑍𝑧 ≈ 1𝑜))
6160impr 444 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ (𝑌 / ) ∧ 𝑧 ∈ 𝒫 𝑍)) → 𝑧 ≈ 1𝑜)
6239, 61sylan2b 583 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ≈ 1𝑜)
63 en1b 8267 . . . . . . . . . 10 (𝑧 ≈ 1𝑜𝑧 = { 𝑧})
6462, 63sylib 209 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 = { 𝑧})
6564fveq2d 6419 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (♯‘𝑧) = (♯‘{ 𝑧}))
66 vuniex 7191 . . . . . . . . 9 𝑧 ∈ V
67 hashsng 13384 . . . . . . . . 9 ( 𝑧 ∈ V → (♯‘{ 𝑧}) = 1)
6866, 67ax-mp 5 . . . . . . . 8 (♯‘{ 𝑧}) = 1
6965, 68syl6eq 2867 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (♯‘𝑧) = 1)
7069sumeq2dv 14663 . . . . . 6 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) = Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)1)
71 ssrab2 3895 . . . . . . . . . . . 12 {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢} ⊆ 𝑌
726, 71eqsstri 3843 . . . . . . . . . . 11 𝑍𝑌
73 ssfi 8426 . . . . . . . . . . 11 ((𝑌 ∈ Fin ∧ 𝑍𝑌) → 𝑍 ∈ Fin)
745, 72, 73sylancl 576 . . . . . . . . . 10 (𝜑𝑍 ∈ Fin)
75 hashcl 13372 . . . . . . . . . 10 (𝑍 ∈ Fin → (♯‘𝑍) ∈ ℕ0)
7674, 75syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝑍) ∈ ℕ0)
7776nn0cnd 11626 . . . . . . . 8 (𝜑 → (♯‘𝑍) ∈ ℂ)
7877mulid1d 10349 . . . . . . 7 (𝜑 → ((♯‘𝑍) · 1) = (♯‘𝑍))
796, 5rabexd 5019 . . . . . . . . . 10 (𝜑𝑍 ∈ V)
80 inss2 4041 . . . . . . . . . . 11 ((𝑌 / ) ∩ 𝒫 𝑍) ⊆ 𝒫 𝑍
8174pwexd 5060 . . . . . . . . . . 11 (𝜑 → 𝒫 𝑍 ∈ V)
82 ssexg 5010 . . . . . . . . . . 11 ((((𝑌 / ) ∩ 𝒫 𝑍) ⊆ 𝒫 𝑍 ∧ 𝒫 𝑍 ∈ V) → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ V)
8380, 81, 82sylancr 577 . . . . . . . . . 10 (𝜑 → ((𝑌 / ) ∩ 𝒫 𝑍) ∈ V)
847relopabi 5458 . . . . . . . . . . . . . . . . 17 Rel
85 relssdmrn 5881 . . . . . . . . . . . . . . . . 17 (Rel ⊆ (dom × ran ))
8684, 85ax-mp 5 . . . . . . . . . . . . . . . 16 ⊆ (dom × ran )
87 erdm 7996 . . . . . . . . . . . . . . . . . . 19 ( Er 𝑌 → dom = 𝑌)
8821, 87syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom = 𝑌)
8988, 5eqeltrd 2896 . . . . . . . . . . . . . . . . 17 (𝜑 → dom ∈ Fin)
90 errn 8008 . . . . . . . . . . . . . . . . . . 19 ( Er 𝑌 → ran = 𝑌)
9121, 90syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ran = 𝑌)
9291, 5eqeltrd 2896 . . . . . . . . . . . . . . . . 17 (𝜑 → ran ∈ Fin)
93 xpexg 7197 . . . . . . . . . . . . . . . . 17 ((dom ∈ Fin ∧ ran ∈ Fin) → (dom × ran ) ∈ V)
9489, 92, 93syl2anc 575 . . . . . . . . . . . . . . . 16 (𝜑 → (dom × ran ) ∈ V)
95 ssexg 5010 . . . . . . . . . . . . . . . 16 (( ⊆ (dom × ran ) ∧ (dom × ran ) ∈ V) → ∈ V)
9686, 94, 95sylancr 577 . . . . . . . . . . . . . . 15 (𝜑 ∈ V)
9796adantr 468 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑍) → ∈ V)
98 simpr 473 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑍) → 𝑤𝑍)
9972, 98sseldi 3807 . . . . . . . . . . . . . 14 ((𝜑𝑤𝑍) → 𝑤𝑌)
100 ecelqsg 8044 . . . . . . . . . . . . . 14 (( ∈ V ∧ 𝑤𝑌) → [𝑤] ∈ (𝑌 / ))
10197, 99, 100syl2anc 575 . . . . . . . . . . . . 13 ((𝜑𝑤𝑍) → [𝑤] ∈ (𝑌 / ))
10254, 101eqeltrrd 2897 . . . . . . . . . . . 12 ((𝜑𝑤𝑍) → {𝑤} ∈ (𝑌 / ))
103 snelpwi 5113 . . . . . . . . . . . . 13 (𝑤𝑍 → {𝑤} ∈ 𝒫 𝑍)
104103adantl 469 . . . . . . . . . . . 12 ((𝜑𝑤𝑍) → {𝑤} ∈ 𝒫 𝑍)
105102, 104elind 4008 . . . . . . . . . . 11 ((𝜑𝑤𝑍) → {𝑤} ∈ ((𝑌 / ) ∩ 𝒫 𝑍))
106105ex 399 . . . . . . . . . 10 (𝜑 → (𝑤𝑍 → {𝑤} ∈ ((𝑌 / ) ∩ 𝒫 𝑍)))
107 simpr 473 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))
10880, 107sseldi 3807 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧 ∈ 𝒫 𝑍)
109108elpwid 4374 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧𝑍)
11064, 109eqsstr3d 3848 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → { 𝑧} ⊆ 𝑍)
11166snss 4517 . . . . . . . . . . . 12 ( 𝑧𝑍 ↔ { 𝑧} ⊆ 𝑍)
112110, 111sylibr 225 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → 𝑧𝑍)
113112ex 399 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍) → 𝑧𝑍))
114 sneq 4391 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧 → {𝑤} = { 𝑧})
115114eqeq2d 2827 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → (𝑧 = {𝑤} ↔ 𝑧 = { 𝑧}))
11664, 115syl5ibrcom 238 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (𝑤 = 𝑧𝑧 = {𝑤}))
117116adantrl 698 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))) → (𝑤 = 𝑧𝑧 = {𝑤}))
118 unieq 4649 . . . . . . . . . . . . 13 (𝑧 = {𝑤} → 𝑧 = {𝑤})
11949unisn 4657 . . . . . . . . . . . . 13 {𝑤} = 𝑤
120118, 119syl6req 2868 . . . . . . . . . . . 12 (𝑧 = {𝑤} → 𝑤 = 𝑧)
121117, 120impbid1 216 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍))) → (𝑤 = 𝑧𝑧 = {𝑤}))
122121ex 399 . . . . . . . . . 10 (𝜑 → ((𝑤𝑍𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)) → (𝑤 = 𝑧𝑧 = {𝑤})))
12379, 83, 106, 113, 122en3d 8236 . . . . . . . . 9 (𝜑𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍))
124 hashen 13362 . . . . . . . . . 10 ((𝑍 ∈ Fin ∧ ((𝑌 / ) ∩ 𝒫 𝑍) ∈ Fin) → ((♯‘𝑍) = (♯‘((𝑌 / ) ∩ 𝒫 𝑍)) ↔ 𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍)))
12574, 35, 124syl2anc 575 . . . . . . . . 9 (𝜑 → ((♯‘𝑍) = (♯‘((𝑌 / ) ∩ 𝒫 𝑍)) ↔ 𝑍 ≈ ((𝑌 / ) ∩ 𝒫 𝑍)))
126123, 125mpbird 248 . . . . . . . 8 (𝜑 → (♯‘𝑍) = (♯‘((𝑌 / ) ∩ 𝒫 𝑍)))
127126oveq1d 6896 . . . . . . 7 (𝜑 → ((♯‘𝑍) · 1) = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
12878, 127eqtr3d 2853 . . . . . 6 (𝜑 → (♯‘𝑍) = ((♯‘((𝑌 / ) ∩ 𝒫 𝑍)) · 1))
12938, 70, 1283eqtr4rd 2862 . . . . 5 (𝜑 → (♯‘𝑍) = Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧))
130129oveq1d 6896 . . . 4 (𝜑 → ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (Σ𝑧 ∈ ((𝑌 / ) ∩ 𝒫 𝑍)(♯‘𝑧) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)))
13131, 32, 1303eqtr4rd 2862 . . 3 (𝜑 → ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (♯‘𝑌))
132 hashcl 13372 . . . . . 6 (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0)
1335, 132syl 17 . . . . 5 (𝜑 → (♯‘𝑌) ∈ ℕ0)
134133nn0cnd 11626 . . . 4 (𝜑 → (♯‘𝑌) ∈ ℂ)
135 diffi 8438 . . . . . 6 ((𝑌 / ) ∈ Fin → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
13623, 135syl 17 . . . . 5 (𝜑 → ((𝑌 / ) ∖ 𝒫 𝑍) ∈ Fin)
137 eldifi 3942 . . . . . 6 (𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍) → 𝑧 ∈ (𝑌 / ))
138137, 30sylan2 582 . . . . 5 ((𝜑𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)) → (♯‘𝑧) ∈ ℂ)
139136, 138fsumcl 14694 . . . 4 (𝜑 → Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧) ∈ ℂ)
140134, 77, 139subaddd 10702 . . 3 (𝜑 → (((♯‘𝑌) − (♯‘𝑍)) = Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧) ↔ ((♯‘𝑍) + Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧)) = (♯‘𝑌)))
141131, 140mpbird 248 . 2 (𝜑 → ((♯‘𝑌) − (♯‘𝑍)) = Σ𝑧 ∈ ((𝑌 / ) ∖ 𝒫 𝑍)(♯‘𝑧))
1428, 141breqtrrd 4883 1 (𝜑𝑃 ∥ ((♯‘𝑌) − (♯‘𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2157  wral 3107  wrex 3108  {crab 3111  Vcvv 3402  cdif 3777  cun 3778  cin 3779  wss 3780  c0 4127  𝒫 cpw 4362  {csn 4381  {cpr 4383   cuni 4641   class class class wbr 4855  {copab 4917   × cxp 5320  dom cdm 5322  ran crn 5323  Rel wrel 5327  cfv 6108  (class class class)co 6881  1𝑜c1o 7796   Er wer 7983  [cec 7984   / cqs 7985  cen 8196  Fincfn 8199  cc 10226  1c1 10229   + caddc 10231   · cmul 10233  cmin 10558  0cn0 11566  chash 13344  Σcsu 14646  cdvds 15210  Basecbs 16075   GrpAct cga 17930   pGrp cpgp 18154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4975  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186  ax-inf2 8792  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305  ax-pre-sup 10306
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-disj 4824  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5230  df-eprel 5235  df-po 5243  df-so 5244  df-fr 5281  df-se 5282  df-we 5283  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-pred 5904  df-ord 5950  df-on 5951  df-lim 5952  df-suc 5953  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-isom 6117  df-riota 6842  df-ov 6884  df-oprab 6885  df-mpt2 6886  df-om 7303  df-1st 7405  df-2nd 7406  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-1o 7803  df-2o 7804  df-oadd 7807  df-omul 7808  df-er 7986  df-ec 7988  df-qs 7992  df-map 8101  df-en 8200  df-dom 8201  df-sdom 8202  df-fin 8203  df-sup 8594  df-inf 8595  df-oi 8661  df-card 9055  df-acn 9058  df-cda 9282  df-pnf 10368  df-mnf 10369  df-xr 10370  df-ltxr 10371  df-le 10372  df-sub 10560  df-neg 10561  df-div 10977  df-nn 11313  df-2 11371  df-3 11372  df-n0 11567  df-xnn0 11637  df-z 11651  df-uz 11912  df-q 12015  df-rp 12054  df-fz 12557  df-fzo 12697  df-fl 12824  df-mod 12900  df-seq 13032  df-exp 13091  df-fac 13288  df-bc 13317  df-hash 13345  df-cj 14069  df-re 14070  df-im 14071  df-sqrt 14205  df-abs 14206  df-clim 14449  df-sum 14647  df-dvds 15211  df-gcd 15443  df-prm 15611  df-pc 15766  df-ndx 16078  df-slot 16079  df-base 16081  df-sets 16082  df-ress 16083  df-plusg 16173  df-0g 16314  df-mgm 17454  df-sgrp 17496  df-mnd 17507  df-submnd 17548  df-grp 17637  df-minusg 17638  df-sbg 17639  df-mulg 17753  df-subg 17800  df-eqg 17802  df-ga 17931  df-od 18156  df-pgp 18158
This theorem is referenced by:  sylow2blem3  18245  sylow3lem6  18255
  Copyright terms: Public domain W3C validator