![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nsr | Structured version Visualization version GIF version |
Description: The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0nsr | ⊢ ¬ ∅ ∈ R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . 2 ⊢ ∅ = ∅ | |
2 | enrer 11062 | . . . . . 6 ⊢ ~R Er (P × P) | |
3 | erdm 8717 | . . . . . 6 ⊢ ( ~R Er (P × P) → dom ~R = (P × P)) | |
4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ dom ~R = (P × P) |
5 | elqsn0 8784 | . . . . 5 ⊢ ((dom ~R = (P × P) ∧ ∅ ∈ ((P × P) / ~R )) → ∅ ≠ ∅) | |
6 | 4, 5 | mpan 686 | . . . 4 ⊢ (∅ ∈ ((P × P) / ~R ) → ∅ ≠ ∅) |
7 | df-nr 11055 | . . . 4 ⊢ R = ((P × P) / ~R ) | |
8 | 6, 7 | eleq2s 2849 | . . 3 ⊢ (∅ ∈ R → ∅ ≠ ∅) |
9 | 8 | necon2bi 2969 | . 2 ⊢ (∅ = ∅ → ¬ ∅ ∈ R) |
10 | 1, 9 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ R |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ∅c0 4323 × cxp 5675 dom cdm 5677 Er wer 8704 / cqs 8706 Pcnp 10858 ~R cer 10863 Rcnr 10864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-inf2 9640 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-omul 8475 df-er 8707 df-ec 8709 df-qs 8713 df-ni 10871 df-pli 10872 df-mi 10873 df-lti 10874 df-plpq 10907 df-mpq 10908 df-ltpq 10909 df-enq 10910 df-nq 10911 df-erq 10912 df-plq 10913 df-mq 10914 df-1nq 10915 df-rq 10916 df-ltnq 10917 df-np 10980 df-plp 10982 df-ltp 10984 df-enr 11054 df-nr 11055 |
This theorem is referenced by: dmaddsr 11084 dmmulsr 11085 addasssr 11087 mulasssr 11089 distrsr 11090 ltasr 11099 |
Copyright terms: Public domain | W3C validator |