| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nsr | Structured version Visualization version GIF version | ||
| Description: The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0nsr | ⊢ ¬ ∅ ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ ∅ = ∅ | |
| 2 | enrer 11075 | . . . . . 6 ⊢ ~R Er (P × P) | |
| 3 | erdm 8727 | . . . . . 6 ⊢ ( ~R Er (P × P) → dom ~R = (P × P)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ dom ~R = (P × P) |
| 5 | elqsn0 8798 | . . . . 5 ⊢ ((dom ~R = (P × P) ∧ ∅ ∈ ((P × P) / ~R )) → ∅ ≠ ∅) | |
| 6 | 4, 5 | mpan 690 | . . . 4 ⊢ (∅ ∈ ((P × P) / ~R ) → ∅ ≠ ∅) |
| 7 | df-nr 11068 | . . . 4 ⊢ R = ((P × P) / ~R ) | |
| 8 | 6, 7 | eleq2s 2852 | . . 3 ⊢ (∅ ∈ R → ∅ ≠ ∅) |
| 9 | 8 | necon2bi 2962 | . 2 ⊢ (∅ = ∅ → ¬ ∅ ∈ R) |
| 10 | 1, 9 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ R |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 × cxp 5652 dom cdm 5654 Er wer 8714 / cqs 8716 Pcnp 10871 ~R cer 10876 Rcnr 10877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-omul 8483 df-er 8717 df-ec 8719 df-qs 8723 df-ni 10884 df-pli 10885 df-mi 10886 df-lti 10887 df-plpq 10920 df-mpq 10921 df-ltpq 10922 df-enq 10923 df-nq 10924 df-erq 10925 df-plq 10926 df-mq 10927 df-1nq 10928 df-rq 10929 df-ltnq 10930 df-np 10993 df-plp 10995 df-ltp 10997 df-enr 11067 df-nr 11068 |
| This theorem is referenced by: dmaddsr 11097 dmmulsr 11098 addasssr 11100 mulasssr 11102 distrsr 11103 ltasr 11112 |
| Copyright terms: Public domain | W3C validator |