MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nsr Structured version   Visualization version   GIF version

Theorem 0nsr 10217
Description: The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
0nsr ¬ ∅ ∈ R

Proof of Theorem 0nsr
StepHypRef Expression
1 eqid 2826 . 2 ∅ = ∅
2 enrer 10201 . . . . . 6 ~R Er (P × P)
3 erdm 8020 . . . . . 6 ( ~R Er (P × P) → dom ~R = (P × P))
42, 3ax-mp 5 . . . . 5 dom ~R = (P × P)
5 elqsn0 8082 . . . . 5 ((dom ~R = (P × P) ∧ ∅ ∈ ((P × P) / ~R )) → ∅ ≠ ∅)
64, 5mpan 683 . . . 4 (∅ ∈ ((P × P) / ~R ) → ∅ ≠ ∅)
7 df-nr 10194 . . . 4 R = ((P × P) / ~R )
86, 7eleq2s 2925 . . 3 (∅ ∈ R → ∅ ≠ ∅)
98necon2bi 3030 . 2 (∅ = ∅ → ¬ ∅ ∈ R)
101, 9ax-mp 5 1 ¬ ∅ ∈ R
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1658  wcel 2166  wne 3000  c0 4145   × cxp 5341  dom cdm 5343   Er wer 8007   / cqs 8009  Pcnp 9997   ~R cer 10002  Rcnr 10003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-omul 7832  df-er 8010  df-ec 8012  df-qs 8016  df-ni 10010  df-pli 10011  df-mi 10012  df-lti 10013  df-plpq 10046  df-mpq 10047  df-ltpq 10048  df-enq 10049  df-nq 10050  df-erq 10051  df-plq 10052  df-mq 10053  df-1nq 10054  df-rq 10055  df-ltnq 10056  df-np 10119  df-plp 10121  df-ltp 10123  df-enr 10193  df-nr 10194
This theorem is referenced by:  dmaddsr  10223  dmmulsr  10224  addasssr  10226  mulasssr  10228  distrsr  10229  ltasr  10238
  Copyright terms: Public domain W3C validator