![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ereldm | Structured version Visualization version GIF version |
Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ereldm.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
ereldm.2 | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Ref | Expression |
---|---|
ereldm | ⊢ (𝜑 → (𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ereldm.2 | . . . 4 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) | |
2 | 1 | neeq1d 3006 | . . 3 ⊢ (𝜑 → ([𝐴]𝑅 ≠ ∅ ↔ [𝐵]𝑅 ≠ ∅)) |
3 | ecdmn0 8812 | . . 3 ⊢ (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅) | |
4 | ecdmn0 8812 | . . 3 ⊢ (𝐵 ∈ dom 𝑅 ↔ [𝐵]𝑅 ≠ ∅) | |
5 | 2, 3, 4 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ 𝐵 ∈ dom 𝑅)) |
6 | ereldm.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
7 | erdm 8773 | . . . 4 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
9 | 8 | eleq2d 2830 | . 2 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ 𝐴 ∈ 𝑋)) |
10 | 8 | eleq2d 2830 | . 2 ⊢ (𝜑 → (𝐵 ∈ dom 𝑅 ↔ 𝐵 ∈ 𝑋)) |
11 | 5, 9, 10 | 3bitr3d 309 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 dom cdm 5700 Er wer 8760 [cec 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-er 8763 df-ec 8765 |
This theorem is referenced by: erth 8814 brecop 8868 eceqoveq 8880 |
Copyright terms: Public domain | W3C validator |