Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ereldm | Structured version Visualization version GIF version |
Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ereldm.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
ereldm.2 | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
Ref | Expression |
---|---|
ereldm | ⊢ (𝜑 → (𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ereldm.2 | . . . 4 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) | |
2 | 1 | neeq1d 3002 | . . 3 ⊢ (𝜑 → ([𝐴]𝑅 ≠ ∅ ↔ [𝐵]𝑅 ≠ ∅)) |
3 | ecdmn0 8503 | . . 3 ⊢ (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅) | |
4 | ecdmn0 8503 | . . 3 ⊢ (𝐵 ∈ dom 𝑅 ↔ [𝐵]𝑅 ≠ ∅) | |
5 | 2, 3, 4 | 3bitr4g 313 | . 2 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ 𝐵 ∈ dom 𝑅)) |
6 | ereldm.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
7 | erdm 8466 | . . . 4 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
9 | 8 | eleq2d 2824 | . 2 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ 𝐴 ∈ 𝑋)) |
10 | 8 | eleq2d 2824 | . 2 ⊢ (𝜑 → (𝐵 ∈ dom 𝑅 ↔ 𝐵 ∈ 𝑋)) |
11 | 5, 9, 10 | 3bitr3d 308 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 dom cdm 5580 Er wer 8453 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-er 8456 df-ec 8458 |
This theorem is referenced by: erth 8505 brecop 8557 eceqoveq 8569 |
Copyright terms: Public domain | W3C validator |