| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ereldm | Structured version Visualization version GIF version | ||
| Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ereldm.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| ereldm.2 | ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) |
| Ref | Expression |
|---|---|
| ereldm | ⊢ (𝜑 → (𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ereldm.2 | . . . 4 ⊢ (𝜑 → [𝐴]𝑅 = [𝐵]𝑅) | |
| 2 | 1 | neeq1d 2992 | . . 3 ⊢ (𝜑 → ([𝐴]𝑅 ≠ ∅ ↔ [𝐵]𝑅 ≠ ∅)) |
| 3 | ecdmn0 8773 | . . 3 ⊢ (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅) | |
| 4 | ecdmn0 8773 | . . 3 ⊢ (𝐵 ∈ dom 𝑅 ↔ [𝐵]𝑅 ≠ ∅) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ 𝐵 ∈ dom 𝑅)) |
| 6 | ereldm.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 7 | erdm 8734 | . . . 4 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
| 9 | 8 | eleq2d 2821 | . 2 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ 𝐴 ∈ 𝑋)) |
| 10 | 8 | eleq2d 2821 | . 2 ⊢ (𝜑 → (𝐵 ∈ dom 𝑅 ↔ 𝐵 ∈ 𝑋)) |
| 11 | 5, 9, 10 | 3bitr3d 309 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 dom cdm 5659 Er wer 8721 [cec 8722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-er 8724 df-ec 8726 |
| This theorem is referenced by: erth 8775 brecop 8829 eceqoveq 8841 |
| Copyright terms: Public domain | W3C validator |