![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspnn0 | Structured version Visualization version GIF version |
Description: A projective point is nonempty. (Contributed by SN, 17-Jan-2025.) |
Ref | Expression |
---|---|
prjspnssbas.p | ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) |
prjspnssbas.w | ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) |
prjspnssbas.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
prjspnssbas.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
prjspnssbas.k | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
prjspnn0.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
Ref | Expression |
---|---|
prjspnn0 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠 ‘𝑊)𝑦))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠 ‘𝑊)𝑦))} | |
2 | prjspnssbas.w | . . . 4 ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) | |
3 | prjspnssbas.b | . . . 4 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
4 | eqid 2736 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | prjspnssbas.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
7 | 1, 2, 3, 4, 5, 6 | prjspner 40943 | . . 3 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠 ‘𝑊)𝑦))} Er 𝐵) |
8 | erdm 8658 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠 ‘𝑊)𝑦))} Er 𝐵 → dom {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠 ‘𝑊)𝑦))} = 𝐵) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → dom {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠 ‘𝑊)𝑦))} = 𝐵) |
10 | prjspnn0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | prjspnssbas.p | . . . 4 ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) | |
12 | prjspnssbas.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
13 | 1, 2, 3, 4, 5 | prjspnval2 40942 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠 ‘𝑊)𝑦))})) |
14 | 12, 6, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠 ‘𝑊)𝑦))})) |
15 | 11, 14 | eqtrid 2788 | . . 3 ⊢ (𝜑 → 𝑃 = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠 ‘𝑊)𝑦))})) |
16 | 10, 15 | eleqtrd 2840 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠 ‘𝑊)𝑦))})) |
17 | elqsn0 8725 | . 2 ⊢ ((dom {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠 ‘𝑊)𝑦))} = 𝐵 ∧ 𝐴 ∈ (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘𝐾)𝑥 = (𝑙( ·𝑠 ‘𝑊)𝑦))})) → 𝐴 ≠ ∅) | |
18 | 9, 16, 17 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3073 ∖ cdif 3907 ∅c0 4282 {csn 4586 {copab 5167 dom cdm 5633 ‘cfv 6496 (class class class)co 7357 Er wer 8645 / cqs 8647 0cc0 11051 ℕ0cn0 12413 ...cfz 13424 Basecbs 17083 ·𝑠 cvsca 17137 0gc0g 17321 DivRingcdr 20185 freeLMod cfrlm 21152 ℙ𝕣𝕠𝕛ncprjspn 40938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-tpos 8157 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-ec 8650 df-qs 8654 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-0g 17323 df-prds 17329 df-pws 17331 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-sbg 18753 df-subg 18925 df-mgp 19897 df-ur 19914 df-ring 19966 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-drng 20187 df-subrg 20220 df-lmod 20324 df-lss 20393 df-lvec 20564 df-sra 20633 df-rgmod 20634 df-dsmm 21138 df-frlm 21153 df-prjsp 40926 df-prjspn 40939 |
This theorem is referenced by: prjcrv0 40957 |
Copyright terms: Public domain | W3C validator |