![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > errn | Structured version Visualization version GIF version |
Description: The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
errn | ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5457 | . 2 ⊢ ran 𝑅 = dom ◡𝑅 | |
2 | ercnv 8163 | . . . 4 ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) | |
3 | 2 | dmeqd 5663 | . . 3 ⊢ (𝑅 Er 𝐴 → dom ◡𝑅 = dom 𝑅) |
4 | erdm 8152 | . . 3 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
5 | 3, 4 | eqtrd 2830 | . 2 ⊢ (𝑅 Er 𝐴 → dom ◡𝑅 = 𝐴) |
6 | 1, 5 | syl5eq 2842 | 1 ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ◡ccnv 5445 dom cdm 5446 ran crn 5447 Er wer 8139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pr 5224 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ral 3109 df-rex 3110 df-rab 3113 df-v 3438 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-sn 4475 df-pr 4477 df-op 4481 df-br 4965 df-opab 5027 df-xp 5452 df-rel 5453 df-cnv 5454 df-dm 5456 df-rn 5457 df-er 8142 |
This theorem is referenced by: erssxp 8165 ecss 8188 uniqs2 8212 sylow2a 18474 |
Copyright terms: Public domain | W3C validator |