MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  errn Structured version   Visualization version   GIF version

Theorem errn 8765
Description: The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errn (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)

Proof of Theorem errn
StepHypRef Expression
1 df-rn 5699 . 2 ran 𝑅 = dom 𝑅
2 ercnv 8764 . . . 4 (𝑅 Er 𝐴𝑅 = 𝑅)
32dmeqd 5918 . . 3 (𝑅 Er 𝐴 → dom 𝑅 = dom 𝑅)
4 erdm 8753 . . 3 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
53, 4eqtrd 2774 . 2 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
61, 5eqtrid 2786 1 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  ccnv 5687  dom cdm 5688  ran crn 5689   Er wer 8740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-xp 5694  df-rel 5695  df-cnv 5696  df-dm 5698  df-rn 5699  df-er 8743
This theorem is referenced by:  erssxp  8766  ecss  8791  uniqs2  8817  sylow2a  19651
  Copyright terms: Public domain W3C validator