MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  errn Structured version   Visualization version   GIF version

Theorem errn 8478
Description: The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errn (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)

Proof of Theorem errn
StepHypRef Expression
1 df-rn 5591 . 2 ran 𝑅 = dom 𝑅
2 ercnv 8477 . . . 4 (𝑅 Er 𝐴𝑅 = 𝑅)
32dmeqd 5803 . . 3 (𝑅 Er 𝐴 → dom 𝑅 = dom 𝑅)
4 erdm 8466 . . 3 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
53, 4eqtrd 2778 . 2 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
61, 5eqtrid 2790 1 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ccnv 5579  dom cdm 5580  ran crn 5581   Er wer 8453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-er 8456
This theorem is referenced by:  erssxp  8479  ecss  8502  uniqs2  8526  sylow2a  19139
  Copyright terms: Public domain W3C validator