| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > errn | Structured version Visualization version GIF version | ||
| Description: The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| errn | ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 5627 | . 2 ⊢ ran 𝑅 = dom ◡𝑅 | |
| 2 | ercnv 8643 | . . . 4 ⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) | |
| 3 | 2 | dmeqd 5845 | . . 3 ⊢ (𝑅 Er 𝐴 → dom ◡𝑅 = dom 𝑅) |
| 4 | erdm 8632 | . . 3 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
| 5 | 3, 4 | eqtrd 2766 | . 2 ⊢ (𝑅 Er 𝐴 → dom ◡𝑅 = 𝐴) |
| 6 | 1, 5 | eqtrid 2778 | 1 ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ◡ccnv 5615 dom cdm 5616 ran crn 5617 Er wer 8619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-er 8622 |
| This theorem is referenced by: erssxp 8645 ecss 8673 uniqs2 8701 sylow2a 19529 |
| Copyright terms: Public domain | W3C validator |