MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  errn Structured version   Visualization version   GIF version

Theorem errn 8722
Description: The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errn (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)

Proof of Theorem errn
StepHypRef Expression
1 df-rn 5678 . 2 ran 𝑅 = dom 𝑅
2 ercnv 8721 . . . 4 (𝑅 Er 𝐴𝑅 = 𝑅)
32dmeqd 5896 . . 3 (𝑅 Er 𝐴 → dom 𝑅 = dom 𝑅)
4 erdm 8710 . . 3 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
53, 4eqtrd 2764 . 2 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
61, 5eqtrid 2776 1 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  ccnv 5666  dom cdm 5667  ran crn 5668   Er wer 8697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-xp 5673  df-rel 5674  df-cnv 5675  df-dm 5677  df-rn 5678  df-er 8700
This theorem is referenced by:  erssxp  8723  ecss  8746  uniqs2  8770  sylow2a  19531
  Copyright terms: Public domain W3C validator