![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniqs2 | Structured version Visualization version GIF version |
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.) |
Ref | Expression |
---|---|
qsss.1 | ⊢ (𝜑 → 𝑅 Er 𝐴) |
qsss.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
Ref | Expression |
---|---|
uniqs2 | ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsss.2 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | uniqs 8090 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
4 | qsss.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝐴) | |
5 | erdm 8036 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → dom 𝑅 = 𝐴) |
7 | 6 | imaeq2d 5720 | . . . 4 ⊢ (𝜑 → (𝑅 “ dom 𝑅) = (𝑅 “ 𝐴)) |
8 | 3, 7 | eqtr4d 2816 | . . 3 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ dom 𝑅)) |
9 | imadmrn 5730 | . . 3 ⊢ (𝑅 “ dom 𝑅) = ran 𝑅 | |
10 | 8, 9 | syl6eq 2829 | . 2 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = ran 𝑅) |
11 | errn 8048 | . . 3 ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) | |
12 | 4, 11 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝐴) |
13 | 10, 12 | eqtrd 2813 | 1 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 ∪ cuni 4671 dom cdm 5355 ran crn 5356 “ cima 5358 Er wer 8023 / cqs 8025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-xp 5361 df-rel 5362 df-cnv 5363 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-er 8026 df-ec 8028 df-qs 8032 |
This theorem is referenced by: qshash 14963 cldsubg 22322 pi1buni 23247 |
Copyright terms: Public domain | W3C validator |