Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniqs2 | Structured version Visualization version GIF version |
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.) |
Ref | Expression |
---|---|
qsss.1 | ⊢ (𝜑 → 𝑅 Er 𝐴) |
qsss.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
Ref | Expression |
---|---|
uniqs2 | ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsss.2 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | uniqs 8641 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
4 | qsss.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝐴) | |
5 | erdm 8583 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → dom 𝑅 = 𝐴) |
7 | 6 | imaeq2d 6003 | . . . 4 ⊢ (𝜑 → (𝑅 “ dom 𝑅) = (𝑅 “ 𝐴)) |
8 | 3, 7 | eqtr4d 2780 | . . 3 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ dom 𝑅)) |
9 | imadmrn 6013 | . . 3 ⊢ (𝑅 “ dom 𝑅) = ran 𝑅 | |
10 | 8, 9 | eqtrdi 2793 | . 2 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = ran 𝑅) |
11 | errn 8595 | . . 3 ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) | |
12 | 4, 11 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝐴) |
13 | 10, 12 | eqtrd 2777 | 1 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∪ cuni 4856 dom cdm 5624 ran crn 5625 “ cima 5627 Er wer 8570 / cqs 8572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-xp 5630 df-rel 5631 df-cnv 5632 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-er 8573 df-ec 8575 df-qs 8579 |
This theorem is referenced by: qshash 15638 cldsubg 23367 pi1buni 24308 qustrivr 31855 |
Copyright terms: Public domain | W3C validator |