| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniqs2 | Structured version Visualization version GIF version | ||
| Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| Ref | Expression |
|---|---|
| qsss.1 | ⊢ (𝜑 → 𝑅 Er 𝐴) |
| qsss.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| uniqs2 | ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsss.2 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 2 | uniqsw 8709 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
| 4 | qsss.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝐴) | |
| 5 | erdm 8642 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → dom 𝑅 = 𝐴) |
| 7 | 6 | imaeq2d 6015 | . . . 4 ⊢ (𝜑 → (𝑅 “ dom 𝑅) = (𝑅 “ 𝐴)) |
| 8 | 3, 7 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ dom 𝑅)) |
| 9 | imadmrn 6025 | . . 3 ⊢ (𝑅 “ dom 𝑅) = ran 𝑅 | |
| 10 | 8, 9 | eqtrdi 2780 | . 2 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = ran 𝑅) |
| 11 | errn 8654 | . . 3 ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) | |
| 12 | 4, 11 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝐴) |
| 13 | 10, 12 | eqtrd 2764 | 1 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4861 dom cdm 5623 ran crn 5624 “ cima 5626 Er wer 8629 / cqs 8631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-er 8632 df-ec 8634 df-qs 8638 |
| This theorem is referenced by: qshash 15752 cldsubg 24014 pi1buni 24956 qustrivr 33315 |
| Copyright terms: Public domain | W3C validator |