MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniqs2 Structured version   Visualization version   GIF version

Theorem uniqs2 8701
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsss.1 (𝜑𝑅 Er 𝐴)
qsss.2 (𝜑𝑅𝑉)
Assertion
Ref Expression
uniqs2 (𝜑 (𝐴 / 𝑅) = 𝐴)

Proof of Theorem uniqs2
StepHypRef Expression
1 qsss.2 . . . . 5 (𝜑𝑅𝑉)
2 uniqsw 8699 . . . . 5 (𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
31, 2syl 17 . . . 4 (𝜑 (𝐴 / 𝑅) = (𝑅𝐴))
4 qsss.1 . . . . . 6 (𝜑𝑅 Er 𝐴)
5 erdm 8632 . . . . . 6 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
64, 5syl 17 . . . . 5 (𝜑 → dom 𝑅 = 𝐴)
76imaeq2d 6009 . . . 4 (𝜑 → (𝑅 “ dom 𝑅) = (𝑅𝐴))
83, 7eqtr4d 2769 . . 3 (𝜑 (𝐴 / 𝑅) = (𝑅 “ dom 𝑅))
9 imadmrn 6019 . . 3 (𝑅 “ dom 𝑅) = ran 𝑅
108, 9eqtrdi 2782 . 2 (𝜑 (𝐴 / 𝑅) = ran 𝑅)
11 errn 8644 . . 3 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
124, 11syl 17 . 2 (𝜑 → ran 𝑅 = 𝐴)
1310, 12eqtrd 2766 1 (𝜑 (𝐴 / 𝑅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   cuni 4859  dom cdm 5616  ran crn 5617  cima 5619   Er wer 8619   / cqs 8621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-er 8622  df-ec 8624  df-qs 8628
This theorem is referenced by:  qshash  15734  cldsubg  24027  pi1buni  24968  qustrivr  33328
  Copyright terms: Public domain W3C validator