| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniqs2 | Structured version Visualization version GIF version | ||
| Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.) |
| Ref | Expression |
|---|---|
| qsss.1 | ⊢ (𝜑 → 𝑅 Er 𝐴) |
| qsss.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| uniqs2 | ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsss.2 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 2 | uniqsw 8707 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
| 4 | qsss.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝐴) | |
| 5 | erdm 8640 | . . . . . 6 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → dom 𝑅 = 𝐴) |
| 7 | 6 | imaeq2d 6015 | . . . 4 ⊢ (𝜑 → (𝑅 “ dom 𝑅) = (𝑅 “ 𝐴)) |
| 8 | 3, 7 | eqtr4d 2771 | . . 3 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = (𝑅 “ dom 𝑅)) |
| 9 | imadmrn 6025 | . . 3 ⊢ (𝑅 “ dom 𝑅) = ran 𝑅 | |
| 10 | 8, 9 | eqtrdi 2784 | . 2 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = ran 𝑅) |
| 11 | errn 8652 | . . 3 ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) | |
| 12 | 4, 11 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝐴) |
| 13 | 10, 12 | eqtrd 2768 | 1 ⊢ (𝜑 → ∪ (𝐴 / 𝑅) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∪ cuni 4860 dom cdm 5621 ran crn 5622 “ cima 5624 Er wer 8627 / cqs 8629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-er 8630 df-ec 8632 df-qs 8636 |
| This theorem is referenced by: qshash 15738 cldsubg 24029 pi1buni 24970 qustrivr 33339 |
| Copyright terms: Public domain | W3C validator |