MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniqs2 Structured version   Visualization version   GIF version

Theorem uniqs2 8818
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsss.1 (𝜑𝑅 Er 𝐴)
qsss.2 (𝜑𝑅𝑉)
Assertion
Ref Expression
uniqs2 (𝜑 (𝐴 / 𝑅) = 𝐴)

Proof of Theorem uniqs2
StepHypRef Expression
1 qsss.2 . . . . 5 (𝜑𝑅𝑉)
2 uniqs 8816 . . . . 5 (𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
31, 2syl 17 . . . 4 (𝜑 (𝐴 / 𝑅) = (𝑅𝐴))
4 qsss.1 . . . . . 6 (𝜑𝑅 Er 𝐴)
5 erdm 8754 . . . . . 6 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
64, 5syl 17 . . . . 5 (𝜑 → dom 𝑅 = 𝐴)
76imaeq2d 6080 . . . 4 (𝜑 → (𝑅 “ dom 𝑅) = (𝑅𝐴))
83, 7eqtr4d 2778 . . 3 (𝜑 (𝐴 / 𝑅) = (𝑅 “ dom 𝑅))
9 imadmrn 6090 . . 3 (𝑅 “ dom 𝑅) = ran 𝑅
108, 9eqtrdi 2791 . 2 (𝜑 (𝐴 / 𝑅) = ran 𝑅)
11 errn 8766 . . 3 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
124, 11syl 17 . 2 (𝜑 → ran 𝑅 = 𝐴)
1310, 12eqtrd 2775 1 (𝜑 (𝐴 / 𝑅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106   cuni 4912  dom cdm 5689  ran crn 5690  cima 5692   Er wer 8741   / cqs 8743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-11 2155  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-er 8744  df-ec 8746  df-qs 8750
This theorem is referenced by:  qshash  15860  cldsubg  24135  pi1buni  25087  qustrivr  33373
  Copyright terms: Public domain W3C validator