MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniqs2 Structured version   Visualization version   GIF version

Theorem uniqs2 8753
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsss.1 (𝜑𝑅 Er 𝐴)
qsss.2 (𝜑𝑅𝑉)
Assertion
Ref Expression
uniqs2 (𝜑 (𝐴 / 𝑅) = 𝐴)

Proof of Theorem uniqs2
StepHypRef Expression
1 qsss.2 . . . . 5 (𝜑𝑅𝑉)
2 uniqsw 8751 . . . . 5 (𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
31, 2syl 17 . . . 4 (𝜑 (𝐴 / 𝑅) = (𝑅𝐴))
4 qsss.1 . . . . . 6 (𝜑𝑅 Er 𝐴)
5 erdm 8684 . . . . . 6 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
64, 5syl 17 . . . . 5 (𝜑 → dom 𝑅 = 𝐴)
76imaeq2d 6034 . . . 4 (𝜑 → (𝑅 “ dom 𝑅) = (𝑅𝐴))
83, 7eqtr4d 2768 . . 3 (𝜑 (𝐴 / 𝑅) = (𝑅 “ dom 𝑅))
9 imadmrn 6044 . . 3 (𝑅 “ dom 𝑅) = ran 𝑅
108, 9eqtrdi 2781 . 2 (𝜑 (𝐴 / 𝑅) = ran 𝑅)
11 errn 8696 . . 3 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
124, 11syl 17 . 2 (𝜑 → ran 𝑅 = 𝐴)
1310, 12eqtrd 2765 1 (𝜑 (𝐴 / 𝑅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   cuni 4874  dom cdm 5641  ran crn 5642  cima 5644   Er wer 8671   / cqs 8673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-er 8674  df-ec 8676  df-qs 8680
This theorem is referenced by:  qshash  15800  cldsubg  24005  pi1buni  24947  qustrivr  33343
  Copyright terms: Public domain W3C validator