MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem5 Structured version   Visualization version   GIF version

Theorem sylow1lem5 19646
Description: Lemma for sylow1 19647. Using Lagrange's theorem and the orbit-stabilizer theorem, show that there is a subgroup with size exactly 𝑃𝑁. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
sylow1lem4.b (𝜑𝐵𝑆)
sylow1lem4.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
sylow1lem5.l (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
Assertion
Ref Expression
sylow1lem5 (𝜑 → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
Distinct variable groups:   𝑔,𝑠,𝑢,𝑥,𝑦,𝑧,𝐵   𝑔,,𝐻,𝑥,𝑦   𝑆,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝑁   ,𝑠,𝑢,𝑧,𝑁,𝑥,𝑦   𝑔,𝑋,,𝑠,𝑢,𝑥,𝑦,𝑧   + ,𝑠,𝑢,𝑥,𝑦,𝑧   𝑧,   ,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝐺,,𝑠,𝑢,𝑥,𝑦,𝑧   𝑃,𝑔,,𝑠,𝑢,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑔,,𝑠)   𝐵()   + (𝑔,)   (,𝑠)   (𝑥,𝑦,𝑢,𝑔,,𝑠)   𝑆(,𝑠)   𝐻(𝑧,𝑢,𝑠)

Proof of Theorem sylow1lem5
StepHypRef Expression
1 sylow1.x . . . 4 𝑋 = (Base‘𝐺)
2 sylow1.g . . . 4 (𝜑𝐺 ∈ Grp)
3 sylow1.f . . . 4 (𝜑𝑋 ∈ Fin)
4 sylow1.p . . . 4 (𝜑𝑃 ∈ ℙ)
5 sylow1.n . . . 4 (𝜑𝑁 ∈ ℕ0)
6 sylow1.d . . . 4 (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
7 sylow1lem.a . . . 4 + = (+g𝐺)
8 sylow1lem.s . . . 4 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
9 sylow1lem.m . . . 4 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
101, 2, 3, 4, 5, 6, 7, 8, 9sylow1lem2 19643 . . 3 (𝜑 ∈ (𝐺 GrpAct 𝑆))
11 sylow1lem4.b . . 3 (𝜑𝐵𝑆)
12 sylow1lem4.h . . . 4 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
131, 12gastacl 19351 . . 3 (( ∈ (𝐺 GrpAct 𝑆) ∧ 𝐵𝑆) → 𝐻 ∈ (SubGrp‘𝐺))
1410, 11, 13syl2anc 583 . 2 (𝜑𝐻 ∈ (SubGrp‘𝐺))
15 sylow1lem3.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
161, 2, 3, 4, 5, 6, 7, 8, 9, 15, 11, 12sylow1lem4 19645 . . 3 (𝜑 → (♯‘𝐻) ≤ (𝑃𝑁))
17 sylow1lem5.l . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
1815, 1gaorber 19350 . . . . . . . . . . . . . . . 16 ( ∈ (𝐺 GrpAct 𝑆) → Er 𝑆)
1910, 18syl 17 . . . . . . . . . . . . . . 15 (𝜑 Er 𝑆)
20 erdm 8775 . . . . . . . . . . . . . . 15 ( Er 𝑆 → dom = 𝑆)
2119, 20syl 17 . . . . . . . . . . . . . 14 (𝜑 → dom = 𝑆)
2211, 21eleqtrrd 2847 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ dom )
23 ecdmn0 8814 . . . . . . . . . . . . 13 (𝐵 ∈ dom ↔ [𝐵] ≠ ∅)
2422, 23sylib 218 . . . . . . . . . . . 12 (𝜑 → [𝐵] ≠ ∅)
25 pwfi 9387 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
263, 25sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → 𝒫 𝑋 ∈ Fin)
278ssrab3 4105 . . . . . . . . . . . . . . 15 𝑆 ⊆ 𝒫 𝑋
28 ssfi 9242 . . . . . . . . . . . . . . 15 ((𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋) → 𝑆 ∈ Fin)
2926, 27, 28sylancl 585 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ Fin)
3019ecss 8813 . . . . . . . . . . . . . 14 (𝜑 → [𝐵] 𝑆)
3129, 30ssfid 9331 . . . . . . . . . . . . 13 (𝜑 → [𝐵] ∈ Fin)
32 hashnncl 14417 . . . . . . . . . . . . 13 ([𝐵] ∈ Fin → ((♯‘[𝐵] ) ∈ ℕ ↔ [𝐵] ≠ ∅))
3331, 32syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘[𝐵] ) ∈ ℕ ↔ [𝐵] ≠ ∅))
3424, 33mpbird 257 . . . . . . . . . . 11 (𝜑 → (♯‘[𝐵] ) ∈ ℕ)
354, 34pccld 16899 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ∈ ℕ0)
3635nn0red 12616 . . . . . . . . 9 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ∈ ℝ)
375nn0red 12616 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
381grpbn0 19008 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
392, 38syl 17 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ∅)
40 hashnncl 14417 . . . . . . . . . . . . 13 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
413, 40syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4239, 41mpbird 257 . . . . . . . . . . 11 (𝜑 → (♯‘𝑋) ∈ ℕ)
434, 42pccld 16899 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
4443nn0red 12616 . . . . . . . . 9 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℝ)
45 leaddsub 11768 . . . . . . . . 9 (((𝑃 pCnt (♯‘[𝐵] )) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑃 pCnt (♯‘𝑋)) ∈ ℝ) → (((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
4636, 37, 44, 45syl3anc 1371 . . . . . . . 8 (𝜑 → (((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
4717, 46mpbird 257 . . . . . . 7 (𝜑 → ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)))
48 eqid 2740 . . . . . . . . . . 11 (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻)
491, 12, 48, 15orbsta2 19356 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑆) ∧ 𝐵𝑆) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐵] ) · (♯‘𝐻)))
5010, 11, 3, 49syl21anc 837 . . . . . . . . 9 (𝜑 → (♯‘𝑋) = ((♯‘[𝐵] ) · (♯‘𝐻)))
5150oveq2d 7466 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝑋)) = (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))))
5234nnzd 12668 . . . . . . . . 9 (𝜑 → (♯‘[𝐵] ) ∈ ℤ)
5334nnne0d 12345 . . . . . . . . 9 (𝜑 → (♯‘[𝐵] ) ≠ 0)
54 eqid 2740 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
5554subg0cl 19176 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐻)
5614, 55syl 17 . . . . . . . . . . . 12 (𝜑 → (0g𝐺) ∈ 𝐻)
5756ne0d 4365 . . . . . . . . . . 11 (𝜑𝐻 ≠ ∅)
5812ssrab3 4105 . . . . . . . . . . . . 13 𝐻𝑋
59 ssfi 9242 . . . . . . . . . . . . 13 ((𝑋 ∈ Fin ∧ 𝐻𝑋) → 𝐻 ∈ Fin)
603, 58, 59sylancl 585 . . . . . . . . . . . 12 (𝜑𝐻 ∈ Fin)
61 hashnncl 14417 . . . . . . . . . . . 12 (𝐻 ∈ Fin → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
6260, 61syl 17 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
6357, 62mpbird 257 . . . . . . . . . 10 (𝜑 → (♯‘𝐻) ∈ ℕ)
6463nnzd 12668 . . . . . . . . 9 (𝜑 → (♯‘𝐻) ∈ ℤ)
6563nnne0d 12345 . . . . . . . . 9 (𝜑 → (♯‘𝐻) ≠ 0)
66 pcmul 16900 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ((♯‘[𝐵] ) ∈ ℤ ∧ (♯‘[𝐵] ) ≠ 0) ∧ ((♯‘𝐻) ∈ ℤ ∧ (♯‘𝐻) ≠ 0)) → (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
674, 52, 53, 64, 65, 66syl122anc 1379 . . . . . . . 8 (𝜑 → (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
6851, 67eqtrd 2780 . . . . . . 7 (𝜑 → (𝑃 pCnt (♯‘𝑋)) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
6947, 68breqtrd 5192 . . . . . 6 (𝜑 → ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
704, 63pccld 16899 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝐻)) ∈ ℕ0)
7170nn0red 12616 . . . . . . 7 (𝜑 → (𝑃 pCnt (♯‘𝐻)) ∈ ℝ)
7237, 71, 36leadd2d 11887 . . . . . 6 (𝜑 → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻)))))
7369, 72mpbird 257 . . . . 5 (𝜑𝑁 ≤ (𝑃 pCnt (♯‘𝐻)))
74 pcdvdsb 16918 . . . . . 6 ((𝑃 ∈ ℙ ∧ (♯‘𝐻) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ (𝑃𝑁) ∥ (♯‘𝐻)))
754, 64, 5, 74syl3anc 1371 . . . . 5 (𝜑 → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ (𝑃𝑁) ∥ (♯‘𝐻)))
7673, 75mpbid 232 . . . 4 (𝜑 → (𝑃𝑁) ∥ (♯‘𝐻))
77 prmnn 16723 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
784, 77syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
7978, 5nnexpcld 14296 . . . . . 6 (𝜑 → (𝑃𝑁) ∈ ℕ)
8079nnzd 12668 . . . . 5 (𝜑 → (𝑃𝑁) ∈ ℤ)
81 dvdsle 16360 . . . . 5 (((𝑃𝑁) ∈ ℤ ∧ (♯‘𝐻) ∈ ℕ) → ((𝑃𝑁) ∥ (♯‘𝐻) → (𝑃𝑁) ≤ (♯‘𝐻)))
8280, 63, 81syl2anc 583 . . . 4 (𝜑 → ((𝑃𝑁) ∥ (♯‘𝐻) → (𝑃𝑁) ≤ (♯‘𝐻)))
8376, 82mpd 15 . . 3 (𝜑 → (𝑃𝑁) ≤ (♯‘𝐻))
84 hashcl 14407 . . . . . 6 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
8560, 84syl 17 . . . . 5 (𝜑 → (♯‘𝐻) ∈ ℕ0)
8685nn0red 12616 . . . 4 (𝜑 → (♯‘𝐻) ∈ ℝ)
8779nnred 12310 . . . 4 (𝜑 → (𝑃𝑁) ∈ ℝ)
8886, 87letri3d 11434 . . 3 (𝜑 → ((♯‘𝐻) = (𝑃𝑁) ↔ ((♯‘𝐻) ≤ (𝑃𝑁) ∧ (𝑃𝑁) ≤ (♯‘𝐻))))
8916, 83, 88mpbir2and 712 . 2 (𝜑 → (♯‘𝐻) = (𝑃𝑁))
90 fveqeq2 6931 . . 3 ( = 𝐻 → ((♯‘) = (𝑃𝑁) ↔ (♯‘𝐻) = (𝑃𝑁)))
9190rspcev 3635 . 2 ((𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃𝑁)) → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
9214, 89, 91syl2anc 583 1 (𝜑 → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  wss 3976  c0 4352  𝒫 cpw 4622  {cpr 4650   class class class wbr 5166  {copab 5228  cmpt 5249  dom cdm 5700  ran crn 5701  cfv 6575  (class class class)co 7450  cmpo 7452   Er wer 8762  [cec 8763  Fincfn 9005  cr 11185  0cc0 11186   + caddc 11189   · cmul 11191  cle 11327  cmin 11522  cn 12295  0cn0 12555  cz 12641  cexp 14114  chash 14381  cdvds 16304  cprime 16720   pCnt cpc 16885  Basecbs 17260  +gcplusg 17313  0gc0g 17501  Grpcgrp 18975  SubGrpcsubg 19162   ~QG cqg 19164   GrpAct cga 19331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-inf2 9712  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-isom 6584  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-oadd 8528  df-er 8765  df-ec 8767  df-qs 8771  df-map 8888  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-sup 9513  df-inf 9514  df-oi 9581  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-n0 12556  df-xnn0 12628  df-z 12642  df-uz 12906  df-q 13016  df-rp 13060  df-fz 13570  df-fzo 13714  df-fl 13845  df-mod 13923  df-seq 14055  df-exp 14115  df-hash 14382  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287  df-clim 15536  df-sum 15737  df-dvds 16305  df-gcd 16543  df-prm 16721  df-pc 16886  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-plusg 17326  df-0g 17503  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-grp 18978  df-minusg 18979  df-subg 19165  df-eqg 19167  df-ga 19332
This theorem is referenced by:  sylow1  19647
  Copyright terms: Public domain W3C validator