MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem5 Structured version   Visualization version   GIF version

Theorem sylow1lem5 19644
Description: Lemma for sylow1 19645. Using Lagrange's theorem and the orbit-stabilizer theorem, show that there is a subgroup with size exactly 𝑃𝑁. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
sylow1lem4.b (𝜑𝐵𝑆)
sylow1lem4.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
sylow1lem5.l (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
Assertion
Ref Expression
sylow1lem5 (𝜑 → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
Distinct variable groups:   𝑔,𝑠,𝑢,𝑥,𝑦,𝑧,𝐵   𝑔,,𝐻,𝑥,𝑦   𝑆,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝑁   ,𝑠,𝑢,𝑧,𝑁,𝑥,𝑦   𝑔,𝑋,,𝑠,𝑢,𝑥,𝑦,𝑧   + ,𝑠,𝑢,𝑥,𝑦,𝑧   𝑧,   ,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝐺,,𝑠,𝑢,𝑥,𝑦,𝑧   𝑃,𝑔,,𝑠,𝑢,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑔,,𝑠)   𝐵()   + (𝑔,)   (,𝑠)   (𝑥,𝑦,𝑢,𝑔,,𝑠)   𝑆(,𝑠)   𝐻(𝑧,𝑢,𝑠)

Proof of Theorem sylow1lem5
StepHypRef Expression
1 sylow1.x . . . 4 𝑋 = (Base‘𝐺)
2 sylow1.g . . . 4 (𝜑𝐺 ∈ Grp)
3 sylow1.f . . . 4 (𝜑𝑋 ∈ Fin)
4 sylow1.p . . . 4 (𝜑𝑃 ∈ ℙ)
5 sylow1.n . . . 4 (𝜑𝑁 ∈ ℕ0)
6 sylow1.d . . . 4 (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
7 sylow1lem.a . . . 4 + = (+g𝐺)
8 sylow1lem.s . . . 4 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
9 sylow1lem.m . . . 4 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
101, 2, 3, 4, 5, 6, 7, 8, 9sylow1lem2 19641 . . 3 (𝜑 ∈ (𝐺 GrpAct 𝑆))
11 sylow1lem4.b . . 3 (𝜑𝐵𝑆)
12 sylow1lem4.h . . . 4 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
131, 12gastacl 19349 . . 3 (( ∈ (𝐺 GrpAct 𝑆) ∧ 𝐵𝑆) → 𝐻 ∈ (SubGrp‘𝐺))
1410, 11, 13syl2anc 584 . 2 (𝜑𝐻 ∈ (SubGrp‘𝐺))
15 sylow1lem3.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
161, 2, 3, 4, 5, 6, 7, 8, 9, 15, 11, 12sylow1lem4 19643 . . 3 (𝜑 → (♯‘𝐻) ≤ (𝑃𝑁))
17 sylow1lem5.l . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
1815, 1gaorber 19348 . . . . . . . . . . . . . . . 16 ( ∈ (𝐺 GrpAct 𝑆) → Er 𝑆)
1910, 18syl 17 . . . . . . . . . . . . . . 15 (𝜑 Er 𝑆)
20 erdm 8763 . . . . . . . . . . . . . . 15 ( Er 𝑆 → dom = 𝑆)
2119, 20syl 17 . . . . . . . . . . . . . 14 (𝜑 → dom = 𝑆)
2211, 21eleqtrrd 2844 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ dom )
23 ecdmn0 8802 . . . . . . . . . . . . 13 (𝐵 ∈ dom ↔ [𝐵] ≠ ∅)
2422, 23sylib 218 . . . . . . . . . . . 12 (𝜑 → [𝐵] ≠ ∅)
25 pwfi 9364 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
263, 25sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → 𝒫 𝑋 ∈ Fin)
278ssrab3 4095 . . . . . . . . . . . . . . 15 𝑆 ⊆ 𝒫 𝑋
28 ssfi 9221 . . . . . . . . . . . . . . 15 ((𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋) → 𝑆 ∈ Fin)
2926, 27, 28sylancl 586 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ Fin)
3019ecss 8801 . . . . . . . . . . . . . 14 (𝜑 → [𝐵] 𝑆)
3129, 30ssfid 9308 . . . . . . . . . . . . 13 (𝜑 → [𝐵] ∈ Fin)
32 hashnncl 14411 . . . . . . . . . . . . 13 ([𝐵] ∈ Fin → ((♯‘[𝐵] ) ∈ ℕ ↔ [𝐵] ≠ ∅))
3331, 32syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘[𝐵] ) ∈ ℕ ↔ [𝐵] ≠ ∅))
3424, 33mpbird 257 . . . . . . . . . . 11 (𝜑 → (♯‘[𝐵] ) ∈ ℕ)
354, 34pccld 16893 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ∈ ℕ0)
3635nn0red 12595 . . . . . . . . 9 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ∈ ℝ)
375nn0red 12595 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
381grpbn0 19006 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
392, 38syl 17 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ∅)
40 hashnncl 14411 . . . . . . . . . . . . 13 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
413, 40syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4239, 41mpbird 257 . . . . . . . . . . 11 (𝜑 → (♯‘𝑋) ∈ ℕ)
434, 42pccld 16893 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
4443nn0red 12595 . . . . . . . . 9 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℝ)
45 leaddsub 11746 . . . . . . . . 9 (((𝑃 pCnt (♯‘[𝐵] )) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑃 pCnt (♯‘𝑋)) ∈ ℝ) → (((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
4636, 37, 44, 45syl3anc 1372 . . . . . . . 8 (𝜑 → (((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
4717, 46mpbird 257 . . . . . . 7 (𝜑 → ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)))
48 eqid 2737 . . . . . . . . . . 11 (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻)
491, 12, 48, 15orbsta2 19354 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑆) ∧ 𝐵𝑆) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐵] ) · (♯‘𝐻)))
5010, 11, 3, 49syl21anc 838 . . . . . . . . 9 (𝜑 → (♯‘𝑋) = ((♯‘[𝐵] ) · (♯‘𝐻)))
5150oveq2d 7454 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝑋)) = (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))))
5234nnzd 12647 . . . . . . . . 9 (𝜑 → (♯‘[𝐵] ) ∈ ℤ)
5334nnne0d 12323 . . . . . . . . 9 (𝜑 → (♯‘[𝐵] ) ≠ 0)
54 eqid 2737 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
5554subg0cl 19174 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐻)
5614, 55syl 17 . . . . . . . . . . . 12 (𝜑 → (0g𝐺) ∈ 𝐻)
5756ne0d 4351 . . . . . . . . . . 11 (𝜑𝐻 ≠ ∅)
5812ssrab3 4095 . . . . . . . . . . . . 13 𝐻𝑋
59 ssfi 9221 . . . . . . . . . . . . 13 ((𝑋 ∈ Fin ∧ 𝐻𝑋) → 𝐻 ∈ Fin)
603, 58, 59sylancl 586 . . . . . . . . . . . 12 (𝜑𝐻 ∈ Fin)
61 hashnncl 14411 . . . . . . . . . . . 12 (𝐻 ∈ Fin → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
6260, 61syl 17 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
6357, 62mpbird 257 . . . . . . . . . 10 (𝜑 → (♯‘𝐻) ∈ ℕ)
6463nnzd 12647 . . . . . . . . 9 (𝜑 → (♯‘𝐻) ∈ ℤ)
6563nnne0d 12323 . . . . . . . . 9 (𝜑 → (♯‘𝐻) ≠ 0)
66 pcmul 16894 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ((♯‘[𝐵] ) ∈ ℤ ∧ (♯‘[𝐵] ) ≠ 0) ∧ ((♯‘𝐻) ∈ ℤ ∧ (♯‘𝐻) ≠ 0)) → (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
674, 52, 53, 64, 65, 66syl122anc 1380 . . . . . . . 8 (𝜑 → (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
6851, 67eqtrd 2777 . . . . . . 7 (𝜑 → (𝑃 pCnt (♯‘𝑋)) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
6947, 68breqtrd 5177 . . . . . 6 (𝜑 → ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
704, 63pccld 16893 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝐻)) ∈ ℕ0)
7170nn0red 12595 . . . . . . 7 (𝜑 → (𝑃 pCnt (♯‘𝐻)) ∈ ℝ)
7237, 71, 36leadd2d 11865 . . . . . 6 (𝜑 → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻)))))
7369, 72mpbird 257 . . . . 5 (𝜑𝑁 ≤ (𝑃 pCnt (♯‘𝐻)))
74 pcdvdsb 16912 . . . . . 6 ((𝑃 ∈ ℙ ∧ (♯‘𝐻) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ (𝑃𝑁) ∥ (♯‘𝐻)))
754, 64, 5, 74syl3anc 1372 . . . . 5 (𝜑 → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ (𝑃𝑁) ∥ (♯‘𝐻)))
7673, 75mpbid 232 . . . 4 (𝜑 → (𝑃𝑁) ∥ (♯‘𝐻))
77 prmnn 16717 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
784, 77syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
7978, 5nnexpcld 14290 . . . . . 6 (𝜑 → (𝑃𝑁) ∈ ℕ)
8079nnzd 12647 . . . . 5 (𝜑 → (𝑃𝑁) ∈ ℤ)
81 dvdsle 16353 . . . . 5 (((𝑃𝑁) ∈ ℤ ∧ (♯‘𝐻) ∈ ℕ) → ((𝑃𝑁) ∥ (♯‘𝐻) → (𝑃𝑁) ≤ (♯‘𝐻)))
8280, 63, 81syl2anc 584 . . . 4 (𝜑 → ((𝑃𝑁) ∥ (♯‘𝐻) → (𝑃𝑁) ≤ (♯‘𝐻)))
8376, 82mpd 15 . . 3 (𝜑 → (𝑃𝑁) ≤ (♯‘𝐻))
84 hashcl 14401 . . . . . 6 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
8560, 84syl 17 . . . . 5 (𝜑 → (♯‘𝐻) ∈ ℕ0)
8685nn0red 12595 . . . 4 (𝜑 → (♯‘𝐻) ∈ ℝ)
8779nnred 12288 . . . 4 (𝜑 → (𝑃𝑁) ∈ ℝ)
8886, 87letri3d 11410 . . 3 (𝜑 → ((♯‘𝐻) = (𝑃𝑁) ↔ ((♯‘𝐻) ≤ (𝑃𝑁) ∧ (𝑃𝑁) ≤ (♯‘𝐻))))
8916, 83, 88mpbir2and 713 . 2 (𝜑 → (♯‘𝐻) = (𝑃𝑁))
90 fveqeq2 6923 . . 3 ( = 𝐻 → ((♯‘) = (𝑃𝑁) ↔ (♯‘𝐻) = (𝑃𝑁)))
9190rspcev 3625 . 2 ((𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃𝑁)) → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
9214, 89, 91syl2anc 584 1 (𝜑 → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wne 2940  wrex 3070  {crab 3436  wss 3966  c0 4342  𝒫 cpw 4608  {cpr 4636   class class class wbr 5151  {copab 5213  cmpt 5234  dom cdm 5693  ran crn 5694  cfv 6569  (class class class)co 7438  cmpo 7440   Er wer 8750  [cec 8751  Fincfn 8993  cr 11161  0cc0 11162   + caddc 11165   · cmul 11167  cle 11303  cmin 11499  cn 12273  0cn0 12533  cz 12620  cexp 14108  chash 14375  cdvds 16296  cprime 16714   pCnt cpc 16879  Basecbs 17254  +gcplusg 17307  0gc0g 17495  Grpcgrp 18973  SubGrpcsubg 19160   ~QG cqg 19162   GrpAct cga 19329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-inf2 9688  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-disj 5119  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-oadd 8518  df-er 8753  df-ec 8755  df-qs 8759  df-map 8876  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-sup 9489  df-inf 9490  df-oi 9557  df-card 9986  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-n0 12534  df-xnn0 12607  df-z 12621  df-uz 12886  df-q 12998  df-rp 13042  df-fz 13554  df-fzo 13701  df-fl 13838  df-mod 13916  df-seq 14049  df-exp 14109  df-hash 14376  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-clim 15530  df-sum 15729  df-dvds 16297  df-gcd 16538  df-prm 16715  df-pc 16880  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-0g 17497  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-grp 18976  df-minusg 18977  df-subg 19163  df-eqg 19165  df-ga 19330
This theorem is referenced by:  sylow1  19645
  Copyright terms: Public domain W3C validator