Proof of Theorem sylow1lem5
Step | Hyp | Ref
| Expression |
1 | | sylow1.x |
. . . 4
⊢ 𝑋 = (Base‘𝐺) |
2 | | sylow1.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Grp) |
3 | | sylow1.f |
. . . 4
⊢ (𝜑 → 𝑋 ∈ Fin) |
4 | | sylow1.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈ ℙ) |
5 | | sylow1.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
6 | | sylow1.d |
. . . 4
⊢ (𝜑 → (𝑃↑𝑁) ∥ (♯‘𝑋)) |
7 | | sylow1lem.a |
. . . 4
⊢ + =
(+g‘𝐺) |
8 | | sylow1lem.s |
. . . 4
⊢ 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} |
9 | | sylow1lem.m |
. . . 4
⊢ ⊕ =
(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑆 ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | sylow1lem2 19204 |
. . 3
⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct 𝑆)) |
11 | | sylow1lem4.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
12 | | sylow1lem4.h |
. . . 4
⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐵) = 𝐵} |
13 | 1, 12 | gastacl 18915 |
. . 3
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑆) ∧ 𝐵 ∈ 𝑆) → 𝐻 ∈ (SubGrp‘𝐺)) |
14 | 10, 11, 13 | syl2anc 584 |
. 2
⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝐺)) |
15 | | sylow1lem3.1 |
. . . 4
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 15,
11, 12 | sylow1lem4 19206 |
. . 3
⊢ (𝜑 → (♯‘𝐻) ≤ (𝑃↑𝑁)) |
17 | | sylow1lem5.l |
. . . . . . . 8
⊢ (𝜑 → (𝑃 pCnt (♯‘[𝐵] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)) |
18 | 15, 1 | gaorber 18914 |
. . . . . . . . . . . . . . . 16
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑆) → ∼ Er 𝑆) |
19 | 10, 18 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∼ Er 𝑆) |
20 | | erdm 8508 |
. . . . . . . . . . . . . . 15
⊢ ( ∼ Er
𝑆 → dom ∼ =
𝑆) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom ∼ = 𝑆) |
22 | 11, 21 | eleqtrrd 2842 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ dom ∼ ) |
23 | | ecdmn0 8545 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ dom ∼ ↔ [𝐵] ∼ ≠
∅) |
24 | 22, 23 | sylib 217 |
. . . . . . . . . . . 12
⊢ (𝜑 → [𝐵] ∼ ≠
∅) |
25 | | pwfi 8961 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ Fin ↔ 𝒫
𝑋 ∈
Fin) |
26 | 3, 25 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝒫 𝑋 ∈ Fin) |
27 | 8 | ssrab3 4015 |
. . . . . . . . . . . . . . 15
⊢ 𝑆 ⊆ 𝒫 𝑋 |
28 | | ssfi 8956 |
. . . . . . . . . . . . . . 15
⊢
((𝒫 𝑋 ∈
Fin ∧ 𝑆 ⊆
𝒫 𝑋) → 𝑆 ∈ Fin) |
29 | 26, 27, 28 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ Fin) |
30 | 19 | ecss 8544 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → [𝐵] ∼ ⊆ 𝑆) |
31 | 29, 30 | ssfid 9042 |
. . . . . . . . . . . . 13
⊢ (𝜑 → [𝐵] ∼ ∈
Fin) |
32 | | hashnncl 14081 |
. . . . . . . . . . . . 13
⊢ ([𝐵] ∼ ∈ Fin →
((♯‘[𝐵] ∼ )
∈ ℕ ↔ [𝐵]
∼
≠ ∅)) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘[𝐵] ∼ ) ∈ ℕ
↔ [𝐵] ∼ ≠
∅)) |
34 | 24, 33 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘[𝐵] ∼ ) ∈
ℕ) |
35 | 4, 34 | pccld 16551 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 pCnt (♯‘[𝐵] ∼ )) ∈
ℕ0) |
36 | 35 | nn0red 12294 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 pCnt (♯‘[𝐵] ∼ )) ∈
ℝ) |
37 | 5 | nn0red 12294 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℝ) |
38 | 1 | grpbn0 18608 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) |
39 | 2, 38 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ≠ ∅) |
40 | | hashnncl 14081 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ Fin →
((♯‘𝑋) ∈
ℕ ↔ 𝑋 ≠
∅)) |
41 | 3, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) |
42 | 39, 41 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝑋) ∈
ℕ) |
43 | 4, 42 | pccld 16551 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈
ℕ0) |
44 | 43 | nn0red 12294 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℝ) |
45 | | leaddsub 11451 |
. . . . . . . . 9
⊢ (((𝑃 pCnt (♯‘[𝐵] ∼ )) ∈ ℝ
∧ 𝑁 ∈ ℝ
∧ (𝑃 pCnt
(♯‘𝑋)) ∈
ℝ) → (((𝑃 pCnt
(♯‘[𝐵] ∼ )) +
𝑁) ≤ (𝑃 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘[𝐵] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) |
46 | 36, 37, 44, 45 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → (((𝑃 pCnt (♯‘[𝐵] ∼ )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘[𝐵] ∼ )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))) |
47 | 17, 46 | mpbird 256 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 pCnt (♯‘[𝐵] ∼ )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋))) |
48 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻) |
49 | 1, 12, 48, 15 | orbsta2 18920 |
. . . . . . . . . 10
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑆) ∧ 𝐵 ∈ 𝑆) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐵] ∼ ) ·
(♯‘𝐻))) |
50 | 10, 11, 3, 49 | syl21anc 835 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝑋) = ((♯‘[𝐵] ∼ ) ·
(♯‘𝐻))) |
51 | 50 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 pCnt (♯‘𝑋)) = (𝑃 pCnt ((♯‘[𝐵] ∼ ) ·
(♯‘𝐻)))) |
52 | 34 | nnzd 12425 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘[𝐵] ∼ ) ∈
ℤ) |
53 | 34 | nnne0d 12023 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘[𝐵] ∼ ) ≠
0) |
54 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝐺) = (0g‘𝐺) |
55 | 54 | subg0cl 18763 |
. . . . . . . . . . . . 13
⊢ (𝐻 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝐻) |
56 | 14, 55 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0g‘𝐺) ∈ 𝐻) |
57 | 56 | ne0d 4269 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ≠ ∅) |
58 | 12 | ssrab3 4015 |
. . . . . . . . . . . . 13
⊢ 𝐻 ⊆ 𝑋 |
59 | | ssfi 8956 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ Fin ∧ 𝐻 ⊆ 𝑋) → 𝐻 ∈ Fin) |
60 | 3, 58, 59 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 ∈ Fin) |
61 | | hashnncl 14081 |
. . . . . . . . . . . 12
⊢ (𝐻 ∈ Fin →
((♯‘𝐻) ∈
ℕ ↔ 𝐻 ≠
∅)) |
62 | 60, 61 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅)) |
63 | 57, 62 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐻) ∈
ℕ) |
64 | 63 | nnzd 12425 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝐻) ∈
ℤ) |
65 | 63 | nnne0d 12023 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝐻) ≠ 0) |
66 | | pcmul 16552 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧
((♯‘[𝐵] ∼ )
∈ ℤ ∧ (♯‘[𝐵] ∼ ) ≠ 0) ∧
((♯‘𝐻) ∈
ℤ ∧ (♯‘𝐻) ≠ 0)) → (𝑃 pCnt ((♯‘[𝐵] ∼ ) ·
(♯‘𝐻))) =
((𝑃 pCnt
(♯‘[𝐵] ∼ )) +
(𝑃 pCnt
(♯‘𝐻)))) |
67 | 4, 52, 53, 64, 65, 66 | syl122anc 1378 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 pCnt ((♯‘[𝐵] ∼ ) ·
(♯‘𝐻))) =
((𝑃 pCnt
(♯‘[𝐵] ∼ )) +
(𝑃 pCnt
(♯‘𝐻)))) |
68 | 51, 67 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (𝑃 pCnt (♯‘𝑋)) = ((𝑃 pCnt (♯‘[𝐵] ∼ )) + (𝑃 pCnt (♯‘𝐻)))) |
69 | 47, 68 | breqtrd 5100 |
. . . . . 6
⊢ (𝜑 → ((𝑃 pCnt (♯‘[𝐵] ∼ )) + 𝑁) ≤ ((𝑃 pCnt (♯‘[𝐵] ∼ )) + (𝑃 pCnt (♯‘𝐻)))) |
70 | 4, 63 | pccld 16551 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 pCnt (♯‘𝐻)) ∈
ℕ0) |
71 | 70 | nn0red 12294 |
. . . . . . 7
⊢ (𝜑 → (𝑃 pCnt (♯‘𝐻)) ∈ ℝ) |
72 | 37, 71, 36 | leadd2d 11570 |
. . . . . 6
⊢ (𝜑 → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ ((𝑃 pCnt (♯‘[𝐵] ∼ )) + 𝑁) ≤ ((𝑃 pCnt (♯‘[𝐵] ∼ )) + (𝑃 pCnt (♯‘𝐻))))) |
73 | 69, 72 | mpbird 256 |
. . . . 5
⊢ (𝜑 → 𝑁 ≤ (𝑃 pCnt (♯‘𝐻))) |
74 | | pcdvdsb 16570 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧
(♯‘𝐻) ∈
ℤ ∧ 𝑁 ∈
ℕ0) → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ (𝑃↑𝑁) ∥ (♯‘𝐻))) |
75 | 4, 64, 5, 74 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ (𝑃↑𝑁) ∥ (♯‘𝐻))) |
76 | 73, 75 | mpbid 231 |
. . . 4
⊢ (𝜑 → (𝑃↑𝑁) ∥ (♯‘𝐻)) |
77 | | prmnn 16379 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
78 | 4, 77 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℕ) |
79 | 78, 5 | nnexpcld 13960 |
. . . . . 6
⊢ (𝜑 → (𝑃↑𝑁) ∈ ℕ) |
80 | 79 | nnzd 12425 |
. . . . 5
⊢ (𝜑 → (𝑃↑𝑁) ∈ ℤ) |
81 | | dvdsle 16019 |
. . . . 5
⊢ (((𝑃↑𝑁) ∈ ℤ ∧ (♯‘𝐻) ∈ ℕ) → ((𝑃↑𝑁) ∥ (♯‘𝐻) → (𝑃↑𝑁) ≤ (♯‘𝐻))) |
82 | 80, 63, 81 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝑃↑𝑁) ∥ (♯‘𝐻) → (𝑃↑𝑁) ≤ (♯‘𝐻))) |
83 | 76, 82 | mpd 15 |
. . 3
⊢ (𝜑 → (𝑃↑𝑁) ≤ (♯‘𝐻)) |
84 | | hashcl 14071 |
. . . . . 6
⊢ (𝐻 ∈ Fin →
(♯‘𝐻) ∈
ℕ0) |
85 | 60, 84 | syl 17 |
. . . . 5
⊢ (𝜑 → (♯‘𝐻) ∈
ℕ0) |
86 | 85 | nn0red 12294 |
. . . 4
⊢ (𝜑 → (♯‘𝐻) ∈
ℝ) |
87 | 79 | nnred 11988 |
. . . 4
⊢ (𝜑 → (𝑃↑𝑁) ∈ ℝ) |
88 | 86, 87 | letri3d 11117 |
. . 3
⊢ (𝜑 → ((♯‘𝐻) = (𝑃↑𝑁) ↔ ((♯‘𝐻) ≤ (𝑃↑𝑁) ∧ (𝑃↑𝑁) ≤ (♯‘𝐻)))) |
89 | 16, 83, 88 | mpbir2and 710 |
. 2
⊢ (𝜑 → (♯‘𝐻) = (𝑃↑𝑁)) |
90 | | fveqeq2 6783 |
. . 3
⊢ (ℎ = 𝐻 → ((♯‘ℎ) = (𝑃↑𝑁) ↔ (♯‘𝐻) = (𝑃↑𝑁))) |
91 | 90 | rspcev 3561 |
. 2
⊢ ((𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑𝑁)) → ∃ℎ ∈ (SubGrp‘𝐺)(♯‘ℎ) = (𝑃↑𝑁)) |
92 | 14, 89, 91 | syl2anc 584 |
1
⊢ (𝜑 → ∃ℎ ∈ (SubGrp‘𝐺)(♯‘ℎ) = (𝑃↑𝑁)) |