MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem5 Structured version   Visualization version   GIF version

Theorem sylow1lem5 18963
Description: Lemma for sylow1 18964. Using Lagrange's theorem and the orbit-stabilizer theorem, show that there is a subgroup with size exactly 𝑃𝑁. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
sylow1lem4.b (𝜑𝐵𝑆)
sylow1lem4.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
sylow1lem5.l (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
Assertion
Ref Expression
sylow1lem5 (𝜑 → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
Distinct variable groups:   𝑔,𝑠,𝑢,𝑥,𝑦,𝑧,𝐵   𝑔,,𝐻,𝑥,𝑦   𝑆,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝑁   ,𝑠,𝑢,𝑧,𝑁,𝑥,𝑦   𝑔,𝑋,,𝑠,𝑢,𝑥,𝑦,𝑧   + ,𝑠,𝑢,𝑥,𝑦,𝑧   𝑧,   ,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝐺,,𝑠,𝑢,𝑥,𝑦,𝑧   𝑃,𝑔,,𝑠,𝑢,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑔,,𝑠)   𝐵()   + (𝑔,)   (,𝑠)   (𝑥,𝑦,𝑢,𝑔,,𝑠)   𝑆(,𝑠)   𝐻(𝑧,𝑢,𝑠)

Proof of Theorem sylow1lem5
StepHypRef Expression
1 sylow1.x . . . 4 𝑋 = (Base‘𝐺)
2 sylow1.g . . . 4 (𝜑𝐺 ∈ Grp)
3 sylow1.f . . . 4 (𝜑𝑋 ∈ Fin)
4 sylow1.p . . . 4 (𝜑𝑃 ∈ ℙ)
5 sylow1.n . . . 4 (𝜑𝑁 ∈ ℕ0)
6 sylow1.d . . . 4 (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
7 sylow1lem.a . . . 4 + = (+g𝐺)
8 sylow1lem.s . . . 4 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
9 sylow1lem.m . . . 4 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
101, 2, 3, 4, 5, 6, 7, 8, 9sylow1lem2 18960 . . 3 (𝜑 ∈ (𝐺 GrpAct 𝑆))
11 sylow1lem4.b . . 3 (𝜑𝐵𝑆)
12 sylow1lem4.h . . . 4 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
131, 12gastacl 18675 . . 3 (( ∈ (𝐺 GrpAct 𝑆) ∧ 𝐵𝑆) → 𝐻 ∈ (SubGrp‘𝐺))
1410, 11, 13syl2anc 587 . 2 (𝜑𝐻 ∈ (SubGrp‘𝐺))
15 sylow1lem3.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
161, 2, 3, 4, 5, 6, 7, 8, 9, 15, 11, 12sylow1lem4 18962 . . 3 (𝜑 → (♯‘𝐻) ≤ (𝑃𝑁))
17 sylow1lem5.l . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
1815, 1gaorber 18674 . . . . . . . . . . . . . . . 16 ( ∈ (𝐺 GrpAct 𝑆) → Er 𝑆)
1910, 18syl 17 . . . . . . . . . . . . . . 15 (𝜑 Er 𝑆)
20 erdm 8390 . . . . . . . . . . . . . . 15 ( Er 𝑆 → dom = 𝑆)
2119, 20syl 17 . . . . . . . . . . . . . 14 (𝜑 → dom = 𝑆)
2211, 21eleqtrrd 2837 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ dom )
23 ecdmn0 8427 . . . . . . . . . . . . 13 (𝐵 ∈ dom ↔ [𝐵] ≠ ∅)
2422, 23sylib 221 . . . . . . . . . . . 12 (𝜑 → [𝐵] ≠ ∅)
25 pwfi 8845 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
263, 25sylib 221 . . . . . . . . . . . . . . 15 (𝜑 → 𝒫 𝑋 ∈ Fin)
278ssrab3 3985 . . . . . . . . . . . . . . 15 𝑆 ⊆ 𝒫 𝑋
28 ssfi 8840 . . . . . . . . . . . . . . 15 ((𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋) → 𝑆 ∈ Fin)
2926, 27, 28sylancl 589 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ Fin)
3019ecss 8426 . . . . . . . . . . . . . 14 (𝜑 → [𝐵] 𝑆)
3129, 30ssfid 8887 . . . . . . . . . . . . 13 (𝜑 → [𝐵] ∈ Fin)
32 hashnncl 13916 . . . . . . . . . . . . 13 ([𝐵] ∈ Fin → ((♯‘[𝐵] ) ∈ ℕ ↔ [𝐵] ≠ ∅))
3331, 32syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘[𝐵] ) ∈ ℕ ↔ [𝐵] ≠ ∅))
3424, 33mpbird 260 . . . . . . . . . . 11 (𝜑 → (♯‘[𝐵] ) ∈ ℕ)
354, 34pccld 16384 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ∈ ℕ0)
3635nn0red 12134 . . . . . . . . 9 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ∈ ℝ)
375nn0red 12134 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
381grpbn0 18368 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
392, 38syl 17 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ∅)
40 hashnncl 13916 . . . . . . . . . . . . 13 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
413, 40syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4239, 41mpbird 260 . . . . . . . . . . 11 (𝜑 → (♯‘𝑋) ∈ ℕ)
434, 42pccld 16384 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
4443nn0red 12134 . . . . . . . . 9 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℝ)
45 leaddsub 11291 . . . . . . . . 9 (((𝑃 pCnt (♯‘[𝐵] )) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑃 pCnt (♯‘𝑋)) ∈ ℝ) → (((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
4636, 37, 44, 45syl3anc 1373 . . . . . . . 8 (𝜑 → (((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
4717, 46mpbird 260 . . . . . . 7 (𝜑 → ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)))
48 eqid 2734 . . . . . . . . . . 11 (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻)
491, 12, 48, 15orbsta2 18680 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑆) ∧ 𝐵𝑆) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐵] ) · (♯‘𝐻)))
5010, 11, 3, 49syl21anc 838 . . . . . . . . 9 (𝜑 → (♯‘𝑋) = ((♯‘[𝐵] ) · (♯‘𝐻)))
5150oveq2d 7218 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝑋)) = (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))))
5234nnzd 12264 . . . . . . . . 9 (𝜑 → (♯‘[𝐵] ) ∈ ℤ)
5334nnne0d 11863 . . . . . . . . 9 (𝜑 → (♯‘[𝐵] ) ≠ 0)
54 eqid 2734 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
5554subg0cl 18523 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐻)
5614, 55syl 17 . . . . . . . . . . . 12 (𝜑 → (0g𝐺) ∈ 𝐻)
5756ne0d 4240 . . . . . . . . . . 11 (𝜑𝐻 ≠ ∅)
5812ssrab3 3985 . . . . . . . . . . . . 13 𝐻𝑋
59 ssfi 8840 . . . . . . . . . . . . 13 ((𝑋 ∈ Fin ∧ 𝐻𝑋) → 𝐻 ∈ Fin)
603, 58, 59sylancl 589 . . . . . . . . . . . 12 (𝜑𝐻 ∈ Fin)
61 hashnncl 13916 . . . . . . . . . . . 12 (𝐻 ∈ Fin → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
6260, 61syl 17 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
6357, 62mpbird 260 . . . . . . . . . 10 (𝜑 → (♯‘𝐻) ∈ ℕ)
6463nnzd 12264 . . . . . . . . 9 (𝜑 → (♯‘𝐻) ∈ ℤ)
6563nnne0d 11863 . . . . . . . . 9 (𝜑 → (♯‘𝐻) ≠ 0)
66 pcmul 16385 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ((♯‘[𝐵] ) ∈ ℤ ∧ (♯‘[𝐵] ) ≠ 0) ∧ ((♯‘𝐻) ∈ ℤ ∧ (♯‘𝐻) ≠ 0)) → (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
674, 52, 53, 64, 65, 66syl122anc 1381 . . . . . . . 8 (𝜑 → (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
6851, 67eqtrd 2774 . . . . . . 7 (𝜑 → (𝑃 pCnt (♯‘𝑋)) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
6947, 68breqtrd 5069 . . . . . 6 (𝜑 → ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
704, 63pccld 16384 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝐻)) ∈ ℕ0)
7170nn0red 12134 . . . . . . 7 (𝜑 → (𝑃 pCnt (♯‘𝐻)) ∈ ℝ)
7237, 71, 36leadd2d 11410 . . . . . 6 (𝜑 → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻)))))
7369, 72mpbird 260 . . . . 5 (𝜑𝑁 ≤ (𝑃 pCnt (♯‘𝐻)))
74 pcdvdsb 16403 . . . . . 6 ((𝑃 ∈ ℙ ∧ (♯‘𝐻) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ (𝑃𝑁) ∥ (♯‘𝐻)))
754, 64, 5, 74syl3anc 1373 . . . . 5 (𝜑 → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ (𝑃𝑁) ∥ (♯‘𝐻)))
7673, 75mpbid 235 . . . 4 (𝜑 → (𝑃𝑁) ∥ (♯‘𝐻))
77 prmnn 16212 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
784, 77syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
7978, 5nnexpcld 13795 . . . . . 6 (𝜑 → (𝑃𝑁) ∈ ℕ)
8079nnzd 12264 . . . . 5 (𝜑 → (𝑃𝑁) ∈ ℤ)
81 dvdsle 15852 . . . . 5 (((𝑃𝑁) ∈ ℤ ∧ (♯‘𝐻) ∈ ℕ) → ((𝑃𝑁) ∥ (♯‘𝐻) → (𝑃𝑁) ≤ (♯‘𝐻)))
8280, 63, 81syl2anc 587 . . . 4 (𝜑 → ((𝑃𝑁) ∥ (♯‘𝐻) → (𝑃𝑁) ≤ (♯‘𝐻)))
8376, 82mpd 15 . . 3 (𝜑 → (𝑃𝑁) ≤ (♯‘𝐻))
84 hashcl 13906 . . . . . 6 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
8560, 84syl 17 . . . . 5 (𝜑 → (♯‘𝐻) ∈ ℕ0)
8685nn0red 12134 . . . 4 (𝜑 → (♯‘𝐻) ∈ ℝ)
8779nnred 11828 . . . 4 (𝜑 → (𝑃𝑁) ∈ ℝ)
8886, 87letri3d 10957 . . 3 (𝜑 → ((♯‘𝐻) = (𝑃𝑁) ↔ ((♯‘𝐻) ≤ (𝑃𝑁) ∧ (𝑃𝑁) ≤ (♯‘𝐻))))
8916, 83, 88mpbir2and 713 . 2 (𝜑 → (♯‘𝐻) = (𝑃𝑁))
90 fveqeq2 6715 . . 3 ( = 𝐻 → ((♯‘) = (𝑃𝑁) ↔ (♯‘𝐻) = (𝑃𝑁)))
9190rspcev 3530 . 2 ((𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃𝑁)) → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
9214, 89, 91syl2anc 587 1 (𝜑 → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2935  wrex 3055  {crab 3058  wss 3857  c0 4227  𝒫 cpw 4503  {cpr 4533   class class class wbr 5043  {copab 5105  cmpt 5124  dom cdm 5540  ran crn 5541  cfv 6369  (class class class)co 7202  cmpo 7204   Er wer 8377  [cec 8378  Fincfn 8615  cr 10711  0cc0 10712   + caddc 10715   · cmul 10717  cle 10851  cmin 11045  cn 11813  0cn0 12073  cz 12159  cexp 13618  chash 13879  cdvds 15796  cprime 16209   pCnt cpc 16370  Basecbs 16684  +gcplusg 16767  0gc0g 16916  Grpcgrp 18337  SubGrpcsubg 18509   ~QG cqg 18511   GrpAct cga 18655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-disj 5009  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-oadd 8195  df-er 8380  df-ec 8382  df-qs 8386  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-q 12528  df-rp 12570  df-fz 13079  df-fzo 13222  df-fl 13350  df-mod 13426  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-sum 15233  df-dvds 15797  df-gcd 16035  df-prm 16210  df-pc 16371  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-0g 16918  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-grp 18340  df-minusg 18341  df-subg 18512  df-eqg 18514  df-ga 18656
This theorem is referenced by:  sylow1  18964
  Copyright terms: Public domain W3C validator