MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem5 Structured version   Visualization version   GIF version

Theorem sylow1lem5 18730
Description: Lemma for sylow1 18731. Using Lagrange's theorem and the orbit-stabilizer theorem, show that there is a subgroup with size exactly 𝑃𝑁. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
sylow1lem4.b (𝜑𝐵𝑆)
sylow1lem4.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
sylow1lem5.l (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
Assertion
Ref Expression
sylow1lem5 (𝜑 → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
Distinct variable groups:   𝑔,𝑠,𝑢,𝑥,𝑦,𝑧,𝐵   𝑔,,𝐻,𝑥,𝑦   𝑆,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝑁   ,𝑠,𝑢,𝑧,𝑁,𝑥,𝑦   𝑔,𝑋,,𝑠,𝑢,𝑥,𝑦,𝑧   + ,𝑠,𝑢,𝑥,𝑦,𝑧   𝑧,   ,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝐺,,𝑠,𝑢,𝑥,𝑦,𝑧   𝑃,𝑔,,𝑠,𝑢,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑔,,𝑠)   𝐵()   + (𝑔,)   (,𝑠)   (𝑥,𝑦,𝑢,𝑔,,𝑠)   𝑆(,𝑠)   𝐻(𝑧,𝑢,𝑠)

Proof of Theorem sylow1lem5
StepHypRef Expression
1 sylow1.x . . . 4 𝑋 = (Base‘𝐺)
2 sylow1.g . . . 4 (𝜑𝐺 ∈ Grp)
3 sylow1.f . . . 4 (𝜑𝑋 ∈ Fin)
4 sylow1.p . . . 4 (𝜑𝑃 ∈ ℙ)
5 sylow1.n . . . 4 (𝜑𝑁 ∈ ℕ0)
6 sylow1.d . . . 4 (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
7 sylow1lem.a . . . 4 + = (+g𝐺)
8 sylow1lem.s . . . 4 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
9 sylow1lem.m . . . 4 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
101, 2, 3, 4, 5, 6, 7, 8, 9sylow1lem2 18727 . . 3 (𝜑 ∈ (𝐺 GrpAct 𝑆))
11 sylow1lem4.b . . 3 (𝜑𝐵𝑆)
12 sylow1lem4.h . . . 4 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
131, 12gastacl 18442 . . 3 (( ∈ (𝐺 GrpAct 𝑆) ∧ 𝐵𝑆) → 𝐻 ∈ (SubGrp‘𝐺))
1410, 11, 13syl2anc 586 . 2 (𝜑𝐻 ∈ (SubGrp‘𝐺))
15 sylow1lem3.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
161, 2, 3, 4, 5, 6, 7, 8, 9, 15, 11, 12sylow1lem4 18729 . . 3 (𝜑 → (♯‘𝐻) ≤ (𝑃𝑁))
17 sylow1lem5.l . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
1815, 1gaorber 18441 . . . . . . . . . . . . . . . 16 ( ∈ (𝐺 GrpAct 𝑆) → Er 𝑆)
1910, 18syl 17 . . . . . . . . . . . . . . 15 (𝜑 Er 𝑆)
20 erdm 8302 . . . . . . . . . . . . . . 15 ( Er 𝑆 → dom = 𝑆)
2119, 20syl 17 . . . . . . . . . . . . . 14 (𝜑 → dom = 𝑆)
2211, 21eleqtrrd 2919 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ dom )
23 ecdmn0 8339 . . . . . . . . . . . . 13 (𝐵 ∈ dom ↔ [𝐵] ≠ ∅)
2422, 23sylib 220 . . . . . . . . . . . 12 (𝜑 → [𝐵] ≠ ∅)
25 pwfi 8822 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
263, 25sylib 220 . . . . . . . . . . . . . . 15 (𝜑 → 𝒫 𝑋 ∈ Fin)
278ssrab3 4060 . . . . . . . . . . . . . . 15 𝑆 ⊆ 𝒫 𝑋
28 ssfi 8741 . . . . . . . . . . . . . . 15 ((𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋) → 𝑆 ∈ Fin)
2926, 27, 28sylancl 588 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ Fin)
3019ecss 8338 . . . . . . . . . . . . . 14 (𝜑 → [𝐵] 𝑆)
3129, 30ssfid 8744 . . . . . . . . . . . . 13 (𝜑 → [𝐵] ∈ Fin)
32 hashnncl 13730 . . . . . . . . . . . . 13 ([𝐵] ∈ Fin → ((♯‘[𝐵] ) ∈ ℕ ↔ [𝐵] ≠ ∅))
3331, 32syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘[𝐵] ) ∈ ℕ ↔ [𝐵] ≠ ∅))
3424, 33mpbird 259 . . . . . . . . . . 11 (𝜑 → (♯‘[𝐵] ) ∈ ℕ)
354, 34pccld 16190 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ∈ ℕ0)
3635nn0red 11959 . . . . . . . . 9 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ∈ ℝ)
375nn0red 11959 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
381grpbn0 18135 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
392, 38syl 17 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ∅)
40 hashnncl 13730 . . . . . . . . . . . . 13 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
413, 40syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4239, 41mpbird 259 . . . . . . . . . . 11 (𝜑 → (♯‘𝑋) ∈ ℕ)
434, 42pccld 16190 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
4443nn0red 11959 . . . . . . . . 9 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℝ)
45 leaddsub 11119 . . . . . . . . 9 (((𝑃 pCnt (♯‘[𝐵] )) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑃 pCnt (♯‘𝑋)) ∈ ℝ) → (((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
4636, 37, 44, 45syl3anc 1367 . . . . . . . 8 (𝜑 → (((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
4717, 46mpbird 259 . . . . . . 7 (𝜑 → ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)))
48 eqid 2824 . . . . . . . . . . 11 (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻)
491, 12, 48, 15orbsta2 18447 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑆) ∧ 𝐵𝑆) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐵] ) · (♯‘𝐻)))
5010, 11, 3, 49syl21anc 835 . . . . . . . . 9 (𝜑 → (♯‘𝑋) = ((♯‘[𝐵] ) · (♯‘𝐻)))
5150oveq2d 7175 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝑋)) = (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))))
5234nnzd 12089 . . . . . . . . 9 (𝜑 → (♯‘[𝐵] ) ∈ ℤ)
5334nnne0d 11690 . . . . . . . . 9 (𝜑 → (♯‘[𝐵] ) ≠ 0)
54 eqid 2824 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
5554subg0cl 18290 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐻)
5614, 55syl 17 . . . . . . . . . . . 12 (𝜑 → (0g𝐺) ∈ 𝐻)
5756ne0d 4304 . . . . . . . . . . 11 (𝜑𝐻 ≠ ∅)
5812ssrab3 4060 . . . . . . . . . . . . 13 𝐻𝑋
59 ssfi 8741 . . . . . . . . . . . . 13 ((𝑋 ∈ Fin ∧ 𝐻𝑋) → 𝐻 ∈ Fin)
603, 58, 59sylancl 588 . . . . . . . . . . . 12 (𝜑𝐻 ∈ Fin)
61 hashnncl 13730 . . . . . . . . . . . 12 (𝐻 ∈ Fin → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
6260, 61syl 17 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
6357, 62mpbird 259 . . . . . . . . . 10 (𝜑 → (♯‘𝐻) ∈ ℕ)
6463nnzd 12089 . . . . . . . . 9 (𝜑 → (♯‘𝐻) ∈ ℤ)
6563nnne0d 11690 . . . . . . . . 9 (𝜑 → (♯‘𝐻) ≠ 0)
66 pcmul 16191 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ((♯‘[𝐵] ) ∈ ℤ ∧ (♯‘[𝐵] ) ≠ 0) ∧ ((♯‘𝐻) ∈ ℤ ∧ (♯‘𝐻) ≠ 0)) → (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
674, 52, 53, 64, 65, 66syl122anc 1375 . . . . . . . 8 (𝜑 → (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
6851, 67eqtrd 2859 . . . . . . 7 (𝜑 → (𝑃 pCnt (♯‘𝑋)) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
6947, 68breqtrd 5095 . . . . . 6 (𝜑 → ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
704, 63pccld 16190 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝐻)) ∈ ℕ0)
7170nn0red 11959 . . . . . . 7 (𝜑 → (𝑃 pCnt (♯‘𝐻)) ∈ ℝ)
7237, 71, 36leadd2d 11238 . . . . . 6 (𝜑 → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻)))))
7369, 72mpbird 259 . . . . 5 (𝜑𝑁 ≤ (𝑃 pCnt (♯‘𝐻)))
74 pcdvdsb 16208 . . . . . 6 ((𝑃 ∈ ℙ ∧ (♯‘𝐻) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ (𝑃𝑁) ∥ (♯‘𝐻)))
754, 64, 5, 74syl3anc 1367 . . . . 5 (𝜑 → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ (𝑃𝑁) ∥ (♯‘𝐻)))
7673, 75mpbid 234 . . . 4 (𝜑 → (𝑃𝑁) ∥ (♯‘𝐻))
77 prmnn 16021 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
784, 77syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
7978, 5nnexpcld 13609 . . . . . 6 (𝜑 → (𝑃𝑁) ∈ ℕ)
8079nnzd 12089 . . . . 5 (𝜑 → (𝑃𝑁) ∈ ℤ)
81 dvdsle 15663 . . . . 5 (((𝑃𝑁) ∈ ℤ ∧ (♯‘𝐻) ∈ ℕ) → ((𝑃𝑁) ∥ (♯‘𝐻) → (𝑃𝑁) ≤ (♯‘𝐻)))
8280, 63, 81syl2anc 586 . . . 4 (𝜑 → ((𝑃𝑁) ∥ (♯‘𝐻) → (𝑃𝑁) ≤ (♯‘𝐻)))
8376, 82mpd 15 . . 3 (𝜑 → (𝑃𝑁) ≤ (♯‘𝐻))
84 hashcl 13720 . . . . . 6 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
8560, 84syl 17 . . . . 5 (𝜑 → (♯‘𝐻) ∈ ℕ0)
8685nn0red 11959 . . . 4 (𝜑 → (♯‘𝐻) ∈ ℝ)
8779nnred 11656 . . . 4 (𝜑 → (𝑃𝑁) ∈ ℝ)
8886, 87letri3d 10785 . . 3 (𝜑 → ((♯‘𝐻) = (𝑃𝑁) ↔ ((♯‘𝐻) ≤ (𝑃𝑁) ∧ (𝑃𝑁) ≤ (♯‘𝐻))))
8916, 83, 88mpbir2and 711 . 2 (𝜑 → (♯‘𝐻) = (𝑃𝑁))
90 fveqeq2 6682 . . 3 ( = 𝐻 → ((♯‘) = (𝑃𝑁) ↔ (♯‘𝐻) = (𝑃𝑁)))
9190rspcev 3626 . 2 ((𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃𝑁)) → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
9214, 89, 91syl2anc 586 1 (𝜑 → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  wrex 3142  {crab 3145  wss 3939  c0 4294  𝒫 cpw 4542  {cpr 4572   class class class wbr 5069  {copab 5131  cmpt 5149  dom cdm 5558  ran crn 5559  cfv 6358  (class class class)co 7159  cmpo 7161   Er wer 8289  [cec 8290  Fincfn 8512  cr 10539  0cc0 10540   + caddc 10543   · cmul 10545  cle 10679  cmin 10873  cn 11641  0cn0 11900  cz 11984  cexp 13432  chash 13693  cdvds 15610  cprime 16018   pCnt cpc 16176  Basecbs 16486  +gcplusg 16568  0gc0g 16716  Grpcgrp 18106  SubGrpcsubg 18276   ~QG cqg 18278   GrpAct cga 18422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-ec 8294  df-qs 8298  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-dvds 15611  df-gcd 15847  df-prm 16019  df-pc 16177  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-subg 18279  df-eqg 18281  df-ga 18423
This theorem is referenced by:  sylow1  18731
  Copyright terms: Public domain W3C validator