Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem5 Structured version   Visualization version   GIF version

Theorem sylow1lem5 18719
 Description: Lemma for sylow1 18720. Using Lagrange's theorem and the orbit-stabilizer theorem, show that there is a subgroup with size exactly 𝑃↑𝑁. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
sylow1lem3.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
sylow1lem4.b (𝜑𝐵𝑆)
sylow1lem4.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
sylow1lem5.l (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
Assertion
Ref Expression
sylow1lem5 (𝜑 → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
Distinct variable groups:   𝑔,𝑠,𝑢,𝑥,𝑦,𝑧,𝐵   𝑔,,𝐻,𝑥,𝑦   𝑆,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝑁   ,𝑠,𝑢,𝑧,𝑁,𝑥,𝑦   𝑔,𝑋,,𝑠,𝑢,𝑥,𝑦,𝑧   + ,𝑠,𝑢,𝑥,𝑦,𝑧   𝑧,   ,𝑔,𝑢,𝑥,𝑦,𝑧   𝑔,𝐺,,𝑠,𝑢,𝑥,𝑦,𝑧   𝑃,𝑔,,𝑠,𝑢,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑔,,𝑠)   𝐵()   + (𝑔,)   (,𝑠)   (𝑥,𝑦,𝑢,𝑔,,𝑠)   𝑆(,𝑠)   𝐻(𝑧,𝑢,𝑠)

Proof of Theorem sylow1lem5
StepHypRef Expression
1 sylow1.x . . . 4 𝑋 = (Base‘𝐺)
2 sylow1.g . . . 4 (𝜑𝐺 ∈ Grp)
3 sylow1.f . . . 4 (𝜑𝑋 ∈ Fin)
4 sylow1.p . . . 4 (𝜑𝑃 ∈ ℙ)
5 sylow1.n . . . 4 (𝜑𝑁 ∈ ℕ0)
6 sylow1.d . . . 4 (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
7 sylow1lem.a . . . 4 + = (+g𝐺)
8 sylow1lem.s . . . 4 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
9 sylow1lem.m . . . 4 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
101, 2, 3, 4, 5, 6, 7, 8, 9sylow1lem2 18716 . . 3 (𝜑 ∈ (𝐺 GrpAct 𝑆))
11 sylow1lem4.b . . 3 (𝜑𝐵𝑆)
12 sylow1lem4.h . . . 4 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐵) = 𝐵}
131, 12gastacl 18431 . . 3 (( ∈ (𝐺 GrpAct 𝑆) ∧ 𝐵𝑆) → 𝐻 ∈ (SubGrp‘𝐺))
1410, 11, 13syl2anc 587 . 2 (𝜑𝐻 ∈ (SubGrp‘𝐺))
15 sylow1lem3.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑆 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
161, 2, 3, 4, 5, 6, 7, 8, 9, 15, 11, 12sylow1lem4 18718 . . 3 (𝜑 → (♯‘𝐻) ≤ (𝑃𝑁))
17 sylow1lem5.l . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁))
1815, 1gaorber 18430 . . . . . . . . . . . . . . . 16 ( ∈ (𝐺 GrpAct 𝑆) → Er 𝑆)
1910, 18syl 17 . . . . . . . . . . . . . . 15 (𝜑 Er 𝑆)
20 erdm 8282 . . . . . . . . . . . . . . 15 ( Er 𝑆 → dom = 𝑆)
2119, 20syl 17 . . . . . . . . . . . . . 14 (𝜑 → dom = 𝑆)
2211, 21eleqtrrd 2893 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ dom )
23 ecdmn0 8319 . . . . . . . . . . . . 13 (𝐵 ∈ dom ↔ [𝐵] ≠ ∅)
2422, 23sylib 221 . . . . . . . . . . . 12 (𝜑 → [𝐵] ≠ ∅)
25 pwfi 8803 . . . . . . . . . . . . . . . 16 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
263, 25sylib 221 . . . . . . . . . . . . . . 15 (𝜑 → 𝒫 𝑋 ∈ Fin)
278ssrab3 4008 . . . . . . . . . . . . . . 15 𝑆 ⊆ 𝒫 𝑋
28 ssfi 8722 . . . . . . . . . . . . . . 15 ((𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋) → 𝑆 ∈ Fin)
2926, 27, 28sylancl 589 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ Fin)
3019ecss 8318 . . . . . . . . . . . . . 14 (𝜑 → [𝐵] 𝑆)
3129, 30ssfid 8725 . . . . . . . . . . . . 13 (𝜑 → [𝐵] ∈ Fin)
32 hashnncl 13723 . . . . . . . . . . . . 13 ([𝐵] ∈ Fin → ((♯‘[𝐵] ) ∈ ℕ ↔ [𝐵] ≠ ∅))
3331, 32syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘[𝐵] ) ∈ ℕ ↔ [𝐵] ≠ ∅))
3424, 33mpbird 260 . . . . . . . . . . 11 (𝜑 → (♯‘[𝐵] ) ∈ ℕ)
354, 34pccld 16177 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ∈ ℕ0)
3635nn0red 11944 . . . . . . . . 9 (𝜑 → (𝑃 pCnt (♯‘[𝐵] )) ∈ ℝ)
375nn0red 11944 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
381grpbn0 18124 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
392, 38syl 17 . . . . . . . . . . . 12 (𝜑𝑋 ≠ ∅)
40 hashnncl 13723 . . . . . . . . . . . . 13 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
413, 40syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4239, 41mpbird 260 . . . . . . . . . . 11 (𝜑 → (♯‘𝑋) ∈ ℕ)
434, 42pccld 16177 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
4443nn0red 11944 . . . . . . . . 9 (𝜑 → (𝑃 pCnt (♯‘𝑋)) ∈ ℝ)
45 leaddsub 11105 . . . . . . . . 9 (((𝑃 pCnt (♯‘[𝐵] )) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑃 pCnt (♯‘𝑋)) ∈ ℝ) → (((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
4636, 37, 44, 45syl3anc 1368 . . . . . . . 8 (𝜑 → (((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘[𝐵] )) ≤ ((𝑃 pCnt (♯‘𝑋)) − 𝑁)))
4717, 46mpbird 260 . . . . . . 7 (𝜑 → ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ (𝑃 pCnt (♯‘𝑋)))
48 eqid 2798 . . . . . . . . . . 11 (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻)
491, 12, 48, 15orbsta2 18436 . . . . . . . . . 10 ((( ∈ (𝐺 GrpAct 𝑆) ∧ 𝐵𝑆) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐵] ) · (♯‘𝐻)))
5010, 11, 3, 49syl21anc 836 . . . . . . . . 9 (𝜑 → (♯‘𝑋) = ((♯‘[𝐵] ) · (♯‘𝐻)))
5150oveq2d 7151 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝑋)) = (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))))
5234nnzd 12074 . . . . . . . . 9 (𝜑 → (♯‘[𝐵] ) ∈ ℤ)
5334nnne0d 11675 . . . . . . . . 9 (𝜑 → (♯‘[𝐵] ) ≠ 0)
54 eqid 2798 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
5554subg0cl 18279 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐻)
5614, 55syl 17 . . . . . . . . . . . 12 (𝜑 → (0g𝐺) ∈ 𝐻)
5756ne0d 4251 . . . . . . . . . . 11 (𝜑𝐻 ≠ ∅)
5812ssrab3 4008 . . . . . . . . . . . . 13 𝐻𝑋
59 ssfi 8722 . . . . . . . . . . . . 13 ((𝑋 ∈ Fin ∧ 𝐻𝑋) → 𝐻 ∈ Fin)
603, 58, 59sylancl 589 . . . . . . . . . . . 12 (𝜑𝐻 ∈ Fin)
61 hashnncl 13723 . . . . . . . . . . . 12 (𝐻 ∈ Fin → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
6260, 61syl 17 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
6357, 62mpbird 260 . . . . . . . . . 10 (𝜑 → (♯‘𝐻) ∈ ℕ)
6463nnzd 12074 . . . . . . . . 9 (𝜑 → (♯‘𝐻) ∈ ℤ)
6563nnne0d 11675 . . . . . . . . 9 (𝜑 → (♯‘𝐻) ≠ 0)
66 pcmul 16178 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ((♯‘[𝐵] ) ∈ ℤ ∧ (♯‘[𝐵] ) ≠ 0) ∧ ((♯‘𝐻) ∈ ℤ ∧ (♯‘𝐻) ≠ 0)) → (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
674, 52, 53, 64, 65, 66syl122anc 1376 . . . . . . . 8 (𝜑 → (𝑃 pCnt ((♯‘[𝐵] ) · (♯‘𝐻))) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
6851, 67eqtrd 2833 . . . . . . 7 (𝜑 → (𝑃 pCnt (♯‘𝑋)) = ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
6947, 68breqtrd 5056 . . . . . 6 (𝜑 → ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻))))
704, 63pccld 16177 . . . . . . . 8 (𝜑 → (𝑃 pCnt (♯‘𝐻)) ∈ ℕ0)
7170nn0red 11944 . . . . . . 7 (𝜑 → (𝑃 pCnt (♯‘𝐻)) ∈ ℝ)
7237, 71, 36leadd2d 11224 . . . . . 6 (𝜑 → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ ((𝑃 pCnt (♯‘[𝐵] )) + 𝑁) ≤ ((𝑃 pCnt (♯‘[𝐵] )) + (𝑃 pCnt (♯‘𝐻)))))
7369, 72mpbird 260 . . . . 5 (𝜑𝑁 ≤ (𝑃 pCnt (♯‘𝐻)))
74 pcdvdsb 16195 . . . . . 6 ((𝑃 ∈ ℙ ∧ (♯‘𝐻) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ (𝑃𝑁) ∥ (♯‘𝐻)))
754, 64, 5, 74syl3anc 1368 . . . . 5 (𝜑 → (𝑁 ≤ (𝑃 pCnt (♯‘𝐻)) ↔ (𝑃𝑁) ∥ (♯‘𝐻)))
7673, 75mpbid 235 . . . 4 (𝜑 → (𝑃𝑁) ∥ (♯‘𝐻))
77 prmnn 16008 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
784, 77syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
7978, 5nnexpcld 13602 . . . . . 6 (𝜑 → (𝑃𝑁) ∈ ℕ)
8079nnzd 12074 . . . . 5 (𝜑 → (𝑃𝑁) ∈ ℤ)
81 dvdsle 15652 . . . . 5 (((𝑃𝑁) ∈ ℤ ∧ (♯‘𝐻) ∈ ℕ) → ((𝑃𝑁) ∥ (♯‘𝐻) → (𝑃𝑁) ≤ (♯‘𝐻)))
8280, 63, 81syl2anc 587 . . . 4 (𝜑 → ((𝑃𝑁) ∥ (♯‘𝐻) → (𝑃𝑁) ≤ (♯‘𝐻)))
8376, 82mpd 15 . . 3 (𝜑 → (𝑃𝑁) ≤ (♯‘𝐻))
84 hashcl 13713 . . . . . 6 (𝐻 ∈ Fin → (♯‘𝐻) ∈ ℕ0)
8560, 84syl 17 . . . . 5 (𝜑 → (♯‘𝐻) ∈ ℕ0)
8685nn0red 11944 . . . 4 (𝜑 → (♯‘𝐻) ∈ ℝ)
8779nnred 11640 . . . 4 (𝜑 → (𝑃𝑁) ∈ ℝ)
8886, 87letri3d 10771 . . 3 (𝜑 → ((♯‘𝐻) = (𝑃𝑁) ↔ ((♯‘𝐻) ≤ (𝑃𝑁) ∧ (𝑃𝑁) ≤ (♯‘𝐻))))
8916, 83, 88mpbir2and 712 . 2 (𝜑 → (♯‘𝐻) = (𝑃𝑁))
90 fveqeq2 6654 . . 3 ( = 𝐻 → ((♯‘) = (𝑃𝑁) ↔ (♯‘𝐻) = (𝑃𝑁)))
9190rspcev 3571 . 2 ((𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃𝑁)) → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
9214, 89, 91syl2anc 587 1 (𝜑 → ∃ ∈ (SubGrp‘𝐺)(♯‘) = (𝑃𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∃wrex 3107  {crab 3110   ⊆ wss 3881  ∅c0 4243  𝒫 cpw 4497  {cpr 4527   class class class wbr 5030  {copab 5092   ↦ cmpt 5110  dom cdm 5519  ran crn 5520  ‘cfv 6324  (class class class)co 7135   ∈ cmpo 7137   Er wer 8269  [cec 8270  Fincfn 8492  ℝcr 10525  0cc0 10526   + caddc 10529   · cmul 10531   ≤ cle 10665   − cmin 10859  ℕcn 11625  ℕ0cn0 11885  ℤcz 11969  ↑cexp 13425  ♯chash 13686   ∥ cdvds 15599  ℙcprime 16005   pCnt cpc 16163  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Grpcgrp 18095  SubGrpcsubg 18265   ~QG cqg 18267   GrpAct cga 18411 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-eqg 18270  df-ga 18412 This theorem is referenced by:  sylow1  18720
 Copyright terms: Public domain W3C validator