Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq12d Structured version   Visualization version   GIF version

Theorem esumeq12d 31901
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.)
Hypotheses
Ref Expression
esumeq12d.1 (𝜑𝐴 = 𝐵)
esumeq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
esumeq12d (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑘)

Proof of Theorem esumeq12d
StepHypRef Expression
1 esumeq12d.1 . 2 (𝜑𝐴 = 𝐵)
2 esumeq12d.2 . . 3 (𝜑𝐶 = 𝐷)
32adantr 480 . 2 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
41, 3esumeq12dva 31900 1 (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Σ*cesum 31895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-iota 6376  df-fv 6426  df-ov 7258  df-esum 31896
This theorem is referenced by:  esumeq1  31902  esum2dlem  31960
  Copyright terms: Public domain W3C validator