Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq12dva Structured version   Visualization version   GIF version

Theorem esumeq12dva 34027
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.) (Revised by Thierry Arnoux, 29-Jun-2017.)
Hypotheses
Ref Expression
esumeq12dva.1 (𝜑𝐴 = 𝐵)
esumeq12dva.2 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
Assertion
Ref Expression
esumeq12dva (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑘)

Proof of Theorem esumeq12dva
StepHypRef Expression
1 nfv 1914 . 2 𝑘𝜑
2 esumeq12dva.1 . 2 (𝜑𝐴 = 𝐵)
3 esumeq12dva.2 . 2 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
41, 2, 3esumeq12dvaf 34026 1 (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Σ*cesum 34022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-iota 6522  df-fv 6577  df-ov 7441  df-esum 34023
This theorem is referenced by:  esumeq12d  34028
  Copyright terms: Public domain W3C validator