Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq12dva Structured version   Visualization version   GIF version

Theorem esumeq12dva 33998
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.) (Revised by Thierry Arnoux, 29-Jun-2017.)
Hypotheses
Ref Expression
esumeq12dva.1 (𝜑𝐴 = 𝐵)
esumeq12dva.2 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
Assertion
Ref Expression
esumeq12dva (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑘)

Proof of Theorem esumeq12dva
StepHypRef Expression
1 nfv 1913 . 2 𝑘𝜑
2 esumeq12dva.1 . 2 (𝜑𝐴 = 𝐵)
3 esumeq12dva.2 . 2 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
41, 2, 3esumeq12dvaf 33997 1 (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Σ*cesum 33993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-iota 6527  df-fv 6583  df-ov 7453  df-esum 33994
This theorem is referenced by:  esumeq12d  33999
  Copyright terms: Public domain W3C validator