Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq12dva Structured version   Visualization version   GIF version

Theorem esumeq12dva 34029
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.) (Revised by Thierry Arnoux, 29-Jun-2017.)
Hypotheses
Ref Expression
esumeq12dva.1 (𝜑𝐴 = 𝐵)
esumeq12dva.2 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
Assertion
Ref Expression
esumeq12dva (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑘)

Proof of Theorem esumeq12dva
StepHypRef Expression
1 nfv 1914 . 2 𝑘𝜑
2 esumeq12dva.1 . 2 (𝜑𝐴 = 𝐵)
3 esumeq12dva.2 . 2 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
41, 2, 3esumeq12dvaf 34028 1 (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Σ*cesum 34024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-iota 6467  df-fv 6522  df-ov 7393  df-esum 34025
This theorem is referenced by:  esumeq12d  34030
  Copyright terms: Public domain W3C validator