Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq1 Structured version   Visualization version   GIF version

Theorem esumeq1 33784
Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.)
Assertion
Ref Expression
esumeq1 (𝐴 = 𝐵 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem esumeq1
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
2 eqidd 2726 . 2 (𝐴 = 𝐵𝐶 = 𝐶)
31, 2esumeq12d 33783 1 (𝐴 = 𝐵 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  Σ*cesum 33777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-iota 6501  df-fv 6557  df-ov 7422  df-esum 33778
This theorem is referenced by:  esumrnmpt  33802  esumpad  33805  esumpad2  33806  esumpr  33816  esumpr2  33817  esumfzf  33819  esumpmono  33829  esumcvg  33836  esumcvg2  33837  esum2dlem  33842  measvun  33959  ddemeas  33986  oms0  34048  omssubadd  34051  carsgsigalem  34066  carsgclctunlem1  34068  carsgclctunlem2  34070  carsgclctun  34072  pmeasmono  34075  pmeasadd  34076
  Copyright terms: Public domain W3C validator