| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.) |
| Ref | Expression |
|---|---|
| esumeq1 | ⊢ (𝐴 = 𝐵 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2730 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | esumeq12d 34016 | 1 ⊢ (𝐴 = 𝐵 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Σ*cesum 34010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-iota 6452 df-fv 6507 df-ov 7372 df-esum 34011 |
| This theorem is referenced by: esumrnmpt 34035 esumpad 34038 esumpad2 34039 esumpr 34049 esumpr2 34050 esumfzf 34052 esumpmono 34062 esumcvg 34069 esumcvg2 34070 esum2dlem 34075 measvun 34192 ddemeas 34219 oms0 34281 omssubadd 34284 carsgsigalem 34299 carsgclctunlem1 34301 carsgclctunlem2 34303 carsgclctun 34305 pmeasmono 34308 pmeasadd 34309 |
| Copyright terms: Public domain | W3C validator |