Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq1 Structured version   Visualization version   GIF version

Theorem esumeq1 31714
Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.)
Assertion
Ref Expression
esumeq1 (𝐴 = 𝐵 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem esumeq1
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
2 eqidd 2738 . 2 (𝐴 = 𝐵𝐶 = 𝐶)
31, 2esumeq12d 31713 1 (𝐴 = 𝐵 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  Σ*cesum 31707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-iota 6338  df-fv 6388  df-ov 7216  df-esum 31708
This theorem is referenced by:  esumrnmpt  31732  esumpad  31735  esumpad2  31736  esumpr  31746  esumpr2  31747  esumfzf  31749  esumpmono  31759  esumcvg  31766  esumcvg2  31767  esum2dlem  31772  measvun  31889  ddemeas  31916  oms0  31976  omssubadd  31979  carsgsigalem  31994  carsgclctunlem1  31996  carsgclctunlem2  31998  carsgclctun  32000  pmeasmono  32003  pmeasadd  32004
  Copyright terms: Public domain W3C validator