| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.) |
| Ref | Expression |
|---|---|
| esumeq1 | ⊢ (𝐴 = 𝐵 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2736 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | esumeq12d 34064 | 1 ⊢ (𝐴 = 𝐵 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Σ*cesum 34058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-iota 6484 df-fv 6539 df-ov 7408 df-esum 34059 |
| This theorem is referenced by: esumrnmpt 34083 esumpad 34086 esumpad2 34087 esumpr 34097 esumpr2 34098 esumfzf 34100 esumpmono 34110 esumcvg 34117 esumcvg2 34118 esum2dlem 34123 measvun 34240 ddemeas 34267 oms0 34329 omssubadd 34332 carsgsigalem 34347 carsgclctunlem1 34349 carsgclctunlem2 34351 carsgclctun 34353 pmeasmono 34356 pmeasadd 34357 |
| Copyright terms: Public domain | W3C validator |