Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq1 Structured version   Visualization version   GIF version

Theorem esumeq1 34065
Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.)
Assertion
Ref Expression
esumeq1 (𝐴 = 𝐵 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem esumeq1
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
2 eqidd 2736 . 2 (𝐴 = 𝐵𝐶 = 𝐶)
31, 2esumeq12d 34064 1 (𝐴 = 𝐵 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Σ*cesum 34058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-iota 6484  df-fv 6539  df-ov 7408  df-esum 34059
This theorem is referenced by:  esumrnmpt  34083  esumpad  34086  esumpad2  34087  esumpr  34097  esumpr2  34098  esumfzf  34100  esumpmono  34110  esumcvg  34117  esumcvg2  34118  esum2dlem  34123  measvun  34240  ddemeas  34267  oms0  34329  omssubadd  34332  carsgsigalem  34347  carsgclctunlem1  34349  carsgclctunlem2  34351  carsgclctun  34353  pmeasmono  34356  pmeasadd  34357
  Copyright terms: Public domain W3C validator