![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq12dvaf | Structured version Visualization version GIF version |
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
Ref | Expression |
---|---|
esumeq12dvaf.1 | ⊢ Ⅎ𝑘𝜑 |
esumeq12dvaf.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
esumeq12dvaf.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
esumeq12dvaf | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumeq12dvaf.1 | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
2 | esumeq12dvaf.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | alrimi 2204 | . . . . 5 ⊢ (𝜑 → ∀𝑘 𝐴 = 𝐵) |
4 | esumeq12dvaf.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) | |
5 | 4 | ex 411 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 = 𝐷)) |
6 | 1, 5 | ralrimi 3252 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 = 𝐷) |
7 | mpteq12f 5235 | . . . . 5 ⊢ ((∀𝑘 𝐴 = 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 = 𝐷) → (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ 𝐷)) | |
8 | 3, 6, 7 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ 𝐷)) |
9 | 8 | oveq2d 7427 | . . 3 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐷))) |
10 | 9 | unieqd 4921 | . 2 ⊢ (𝜑 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐷))) |
11 | df-esum 33324 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
12 | df-esum 33324 | . 2 ⊢ Σ*𝑘 ∈ 𝐵𝐷 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐷)) | |
13 | 10, 11, 12 | 3eqtr4g 2795 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1537 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 ∀wral 3059 ∪ cuni 4907 ↦ cmpt 5230 (class class class)co 7411 0cc0 11112 +∞cpnf 11249 [,]cicc 13331 ↾s cress 17177 ℝ*𝑠cxrs 17450 tsums ctsu 23850 Σ*cesum 33323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-iota 6494 df-fv 6550 df-ov 7414 df-esum 33324 |
This theorem is referenced by: esumeq12dva 33328 esumeq1d 33331 esumeq2d 33333 esumpinfval 33369 measvunilem0 33509 |
Copyright terms: Public domain | W3C validator |