![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq12dvaf | Structured version Visualization version GIF version |
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
Ref | Expression |
---|---|
esumeq12dvaf.1 | ⊢ Ⅎ𝑘𝜑 |
esumeq12dvaf.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
esumeq12dvaf.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
esumeq12dvaf | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumeq12dvaf.1 | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
2 | esumeq12dvaf.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | alrimi 2258 | . . . . 5 ⊢ (𝜑 → ∀𝑘 𝐴 = 𝐵) |
4 | esumeq12dvaf.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) | |
5 | 4 | ex 403 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 = 𝐷)) |
6 | 1, 5 | ralrimi 3166 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 = 𝐷) |
7 | mpteq12f 4954 | . . . . 5 ⊢ ((∀𝑘 𝐴 = 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 = 𝐷) → (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ 𝐷)) | |
8 | 3, 6, 7 | syl2anc 581 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ 𝐷)) |
9 | 8 | oveq2d 6921 | . . 3 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐷))) |
10 | 9 | unieqd 4668 | . 2 ⊢ (𝜑 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐷))) |
11 | df-esum 30635 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
12 | df-esum 30635 | . 2 ⊢ Σ*𝑘 ∈ 𝐵𝐷 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐷)) | |
13 | 10, 11, 12 | 3eqtr4g 2886 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∀wal 1656 = wceq 1658 Ⅎwnf 1884 ∈ wcel 2166 ∀wral 3117 ∪ cuni 4658 ↦ cmpt 4952 (class class class)co 6905 0cc0 10252 +∞cpnf 10388 [,]cicc 12466 ↾s cress 16223 ℝ*𝑠cxrs 16513 tsums ctsu 22299 Σ*cesum 30634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-iota 6086 df-fv 6131 df-ov 6908 df-esum 30635 |
This theorem is referenced by: esumeq12dva 30639 esumeq1d 30642 esumeq2d 30644 esumpinfval 30680 measvunilem0 30821 |
Copyright terms: Public domain | W3C validator |