Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq12dvaf Structured version   Visualization version   GIF version

Theorem esumeq12dvaf 34032
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 26-Mar-2017.)
Hypotheses
Ref Expression
esumeq12dvaf.1 𝑘𝜑
esumeq12dvaf.2 (𝜑𝐴 = 𝐵)
esumeq12dvaf.3 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
Assertion
Ref Expression
esumeq12dvaf (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)

Proof of Theorem esumeq12dvaf
StepHypRef Expression
1 esumeq12dvaf.1 . . . . . 6 𝑘𝜑
2 esumeq12dvaf.2 . . . . . 6 (𝜑𝐴 = 𝐵)
31, 2alrimi 2213 . . . . 5 (𝜑 → ∀𝑘 𝐴 = 𝐵)
4 esumeq12dvaf.3 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
54ex 412 . . . . . 6 (𝜑 → (𝑘𝐴𝐶 = 𝐷))
61, 5ralrimi 3257 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 = 𝐷)
7 mpteq12f 5230 . . . . 5 ((∀𝑘 𝐴 = 𝐵 ∧ ∀𝑘𝐴 𝐶 = 𝐷) → (𝑘𝐴𝐶) = (𝑘𝐵𝐷))
83, 6, 7syl2anc 584 . . . 4 (𝜑 → (𝑘𝐴𝐶) = (𝑘𝐵𝐷))
98oveq2d 7447 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐷)))
109unieqd 4920 . 2 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐷)))
11 df-esum 34029 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
12 df-esum 34029 . 2 Σ*𝑘𝐵𝐷 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐷))
1310, 11, 123eqtr4g 2802 1 (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wnf 1783  wcel 2108  wral 3061   cuni 4907  cmpt 5225  (class class class)co 7431  0cc0 11155  +∞cpnf 11292  [,]cicc 13390  s cress 17274  *𝑠cxrs 17545   tsums ctsu 24134  Σ*cesum 34028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-iota 6514  df-fv 6569  df-ov 7434  df-esum 34029
This theorem is referenced by:  esumeq12dva  34033  esumeq1d  34036  esumeq2d  34038  esumpinfval  34074  measvunilem0  34214
  Copyright terms: Public domain W3C validator