Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq12dvaf Structured version   Visualization version   GIF version

Theorem esumeq12dvaf 31999
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 26-Mar-2017.)
Hypotheses
Ref Expression
esumeq12dvaf.1 𝑘𝜑
esumeq12dvaf.2 (𝜑𝐴 = 𝐵)
esumeq12dvaf.3 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
Assertion
Ref Expression
esumeq12dvaf (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)

Proof of Theorem esumeq12dvaf
StepHypRef Expression
1 esumeq12dvaf.1 . . . . . 6 𝑘𝜑
2 esumeq12dvaf.2 . . . . . 6 (𝜑𝐴 = 𝐵)
31, 2alrimi 2206 . . . . 5 (𝜑 → ∀𝑘 𝐴 = 𝐵)
4 esumeq12dvaf.3 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
54ex 413 . . . . . 6 (𝜑 → (𝑘𝐴𝐶 = 𝐷))
61, 5ralrimi 3141 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 = 𝐷)
7 mpteq12f 5162 . . . . 5 ((∀𝑘 𝐴 = 𝐵 ∧ ∀𝑘𝐴 𝐶 = 𝐷) → (𝑘𝐴𝐶) = (𝑘𝐵𝐷))
83, 6, 7syl2anc 584 . . . 4 (𝜑 → (𝑘𝐴𝐶) = (𝑘𝐵𝐷))
98oveq2d 7291 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐷)))
109unieqd 4853 . 2 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐷)))
11 df-esum 31996 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
12 df-esum 31996 . 2 Σ*𝑘𝐵𝐷 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐷))
1310, 11, 123eqtr4g 2803 1 (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wnf 1786  wcel 2106  wral 3064   cuni 4839  cmpt 5157  (class class class)co 7275  0cc0 10871  +∞cpnf 11006  [,]cicc 13082  s cress 16941  *𝑠cxrs 17211   tsums ctsu 23277  Σ*cesum 31995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-iota 6391  df-fv 6441  df-ov 7278  df-esum 31996
This theorem is referenced by:  esumeq12dva  32000  esumeq1d  32003  esumeq2d  32005  esumpinfval  32041  measvunilem0  32181
  Copyright terms: Public domain W3C validator