Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumeq12dvaf Structured version   Visualization version   GIF version

Theorem esumeq12dvaf 33327
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 26-Mar-2017.)
Hypotheses
Ref Expression
esumeq12dvaf.1 𝑘𝜑
esumeq12dvaf.2 (𝜑𝐴 = 𝐵)
esumeq12dvaf.3 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
Assertion
Ref Expression
esumeq12dvaf (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)

Proof of Theorem esumeq12dvaf
StepHypRef Expression
1 esumeq12dvaf.1 . . . . . 6 𝑘𝜑
2 esumeq12dvaf.2 . . . . . 6 (𝜑𝐴 = 𝐵)
31, 2alrimi 2204 . . . . 5 (𝜑 → ∀𝑘 𝐴 = 𝐵)
4 esumeq12dvaf.3 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 = 𝐷)
54ex 411 . . . . . 6 (𝜑 → (𝑘𝐴𝐶 = 𝐷))
61, 5ralrimi 3252 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 = 𝐷)
7 mpteq12f 5235 . . . . 5 ((∀𝑘 𝐴 = 𝐵 ∧ ∀𝑘𝐴 𝐶 = 𝐷) → (𝑘𝐴𝐶) = (𝑘𝐵𝐷))
83, 6, 7syl2anc 582 . . . 4 (𝜑 → (𝑘𝐴𝐶) = (𝑘𝐵𝐷))
98oveq2d 7427 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐷)))
109unieqd 4921 . 2 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐷)))
11 df-esum 33324 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
12 df-esum 33324 . 2 Σ*𝑘𝐵𝐷 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐷))
1310, 11, 123eqtr4g 2795 1 (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1537   = wceq 1539  wnf 1783  wcel 2104  wral 3059   cuni 4907  cmpt 5230  (class class class)co 7411  0cc0 11112  +∞cpnf 11249  [,]cicc 13331  s cress 17177  *𝑠cxrs 17450   tsums ctsu 23850  Σ*cesum 33323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-iota 6494  df-fv 6550  df-ov 7414  df-esum 33324
This theorem is referenced by:  esumeq12dva  33328  esumeq1d  33331  esumeq2d  33333  esumpinfval  33369  measvunilem0  33509
  Copyright terms: Public domain W3C validator