| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq12dvaf | Structured version Visualization version GIF version | ||
| Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
| Ref | Expression |
|---|---|
| esumeq12dvaf.1 | ⊢ Ⅎ𝑘𝜑 |
| esumeq12dvaf.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| esumeq12dvaf.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| esumeq12dvaf | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esumeq12dvaf.1 | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
| 2 | esumeq12dvaf.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | alrimi 2214 | . . . . 5 ⊢ (𝜑 → ∀𝑘 𝐴 = 𝐵) |
| 4 | esumeq12dvaf.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) | |
| 5 | 4 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 = 𝐷)) |
| 6 | 1, 5 | ralrimi 3236 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 = 𝐷) |
| 7 | mpteq12f 5195 | . . . . 5 ⊢ ((∀𝑘 𝐴 = 𝐵 ∧ ∀𝑘 ∈ 𝐴 𝐶 = 𝐷) → (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ 𝐷)) | |
| 8 | 3, 6, 7 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ 𝐷)) |
| 9 | 8 | oveq2d 7406 | . . 3 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐷))) |
| 10 | 9 | unieqd 4887 | . 2 ⊢ (𝜑 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐷))) |
| 11 | df-esum 34025 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
| 12 | df-esum 34025 | . 2 ⊢ Σ*𝑘 ∈ 𝐵𝐷 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐷)) | |
| 13 | 10, 11, 12 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3045 ∪ cuni 4874 ↦ cmpt 5191 (class class class)co 7390 0cc0 11075 +∞cpnf 11212 [,]cicc 13316 ↾s cress 17207 ℝ*𝑠cxrs 17470 tsums ctsu 24020 Σ*cesum 34024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-iota 6467 df-fv 6522 df-ov 7393 df-esum 34025 |
| This theorem is referenced by: esumeq12dva 34029 esumeq1d 34032 esumeq2d 34034 esumpinfval 34070 measvunilem0 34210 |
| Copyright terms: Public domain | W3C validator |