| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eubrv | Structured version Visualization version GIF version | ||
| Description: If there is a unique set which is related to a class, then the class must be a set. (Contributed by AV, 25-Aug-2022.) |
| Ref | Expression |
|---|---|
| eubrv | ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brprcneu 6855 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑏 𝐴𝑅𝑏) | |
| 2 | 1 | con4i 114 | 1 ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃!weu 2562 Vcvv 3455 class class class wbr 5115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 |
| This theorem is referenced by: eubrdm 47007 afv2eu 47209 |
| Copyright terms: Public domain | W3C validator |