Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eubrv | Structured version Visualization version GIF version |
Description: If there is a unique set which is related to a class, then the class must be a set. (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
eubrv | ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brprcneu 6764 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑏 𝐴𝑅𝑏) | |
2 | 1 | con4i 114 | 1 ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃!weu 2568 Vcvv 3432 class class class wbr 5074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 |
This theorem is referenced by: eubrdm 44530 afv2eu 44730 |
Copyright terms: Public domain | W3C validator |