| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eubrv | Structured version Visualization version GIF version | ||
| Description: If there is a unique set which is related to a class, then the class must be a set. (Contributed by AV, 25-Aug-2022.) |
| Ref | Expression |
|---|---|
| eubrv | ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brprcneu 6875 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑏 𝐴𝑅𝑏) | |
| 2 | 1 | con4i 114 | 1 ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∃!weu 2566 Vcvv 3463 class class class wbr 5123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 |
| This theorem is referenced by: eubrdm 46982 afv2eu 47184 |
| Copyright terms: Public domain | W3C validator |