| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eubrv | Structured version Visualization version GIF version | ||
| Description: If there is a unique set which is related to a class, then the class must be a set. (Contributed by AV, 25-Aug-2022.) |
| Ref | Expression |
|---|---|
| eubrv | ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brprcneu 6812 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑏 𝐴𝑅𝑏) | |
| 2 | 1 | con4i 114 | 1 ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃!weu 2563 Vcvv 3436 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: eubrdm 47146 afv2eu 47348 |
| Copyright terms: Public domain | W3C validator |