Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eubrv | Structured version Visualization version GIF version |
Description: If there is a unique set which is related to a class, then the class must be a set. (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
eubrv | ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brprcneu 6815 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑏 𝐴𝑅𝑏) | |
2 | 1 | con4i 114 | 1 ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∃!weu 2566 Vcvv 3441 class class class wbr 5092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 |
This theorem is referenced by: eubrdm 44889 afv2eu 45089 |
Copyright terms: Public domain | W3C validator |