Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eubrv Structured version   Visualization version   GIF version

Theorem eubrv 46981
Description: If there is a unique set which is related to a class, then the class must be a set. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
eubrv (∃!𝑏 𝐴𝑅𝑏𝐴 ∈ V)
Distinct variable groups:   𝐴,𝑏   𝑅,𝑏

Proof of Theorem eubrv
StepHypRef Expression
1 brprcneu 6875 . 2 𝐴 ∈ V → ¬ ∃!𝑏 𝐴𝑅𝑏)
21con4i 114 1 (∃!𝑏 𝐴𝑅𝑏𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  ∃!weu 2566  Vcvv 3463   class class class wbr 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124
This theorem is referenced by:  eubrdm  46982  afv2eu  47184
  Copyright terms: Public domain W3C validator