Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  or2expropbi Structured version   Visualization version   GIF version

Theorem or2expropbi 46949
Description: If two classes are strictly ordered, there is an ordered pair of both classes fulfilling a wff iff there is an unordered pair of both classes fulfilling the wff. (Contributed by AV, 26-Aug-2023.)
Assertion
Ref Expression
or2expropbi (((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → (∃𝑎𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏𝜑)) ↔ ∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝑅𝑏𝜑))))
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑎,𝑏   𝑅,𝑎,𝑏   𝑉,𝑎,𝑏   𝑋,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)

Proof of Theorem or2expropbi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . . 4 𝑎((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵))
2 nfv 1913 . . . . . . 7 𝑎𝐴, 𝐵⟩ = ⟨𝑥, 𝑦
3 nfcv 2908 . . . . . . . 8 𝑎𝑦
4 nfsbc1v 3824 . . . . . . . 8 𝑎[𝑥 / 𝑎](𝑎𝑅𝑏𝜑)
53, 4nfsbcw 3826 . . . . . . 7 𝑎[𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑)
62, 5nfan 1898 . . . . . 6 𝑎(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑))
76nfex 2328 . . . . 5 𝑎𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑))
87nfex 2328 . . . 4 𝑎𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑))
9 nfv 1913 . . . . 5 𝑏((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵))
10 nfv 1913 . . . . . . . 8 𝑏𝐴, 𝐵⟩ = ⟨𝑥, 𝑦
11 nfsbc1v 3824 . . . . . . . 8 𝑏[𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑)
1210, 11nfan 1898 . . . . . . 7 𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑))
1312nfex 2328 . . . . . 6 𝑏𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑))
1413nfex 2328 . . . . 5 𝑏𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑))
15 vex 3492 . . . . . . . . . 10 𝑎 ∈ V
16 vex 3492 . . . . . . . . . 10 𝑏 ∈ V
17 preq12bg 4878 . . . . . . . . . 10 (((𝐴𝑋𝐵𝑋) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ ((𝐴 = 𝑎𝐵 = 𝑏) ∨ (𝐴 = 𝑏𝐵 = 𝑎))))
1815, 16, 17mpanr12 704 . . . . . . . . 9 ((𝐴𝑋𝐵𝑋) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ ((𝐴 = 𝑎𝐵 = 𝑏) ∨ (𝐴 = 𝑏𝐵 = 𝑎))))
19183adant3 1132 . . . . . . . 8 ((𝐴𝑋𝐵𝑋𝐴𝑅𝐵) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ ((𝐴 = 𝑎𝐵 = 𝑏) ∨ (𝐴 = 𝑏𝐵 = 𝑎))))
2019adantl 481 . . . . . . 7 (((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ ((𝐴 = 𝑎𝐵 = 𝑏) ∨ (𝐴 = 𝑏𝐵 = 𝑎))))
21 or2expropbilem1 46947 . . . . . . . . . 10 ((𝐴𝑋𝐵𝑋) → ((𝐴 = 𝑎𝐵 = 𝑏) → ((𝑎𝑅𝑏𝜑) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑)))))
22213adant3 1132 . . . . . . . . 9 ((𝐴𝑋𝐵𝑋𝐴𝑅𝐵) → ((𝐴 = 𝑎𝐵 = 𝑏) → ((𝑎𝑅𝑏𝜑) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑)))))
2322adantl 481 . . . . . . . 8 (((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → ((𝐴 = 𝑎𝐵 = 𝑏) → ((𝑎𝑅𝑏𝜑) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑)))))
24 breq12 5171 . . . . . . . . . . . . 13 ((𝐵 = 𝑎𝐴 = 𝑏) → (𝐵𝑅𝐴𝑎𝑅𝑏))
2524ancoms 458 . . . . . . . . . . . 12 ((𝐴 = 𝑏𝐵 = 𝑎) → (𝐵𝑅𝐴𝑎𝑅𝑏))
2625adantl 481 . . . . . . . . . . 11 ((((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) ∧ (𝐴 = 𝑏𝐵 = 𝑎)) → (𝐵𝑅𝐴𝑎𝑅𝑏))
27 soasym 5640 . . . . . . . . . . . . . . . . 17 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑅𝐵 → ¬ 𝐵𝑅𝐴))
2827ex 412 . . . . . . . . . . . . . . . 16 (𝑅 Or 𝑋 → ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 → ¬ 𝐵𝑅𝐴)))
2928adantl 481 . . . . . . . . . . . . . . 15 ((𝑋𝑉𝑅 Or 𝑋) → ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 → ¬ 𝐵𝑅𝐴)))
3029expd 415 . . . . . . . . . . . . . 14 ((𝑋𝑉𝑅 Or 𝑋) → (𝐴𝑋 → (𝐵𝑋 → (𝐴𝑅𝐵 → ¬ 𝐵𝑅𝐴))))
31303imp2 1349 . . . . . . . . . . . . 13 (((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → ¬ 𝐵𝑅𝐴)
3231pm2.21d 121 . . . . . . . . . . . 12 (((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → (𝐵𝑅𝐴 → (𝜑 → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑)))))
3332adantr 480 . . . . . . . . . . 11 ((((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) ∧ (𝐴 = 𝑏𝐵 = 𝑎)) → (𝐵𝑅𝐴 → (𝜑 → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑)))))
3426, 33sylbird 260 . . . . . . . . . 10 ((((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) ∧ (𝐴 = 𝑏𝐵 = 𝑎)) → (𝑎𝑅𝑏 → (𝜑 → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑)))))
3534impd 410 . . . . . . . . 9 ((((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) ∧ (𝐴 = 𝑏𝐵 = 𝑎)) → ((𝑎𝑅𝑏𝜑) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑))))
3635ex 412 . . . . . . . 8 (((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → ((𝐴 = 𝑏𝐵 = 𝑎) → ((𝑎𝑅𝑏𝜑) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑)))))
3723, 36jaod 858 . . . . . . 7 (((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → (((𝐴 = 𝑎𝐵 = 𝑏) ∨ (𝐴 = 𝑏𝐵 = 𝑎)) → ((𝑎𝑅𝑏𝜑) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑)))))
3820, 37sylbid 240 . . . . . 6 (((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → ({𝐴, 𝐵} = {𝑎, 𝑏} → ((𝑎𝑅𝑏𝜑) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑)))))
3938impd 410 . . . . 5 (((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → (({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏𝜑)) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑))))
409, 14, 39exlimd 2219 . . . 4 (((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → (∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏𝜑)) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑))))
411, 8, 40exlimd 2219 . . 3 (((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → (∃𝑎𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏𝜑)) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑))))
42 or2expropbilem2 46948 . . 3 (∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝑅𝑏𝜑)) ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏𝜑)))
4341, 42imbitrrdi 252 . 2 (((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → (∃𝑎𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏𝜑)) → ∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝑅𝑏𝜑))))
44 oppr 46945 . . . . . 6 ((𝐴𝑋𝐵𝑋) → (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ → {𝐴, 𝐵} = {𝑎, 𝑏}))
4544anim1d 610 . . . . 5 ((𝐴𝑋𝐵𝑋) → ((⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝑅𝑏𝜑)) → ({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏𝜑))))
46452eximdv 1918 . . . 4 ((𝐴𝑋𝐵𝑋) → (∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝑅𝑏𝜑)) → ∃𝑎𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏𝜑))))
47463adant3 1132 . . 3 ((𝐴𝑋𝐵𝑋𝐴𝑅𝐵) → (∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝑅𝑏𝜑)) → ∃𝑎𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏𝜑))))
4847adantl 481 . 2 (((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → (∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝑅𝑏𝜑)) → ∃𝑎𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏𝜑))))
4943, 48impbid 212 1 (((𝑋𝑉𝑅 Or 𝑋) ∧ (𝐴𝑋𝐵𝑋𝐴𝑅𝐵)) → (∃𝑎𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏𝜑)) ↔ ∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ (𝑎𝑅𝑏𝜑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  [wsbc 3804  {cpr 4650  cop 4654   class class class wbr 5166   Or wor 5606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-po 5607  df-so 5608
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator