Step | Hyp | Ref
| Expression |
1 | | nfv 1920 |
. . . 4
⊢
Ⅎ𝑎((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) |
2 | | nfv 1920 |
. . . . . . 7
⊢
Ⅎ𝑎〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 |
3 | | nfcv 2908 |
. . . . . . . 8
⊢
Ⅎ𝑎𝑦 |
4 | | nfsbc1v 3739 |
. . . . . . . 8
⊢
Ⅎ𝑎[𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑) |
5 | 3, 4 | nfsbcw 3741 |
. . . . . . 7
⊢
Ⅎ𝑎[𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑) |
6 | 2, 5 | nfan 1905 |
. . . . . 6
⊢
Ⅎ𝑎(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)) |
7 | 6 | nfex 2321 |
. . . . 5
⊢
Ⅎ𝑎∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)) |
8 | 7 | nfex 2321 |
. . . 4
⊢
Ⅎ𝑎∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)) |
9 | | nfv 1920 |
. . . . 5
⊢
Ⅎ𝑏((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) |
10 | | nfv 1920 |
. . . . . . . 8
⊢
Ⅎ𝑏〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 |
11 | | nfsbc1v 3739 |
. . . . . . . 8
⊢
Ⅎ𝑏[𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑) |
12 | 10, 11 | nfan 1905 |
. . . . . . 7
⊢
Ⅎ𝑏(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)) |
13 | 12 | nfex 2321 |
. . . . . 6
⊢
Ⅎ𝑏∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)) |
14 | 13 | nfex 2321 |
. . . . 5
⊢
Ⅎ𝑏∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)) |
15 | | vex 3434 |
. . . . . . . . . 10
⊢ 𝑎 ∈ V |
16 | | vex 3434 |
. . . . . . . . . 10
⊢ 𝑏 ∈ V |
17 | | preq12bg 4789 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) ∨ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)))) |
18 | 15, 16, 17 | mpanr12 701 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) ∨ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)))) |
19 | 18 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) ∨ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)))) |
20 | 19 | adantl 481 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) ∨ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)))) |
21 | | or2expropbilem1 44477 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) → ((𝑎𝑅𝑏 ∧ 𝜑) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
22 | 21 | 3adant3 1130 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵) → ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) → ((𝑎𝑅𝑏 ∧ 𝜑) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
23 | 22 | adantl 481 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) → ((𝑎𝑅𝑏 ∧ 𝜑) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
24 | | breq12 5083 |
. . . . . . . . . . . . 13
⊢ ((𝐵 = 𝑎 ∧ 𝐴 = 𝑏) → (𝐵𝑅𝐴 ↔ 𝑎𝑅𝑏)) |
25 | 24 | ancoms 458 |
. . . . . . . . . . . 12
⊢ ((𝐴 = 𝑏 ∧ 𝐵 = 𝑎) → (𝐵𝑅𝐴 ↔ 𝑎𝑅𝑏)) |
26 | 25 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) ∧ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)) → (𝐵𝑅𝐴 ↔ 𝑎𝑅𝑏)) |
27 | | soasym 5533 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑅𝐵 → ¬ 𝐵𝑅𝐴)) |
28 | 27 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 Or 𝑋 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 → ¬ 𝐵𝑅𝐴))) |
29 | 28 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 → ¬ 𝐵𝑅𝐴))) |
30 | 29 | expd 415 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝑅𝐵 → ¬ 𝐵𝑅𝐴)))) |
31 | 30 | 3imp2 1347 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → ¬ 𝐵𝑅𝐴) |
32 | 31 | pm2.21d 121 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (𝐵𝑅𝐴 → (𝜑 → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
33 | 32 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) ∧ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)) → (𝐵𝑅𝐴 → (𝜑 → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
34 | 26, 33 | sylbird 259 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) ∧ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)) → (𝑎𝑅𝑏 → (𝜑 → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
35 | 34 | impd 410 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) ∧ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)) → ((𝑎𝑅𝑏 ∧ 𝜑) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)))) |
36 | 35 | ex 412 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → ((𝐴 = 𝑏 ∧ 𝐵 = 𝑎) → ((𝑎𝑅𝑏 ∧ 𝜑) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
37 | 23, 36 | jaod 855 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) ∨ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)) → ((𝑎𝑅𝑏 ∧ 𝜑) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
38 | 20, 37 | sylbid 239 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → ({𝐴, 𝐵} = {𝑎, 𝑏} → ((𝑎𝑅𝑏 ∧ 𝜑) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
39 | 38 | impd 410 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)))) |
40 | 9, 14, 39 | exlimd 2214 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)))) |
41 | 1, 8, 40 | exlimd 2214 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)))) |
42 | | or2expropbilem2 44478 |
. . 3
⊢
(∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)) ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))) |
43 | 41, 42 | syl6ibr 251 |
. 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)))) |
44 | | oppr 44475 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 → {𝐴, 𝐵} = {𝑎, 𝑏})) |
45 | 44 | anim1d 610 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)))) |
46 | 45 | 2eximdv 1925 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)))) |
47 | 46 | 3adant3 1130 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵) → (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)))) |
48 | 47 | adantl 481 |
. 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)))) |
49 | 43, 48 | impbid 211 |
1
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)) ↔ ∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)))) |