| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑎((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) |
| 2 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑎〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 |
| 3 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑎𝑦 |
| 4 | | nfsbc1v 3808 |
. . . . . . . 8
⊢
Ⅎ𝑎[𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑) |
| 5 | 3, 4 | nfsbcw 3810 |
. . . . . . 7
⊢
Ⅎ𝑎[𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑) |
| 6 | 2, 5 | nfan 1899 |
. . . . . 6
⊢
Ⅎ𝑎(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)) |
| 7 | 6 | nfex 2324 |
. . . . 5
⊢
Ⅎ𝑎∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)) |
| 8 | 7 | nfex 2324 |
. . . 4
⊢
Ⅎ𝑎∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)) |
| 9 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑏((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) |
| 10 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑏〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 |
| 11 | | nfsbc1v 3808 |
. . . . . . . 8
⊢
Ⅎ𝑏[𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑) |
| 12 | 10, 11 | nfan 1899 |
. . . . . . 7
⊢
Ⅎ𝑏(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)) |
| 13 | 12 | nfex 2324 |
. . . . . 6
⊢
Ⅎ𝑏∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)) |
| 14 | 13 | nfex 2324 |
. . . . 5
⊢
Ⅎ𝑏∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)) |
| 15 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑎 ∈ V |
| 16 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑏 ∈ V |
| 17 | | preq12bg 4853 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) ∨ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)))) |
| 18 | 15, 16, 17 | mpanr12 705 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) ∨ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)))) |
| 19 | 18 | 3adant3 1133 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) ∨ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)))) |
| 20 | 19 | adantl 481 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → ({𝐴, 𝐵} = {𝑎, 𝑏} ↔ ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) ∨ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)))) |
| 21 | | or2expropbilem1 47044 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) → ((𝑎𝑅𝑏 ∧ 𝜑) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
| 22 | 21 | 3adant3 1133 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵) → ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) → ((𝑎𝑅𝑏 ∧ 𝜑) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
| 23 | 22 | adantl 481 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) → ((𝑎𝑅𝑏 ∧ 𝜑) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
| 24 | | breq12 5148 |
. . . . . . . . . . . . 13
⊢ ((𝐵 = 𝑎 ∧ 𝐴 = 𝑏) → (𝐵𝑅𝐴 ↔ 𝑎𝑅𝑏)) |
| 25 | 24 | ancoms 458 |
. . . . . . . . . . . 12
⊢ ((𝐴 = 𝑏 ∧ 𝐵 = 𝑎) → (𝐵𝑅𝐴 ↔ 𝑎𝑅𝑏)) |
| 26 | 25 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) ∧ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)) → (𝐵𝑅𝐴 ↔ 𝑎𝑅𝑏)) |
| 27 | | soasym 5625 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 Or 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝑅𝐵 → ¬ 𝐵𝑅𝐴)) |
| 28 | 27 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 Or 𝑋 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 → ¬ 𝐵𝑅𝐴))) |
| 29 | 28 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 → ¬ 𝐵𝑅𝐴))) |
| 30 | 29 | expd 415 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝑅𝐵 → ¬ 𝐵𝑅𝐴)))) |
| 31 | 30 | 3imp2 1350 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → ¬ 𝐵𝑅𝐴) |
| 32 | 31 | pm2.21d 121 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (𝐵𝑅𝐴 → (𝜑 → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
| 33 | 32 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) ∧ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)) → (𝐵𝑅𝐴 → (𝜑 → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
| 34 | 26, 33 | sylbird 260 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) ∧ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)) → (𝑎𝑅𝑏 → (𝜑 → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
| 35 | 34 | impd 410 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) ∧ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)) → ((𝑎𝑅𝑏 ∧ 𝜑) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)))) |
| 36 | 35 | ex 412 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → ((𝐴 = 𝑏 ∧ 𝐵 = 𝑎) → ((𝑎𝑅𝑏 ∧ 𝜑) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
| 37 | 23, 36 | jaod 860 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) ∨ (𝐴 = 𝑏 ∧ 𝐵 = 𝑎)) → ((𝑎𝑅𝑏 ∧ 𝜑) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
| 38 | 20, 37 | sylbid 240 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → ({𝐴, 𝐵} = {𝑎, 𝑏} → ((𝑎𝑅𝑏 ∧ 𝜑) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))))) |
| 39 | 38 | impd 410 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)))) |
| 40 | 9, 14, 39 | exlimd 2218 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)))) |
| 41 | 1, 8, 40 | exlimd 2218 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑)))) |
| 42 | | or2expropbilem2 47045 |
. . 3
⊢
(∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)) ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎](𝑎𝑅𝑏 ∧ 𝜑))) |
| 43 | 41, 42 | imbitrrdi 252 |
. 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)))) |
| 44 | | oppr 47042 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 → {𝐴, 𝐵} = {𝑎, 𝑏})) |
| 45 | 44 | anim1d 611 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)))) |
| 46 | 45 | 2eximdv 1919 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)))) |
| 47 | 46 | 3adant3 1133 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵) → (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)))) |
| 48 | 47 | adantl 481 |
. 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)))) |
| 49 | 43, 48 | impbid 212 |
1
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)) ↔ ∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)))) |