| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5 | Structured version Visualization version GIF version | ||
| Description: The AKS Primality test, given an integer 𝑁 greater than or equal to 3, find a coprime 𝑅 such that 𝑅 is big enough. Then, if a bunch of polynomial equalities in the residue ring hold then 𝑁 is a prime power. Currently depends on the axiom ax-exfinfld 42175, since we currently do not have the existence of finite fields in the database. (Contributed by metakunt, 16-Aug-2025.) |
| Ref | Expression |
|---|---|
| aks5.1 | ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
| aks5.2 | ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) |
| aks5.3 | ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) |
| aks5.4 | ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) |
| aks5.5 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) |
| aks5.6 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks5.7 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks5.8 | ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| aks5.9 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| aks5.10 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) |
| Ref | Expression |
|---|---|
| aks5 | ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞))) | |
| 2 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℙ) | |
| 3 | 2 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℙ) |
| 4 | prmnn 16585 | . . . . . . 7 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℕ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℕ) |
| 6 | aks5.6 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 7 | 6 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑅 ∈ ℕ) |
| 8 | 2, 4 | syl 17 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℕ) |
| 9 | 8 | nnzd 12498 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℤ) |
| 10 | 7 | nnzd 12498 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑅 ∈ ℤ) |
| 11 | 9, 10 | gcdcomd 16425 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑞 gcd 𝑅) = (𝑅 gcd 𝑞)) |
| 12 | aks5.5 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) | |
| 13 | 12 | ad2antrr 726 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑁 ∈ (ℤ≥‘3)) |
| 14 | eluzelz 12745 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
| 15 | 13, 14 | syl 17 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑁 ∈ ℤ) |
| 16 | 10, 9, 15 | 3jca 1128 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 17 | 10, 15 | gcdcomd 16425 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑁) = (𝑁 gcd 𝑅)) |
| 18 | aks5.7 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 19 | 18 | ad2antrr 726 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑁 gcd 𝑅) = 1) |
| 20 | 17, 19 | eqtrd 2764 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑁) = 1) |
| 21 | simpr 484 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∥ 𝑁) | |
| 22 | 20, 21 | jca 511 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ((𝑅 gcd 𝑁) = 1 ∧ 𝑞 ∥ 𝑁)) |
| 23 | rpdvds 16571 | . . . . . . . . . . 11 ⊢ (((𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑞 ∥ 𝑁)) → (𝑅 gcd 𝑞) = 1) | |
| 24 | 16, 22, 23 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑞) = 1) |
| 25 | 11, 24 | eqtrd 2764 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑞 gcd 𝑅) = 1) |
| 26 | odzcl 16705 | . . . . . . . . 9 ⊢ ((𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ (𝑞 gcd 𝑅) = 1) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) | |
| 27 | 7, 9, 25, 26 | syl3anc 1373 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) |
| 28 | 27 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) |
| 29 | 28 | nnnn0d 12445 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ0) |
| 30 | 5, 29 | nnexpcld 14152 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞↑((odℤ‘𝑅)‘𝑞)) ∈ ℕ) |
| 31 | 1, 30 | eqeltrd 2828 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (♯‘(Base‘𝑘)) ∈ ℕ) |
| 32 | eqid 2729 | . . . 4 ⊢ (chr‘𝑘) = (chr‘𝑘) | |
| 33 | simplr 768 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑘 ∈ Field) | |
| 34 | simprr 772 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) = 𝑞) | |
| 35 | 34, 3 | eqeltrd 2828 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) ∈ ℙ) |
| 36 | 6 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∈ ℕ) |
| 37 | 12 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑁 ∈ (ℤ≥‘3)) |
| 38 | simpllr 775 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∥ 𝑁) | |
| 39 | 34, 38 | eqbrtrd 5114 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) ∥ 𝑁) |
| 40 | 18 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑁 gcd 𝑅) = 1) |
| 41 | aks5.1 | . . . 4 ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | |
| 42 | aks5.8 | . . . . 5 ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) | |
| 43 | 42 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| 44 | 5 | nnzd 12498 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℤ) |
| 45 | 25 | ad2antrr 726 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞 gcd 𝑅) = 1) |
| 46 | odzid 16706 | . . . . . 6 ⊢ ((𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ (𝑞 gcd 𝑅) = 1) → 𝑅 ∥ ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1)) | |
| 47 | 36, 44, 45, 46 | syl3anc 1373 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∥ ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1)) |
| 48 | 1 | eqcomd 2735 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞↑((odℤ‘𝑅)‘𝑞)) = (♯‘(Base‘𝑘))) |
| 49 | 48 | oveq1d 7364 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1) = ((♯‘(Base‘𝑘)) − 1)) |
| 50 | 47, 49 | breqtrd 5118 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∥ ((♯‘(Base‘𝑘)) − 1)) |
| 51 | aks5.9 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | |
| 52 | 51 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| 53 | aks5.10 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) | |
| 54 | 53 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) |
| 55 | aks5.3 | . . . 4 ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) | |
| 56 | aks5.4 | . . . 4 ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) | |
| 57 | aks5.2 | . . . 4 ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) | |
| 58 | 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 50, 52, 54, 55, 56, 57 | aks5lem8 42174 | . . 3 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| 59 | 2, 27 | exfinfldd 42176 | . . 3 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) |
| 60 | 58, 59 | r19.29a 3137 | . 2 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| 61 | uzuzle23 12785 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ (ℤ≥‘2)) | |
| 62 | 12, 61 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
| 63 | exprmfct 16615 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑞 ∈ ℙ 𝑞 ∥ 𝑁) | |
| 64 | 62, 63 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ ℙ 𝑞 ∥ 𝑁) |
| 65 | 60, 64 | r19.29a 3137 | 1 ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {csn 4577 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 [cec 8623 1c1 11010 · cmul 11014 < clt 11149 − cmin 11347 ℕcn 12128 2c2 12183 3c3 12184 ℤcz 12471 ℤ≥cuz 12735 ...cfz 13410 ⌊cfl 13694 ↑cexp 13968 ♯chash 14237 √csqrt 15140 ∥ cdvds 16163 gcd cgcd 16405 ℙcprime 16582 odℤcodz 16674 ϕcphi 16675 Basecbs 17120 +gcplusg 17161 -gcsg 18814 .gcmg 18946 ~QG cqg 19001 mulGrpcmgp 20025 1rcur 20066 Fieldcfield 20615 RSpancrsp 21114 ℤRHomczrh 21406 chrcchr 21408 ℤ/nℤczn 21409 var1cv1 22058 Poly1cpl1 22059 logb clogb 26672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 ax-exfinfld 42175 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-ec 8627 df-qs 8631 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-prod 15811 df-fallfac 15914 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-dvds 16164 df-gcd 16406 df-prm 16583 df-odz 16676 df-phi 16677 df-pc 16749 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-pws 17353 df-xrs 17406 df-qtop 17411 df-imas 17412 df-qus 17413 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-nsg 19003 df-eqg 19004 df-ghm 19092 df-gim 19138 df-cntz 19196 df-od 19407 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-rim 20358 df-nzr 20398 df-subrng 20431 df-subrg 20455 df-rlreg 20579 df-domn 20580 df-idom 20581 df-drng 20616 df-field 20617 df-lmod 20765 df-lss 20835 df-lsp 20875 df-sra 21077 df-rgmod 21078 df-lidl 21115 df-rsp 21116 df-2idl 21157 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-zring 21354 df-zrh 21410 df-chr 21412 df-zn 21413 df-assa 21760 df-asp 21761 df-ascl 21762 df-psr 21816 df-mvr 21817 df-mpl 21818 df-opsr 21820 df-evls 21979 df-evl 21980 df-psr1 22062 df-vr1 22063 df-ply1 22064 df-coe1 22065 df-evls1 22200 df-evl1 22201 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-limc 25765 df-dv 25766 df-mdeg 25958 df-deg1 25959 df-mon1 26034 df-uc1p 26035 df-q1p 26036 df-r1p 26037 df-log 26463 df-cxp 26464 df-logb 26673 df-primroots 42065 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |