Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks5 Structured version   Visualization version   GIF version

Theorem aks5 42187
Description: The AKS Primality test, given an integer 𝑁 greater than or equal to 3, find a coprime 𝑅 such that 𝑅 is big enough. Then, if a bunch of polynomial equalities in the residue ring hold then 𝑁 is a prime power. Currently depends on the axiom ax-exfinfld 42185, since we currently do not have the existence of finite fields in the database. (Contributed by metakunt, 16-Aug-2025.)
Hypotheses
Ref Expression
aks5.1 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks5.2 𝑋 = (var1‘(ℤ/nℤ‘𝑁))
aks5.3 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
aks5.4 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g𝑆)(1r𝑆))})
aks5.5 (𝜑𝑁 ∈ (ℤ‘3))
aks5.6 (𝜑𝑅 ∈ ℕ)
aks5.7 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks5.8 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
aks5.9 (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
aks5.10 (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1)
Assertion
Ref Expression
aks5 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛))
Distinct variable groups:   𝐴,𝑎   𝑁,𝑎   𝑛,𝑁,𝑝   𝑅,𝑎   𝑅,𝑛,𝑝   𝜑,𝑎   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐴(𝑛,𝑝)   𝑆(𝑛,𝑝,𝑎)   𝐿(𝑛,𝑝,𝑎)   𝑋(𝑛,𝑝,𝑎)

Proof of Theorem aks5
Dummy variables 𝑘 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . 5 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)))
2 simplr 768 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑞 ∈ ℙ)
32ad2antrr 726 . . . . . . 7 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℙ)
4 prmnn 16650 . . . . . . 7 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
53, 4syl 17 . . . . . 6 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℕ)
6 aks5.6 . . . . . . . . . 10 (𝜑𝑅 ∈ ℕ)
76ad2antrr 726 . . . . . . . . 9 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑅 ∈ ℕ)
82, 4syl 17 . . . . . . . . . 10 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑞 ∈ ℕ)
98nnzd 12562 . . . . . . . . 9 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑞 ∈ ℤ)
107nnzd 12562 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑅 ∈ ℤ)
119, 10gcdcomd 16490 . . . . . . . . . 10 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → (𝑞 gcd 𝑅) = (𝑅 gcd 𝑞))
12 aks5.5 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ‘3))
1312ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑁 ∈ (ℤ‘3))
14 eluzelz 12809 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
1513, 14syl 17 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑁 ∈ ℤ)
1610, 9, 153jca 1128 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → (𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ))
1710, 15gcdcomd 16490 . . . . . . . . . . . . 13 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → (𝑅 gcd 𝑁) = (𝑁 gcd 𝑅))
18 aks5.7 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 gcd 𝑅) = 1)
1918ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → (𝑁 gcd 𝑅) = 1)
2017, 19eqtrd 2765 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → (𝑅 gcd 𝑁) = 1)
21 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑞𝑁)
2220, 21jca 511 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → ((𝑅 gcd 𝑁) = 1 ∧ 𝑞𝑁))
23 rpdvds 16636 . . . . . . . . . . 11 (((𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑞𝑁)) → (𝑅 gcd 𝑞) = 1)
2416, 22, 23syl2anc 584 . . . . . . . . . 10 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → (𝑅 gcd 𝑞) = 1)
2511, 24eqtrd 2765 . . . . . . . . 9 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → (𝑞 gcd 𝑅) = 1)
26 odzcl 16770 . . . . . . . . 9 ((𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ (𝑞 gcd 𝑅) = 1) → ((od𝑅)‘𝑞) ∈ ℕ)
277, 9, 25, 26syl3anc 1373 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → ((od𝑅)‘𝑞) ∈ ℕ)
2827ad2antrr 726 . . . . . . 7 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((od𝑅)‘𝑞) ∈ ℕ)
2928nnnn0d 12509 . . . . . 6 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((od𝑅)‘𝑞) ∈ ℕ0)
305, 29nnexpcld 14216 . . . . 5 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞↑((od𝑅)‘𝑞)) ∈ ℕ)
311, 30eqeltrd 2829 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (♯‘(Base‘𝑘)) ∈ ℕ)
32 eqid 2730 . . . 4 (chr‘𝑘) = (chr‘𝑘)
33 simplr 768 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑘 ∈ Field)
34 simprr 772 . . . . 5 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) = 𝑞)
3534, 3eqeltrd 2829 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) ∈ ℙ)
366ad4antr 732 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∈ ℕ)
3712ad4antr 732 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑁 ∈ (ℤ‘3))
38 simpllr 775 . . . . 5 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞𝑁)
3934, 38eqbrtrd 5131 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) ∥ 𝑁)
4018ad4antr 732 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑁 gcd 𝑅) = 1)
41 aks5.1 . . . 4 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
42 aks5.8 . . . . 5 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
4342ad4antr 732 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
445nnzd 12562 . . . . . 6 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℤ)
4525ad2antrr 726 . . . . . 6 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞 gcd 𝑅) = 1)
46 odzid 16771 . . . . . 6 ((𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ (𝑞 gcd 𝑅) = 1) → 𝑅 ∥ ((𝑞↑((od𝑅)‘𝑞)) − 1))
4736, 44, 45, 46syl3anc 1373 . . . . 5 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∥ ((𝑞↑((od𝑅)‘𝑞)) − 1))
481eqcomd 2736 . . . . . 6 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞↑((od𝑅)‘𝑞)) = (♯‘(Base‘𝑘)))
4948oveq1d 7404 . . . . 5 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((𝑞↑((od𝑅)‘𝑞)) − 1) = ((♯‘(Base‘𝑘)) − 1))
5047, 49breqtrd 5135 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∥ ((♯‘(Base‘𝑘)) − 1))
51 aks5.9 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
5251ad4antr 732 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
53 aks5.10 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1)
5453ad4antr 732 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1)
55 aks5.3 . . . 4 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
56 aks5.4 . . . 4 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g𝑆)(1r𝑆))})
57 aks5.2 . . . 4 𝑋 = (var1‘(ℤ/nℤ‘𝑁))
5831, 32, 33, 35, 36, 37, 39, 40, 41, 43, 50, 52, 54, 55, 56, 57aks5lem8 42184 . . 3 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛))
592, 27exfinfldd 42186 . . 3 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞))
6058, 59r19.29a 3142 . 2 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛))
61 uzuzle23 12849 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
6212, 61syl 17 . . 3 (𝜑𝑁 ∈ (ℤ‘2))
63 exprmfct 16680 . . 3 (𝑁 ∈ (ℤ‘2) → ∃𝑞 ∈ ℙ 𝑞𝑁)
6462, 63syl 17 . 2 (𝜑 → ∃𝑞 ∈ ℙ 𝑞𝑁)
6560, 64r19.29a 3142 1 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {csn 4591   class class class wbr 5109  cfv 6513  (class class class)co 7389  [cec 8671  1c1 11075   · cmul 11079   < clt 11214  cmin 11411  cn 12187  2c2 12242  3c3 12243  cz 12535  cuz 12799  ...cfz 13474  cfl 13758  cexp 14032  chash 14301  csqrt 15205  cdvds 16228   gcd cgcd 16470  cprime 16647  odcodz 16739  ϕcphi 16740  Basecbs 17185  +gcplusg 17226  -gcsg 18873  .gcmg 19005   ~QG cqg 19060  mulGrpcmgp 20055  1rcur 20096  Fieldcfield 20645  RSpancrsp 21123  ℤRHomczrh 21415  chrcchr 21417  ℤ/nczn 21418  var1cv1 22066  Poly1cpl1 22067   logb clogb 26680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153  ax-mulf 11154  ax-exfinfld 42185
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-disj 5077  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-ofr 7656  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-omul 8441  df-er 8673  df-ec 8675  df-qs 8679  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-fi 9368  df-sup 9399  df-inf 9400  df-oi 9469  df-dju 9860  df-card 9898  df-acn 9901  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-ioo 13316  df-ioc 13317  df-ico 13318  df-icc 13319  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-fac 14245  df-bc 14274  df-hash 14302  df-shft 15039  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-limsup 15443  df-clim 15460  df-rlim 15461  df-sum 15659  df-prod 15876  df-fallfac 15979  df-ef 16039  df-sin 16041  df-cos 16042  df-pi 16044  df-dvds 16229  df-gcd 16471  df-prm 16648  df-odz 16741  df-phi 16742  df-pc 16814  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-pt 17413  df-prds 17416  df-pws 17418  df-xrs 17471  df-qtop 17476  df-imas 17477  df-qus 17478  df-xps 17479  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-nsg 19062  df-eqg 19063  df-ghm 19151  df-gim 19197  df-cntz 19255  df-od 19464  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-srg 20102  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-dvr 20316  df-rhm 20387  df-rim 20388  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-lmod 20774  df-lss 20844  df-lsp 20884  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-rsp 21125  df-2idl 21166  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-fbas 21267  df-fg 21268  df-cnfld 21271  df-zring 21363  df-zrh 21419  df-chr 21421  df-zn 21422  df-assa 21768  df-asp 21769  df-ascl 21770  df-psr 21824  df-mvr 21825  df-mpl 21826  df-opsr 21828  df-evls 21987  df-evl 21988  df-psr1 22070  df-vr1 22071  df-ply1 22072  df-coe1 22073  df-evls1 22208  df-evl1 22209  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-lp 23029  df-perf 23030  df-cn 23120  df-cnp 23121  df-haus 23208  df-tx 23455  df-hmeo 23648  df-fil 23739  df-fm 23831  df-flim 23832  df-flf 23833  df-xms 24214  df-ms 24215  df-tms 24216  df-cncf 24777  df-limc 25773  df-dv 25774  df-mdeg 25966  df-deg1 25967  df-mon1 26042  df-uc1p 26043  df-q1p 26044  df-r1p 26045  df-log 26471  df-cxp 26472  df-logb 26681  df-primroots 42075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator