| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5 | Structured version Visualization version GIF version | ||
| Description: The AKS Primality test, given an integer 𝑁 greater than or equal to 3, find a coprime 𝑅 such that 𝑅 is big enough. Then, if a bunch of polynomial equalities in the residue ring hold then 𝑁 is a prime power. Currently depends on the axiom ax-exfinfld 42163, since we currently do not have the existence of finite fields in the database. (Contributed by metakunt, 16-Aug-2025.) |
| Ref | Expression |
|---|---|
| aks5.1 | ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
| aks5.2 | ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) |
| aks5.3 | ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) |
| aks5.4 | ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) |
| aks5.5 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) |
| aks5.6 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks5.7 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks5.8 | ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| aks5.9 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| aks5.10 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) |
| Ref | Expression |
|---|---|
| aks5 | ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞))) | |
| 2 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℙ) | |
| 3 | 2 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℙ) |
| 4 | prmnn 16620 | . . . . . . 7 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℕ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℕ) |
| 6 | aks5.6 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 7 | 6 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑅 ∈ ℕ) |
| 8 | 2, 4 | syl 17 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℕ) |
| 9 | 8 | nnzd 12532 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℤ) |
| 10 | 7 | nnzd 12532 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑅 ∈ ℤ) |
| 11 | 9, 10 | gcdcomd 16460 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑞 gcd 𝑅) = (𝑅 gcd 𝑞)) |
| 12 | aks5.5 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) | |
| 13 | 12 | ad2antrr 726 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑁 ∈ (ℤ≥‘3)) |
| 14 | eluzelz 12779 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
| 15 | 13, 14 | syl 17 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑁 ∈ ℤ) |
| 16 | 10, 9, 15 | 3jca 1128 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 17 | 10, 15 | gcdcomd 16460 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑁) = (𝑁 gcd 𝑅)) |
| 18 | aks5.7 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 19 | 18 | ad2antrr 726 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑁 gcd 𝑅) = 1) |
| 20 | 17, 19 | eqtrd 2764 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑁) = 1) |
| 21 | simpr 484 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∥ 𝑁) | |
| 22 | 20, 21 | jca 511 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ((𝑅 gcd 𝑁) = 1 ∧ 𝑞 ∥ 𝑁)) |
| 23 | rpdvds 16606 | . . . . . . . . . . 11 ⊢ (((𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑞 ∥ 𝑁)) → (𝑅 gcd 𝑞) = 1) | |
| 24 | 16, 22, 23 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑞) = 1) |
| 25 | 11, 24 | eqtrd 2764 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑞 gcd 𝑅) = 1) |
| 26 | odzcl 16740 | . . . . . . . . 9 ⊢ ((𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ (𝑞 gcd 𝑅) = 1) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) | |
| 27 | 7, 9, 25, 26 | syl3anc 1373 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) |
| 28 | 27 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) |
| 29 | 28 | nnnn0d 12479 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ0) |
| 30 | 5, 29 | nnexpcld 14186 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞↑((odℤ‘𝑅)‘𝑞)) ∈ ℕ) |
| 31 | 1, 30 | eqeltrd 2828 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (♯‘(Base‘𝑘)) ∈ ℕ) |
| 32 | eqid 2729 | . . . 4 ⊢ (chr‘𝑘) = (chr‘𝑘) | |
| 33 | simplr 768 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑘 ∈ Field) | |
| 34 | simprr 772 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) = 𝑞) | |
| 35 | 34, 3 | eqeltrd 2828 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) ∈ ℙ) |
| 36 | 6 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∈ ℕ) |
| 37 | 12 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑁 ∈ (ℤ≥‘3)) |
| 38 | simpllr 775 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∥ 𝑁) | |
| 39 | 34, 38 | eqbrtrd 5124 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) ∥ 𝑁) |
| 40 | 18 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑁 gcd 𝑅) = 1) |
| 41 | aks5.1 | . . . 4 ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | |
| 42 | aks5.8 | . . . . 5 ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) | |
| 43 | 42 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| 44 | 5 | nnzd 12532 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℤ) |
| 45 | 25 | ad2antrr 726 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞 gcd 𝑅) = 1) |
| 46 | odzid 16741 | . . . . . 6 ⊢ ((𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ (𝑞 gcd 𝑅) = 1) → 𝑅 ∥ ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1)) | |
| 47 | 36, 44, 45, 46 | syl3anc 1373 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∥ ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1)) |
| 48 | 1 | eqcomd 2735 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞↑((odℤ‘𝑅)‘𝑞)) = (♯‘(Base‘𝑘))) |
| 49 | 48 | oveq1d 7384 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1) = ((♯‘(Base‘𝑘)) − 1)) |
| 50 | 47, 49 | breqtrd 5128 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∥ ((♯‘(Base‘𝑘)) − 1)) |
| 51 | aks5.9 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | |
| 52 | 51 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| 53 | aks5.10 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) | |
| 54 | 53 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) |
| 55 | aks5.3 | . . . 4 ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) | |
| 56 | aks5.4 | . . . 4 ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) | |
| 57 | aks5.2 | . . . 4 ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) | |
| 58 | 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 50, 52, 54, 55, 56, 57 | aks5lem8 42162 | . . 3 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| 59 | 2, 27 | exfinfldd 42164 | . . 3 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) |
| 60 | 58, 59 | r19.29a 3141 | . 2 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| 61 | uzuzle23 12819 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ (ℤ≥‘2)) | |
| 62 | 12, 61 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
| 63 | exprmfct 16650 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑞 ∈ ℙ 𝑞 ∥ 𝑁) | |
| 64 | 62, 63 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ ℙ 𝑞 ∥ 𝑁) |
| 65 | 60, 64 | r19.29a 3141 | 1 ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {csn 4585 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 [cec 8646 1c1 11045 · cmul 11049 < clt 11184 − cmin 11381 ℕcn 12162 2c2 12217 3c3 12218 ℤcz 12505 ℤ≥cuz 12769 ...cfz 13444 ⌊cfl 13728 ↑cexp 14002 ♯chash 14271 √csqrt 15175 ∥ cdvds 16198 gcd cgcd 16440 ℙcprime 16617 odℤcodz 16709 ϕcphi 16710 Basecbs 17155 +gcplusg 17196 -gcsg 18843 .gcmg 18975 ~QG cqg 19030 mulGrpcmgp 20025 1rcur 20066 Fieldcfield 20615 RSpancrsp 21093 ℤRHomczrh 21385 chrcchr 21387 ℤ/nℤczn 21388 var1cv1 22036 Poly1cpl1 22037 logb clogb 26650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 ax-exfinfld 42163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-disj 5070 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-acn 9871 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-prod 15846 df-fallfac 15949 df-ef 16009 df-sin 16011 df-cos 16012 df-pi 16014 df-dvds 16199 df-gcd 16441 df-prm 16618 df-odz 16711 df-phi 16712 df-pc 16784 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-pws 17388 df-xrs 17441 df-qtop 17446 df-imas 17447 df-qus 17448 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-nsg 19032 df-eqg 19033 df-ghm 19121 df-gim 19167 df-cntz 19225 df-od 19434 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-rim 20358 df-nzr 20398 df-subrng 20431 df-subrg 20455 df-rlreg 20579 df-domn 20580 df-idom 20581 df-drng 20616 df-field 20617 df-lmod 20744 df-lss 20814 df-lsp 20854 df-sra 21056 df-rgmod 21057 df-lidl 21094 df-rsp 21095 df-2idl 21136 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-zring 21333 df-zrh 21389 df-chr 21391 df-zn 21392 df-assa 21738 df-asp 21739 df-ascl 21740 df-psr 21794 df-mvr 21795 df-mpl 21796 df-opsr 21798 df-evls 21957 df-evl 21958 df-psr1 22040 df-vr1 22041 df-ply1 22042 df-coe1 22043 df-evls1 22178 df-evl1 22179 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-lp 22999 df-perf 23000 df-cn 23090 df-cnp 23091 df-haus 23178 df-tx 23425 df-hmeo 23618 df-fil 23709 df-fm 23801 df-flim 23802 df-flf 23803 df-xms 24184 df-ms 24185 df-tms 24186 df-cncf 24747 df-limc 25743 df-dv 25744 df-mdeg 25936 df-deg1 25937 df-mon1 26012 df-uc1p 26013 df-q1p 26014 df-r1p 26015 df-log 26441 df-cxp 26442 df-logb 26651 df-primroots 42053 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |