Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks5 Structured version   Visualization version   GIF version

Theorem aks5 42154
Description: The AKS Primality test, given an integer 𝑁 greater than or equal to 3, find a coprime 𝑅 such that 𝑅 is big enough. Then, if a bunch of polynomial equalities in the residue ring hold then 𝑁 is a prime power. Currently depends on the axiom ax-exfinfld 42152, since we currently do not have the existence of finite fields in the database. (Contributed by metakunt, 16-Aug-2025.)
Hypotheses
Ref Expression
aks5.1 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
aks5.2 𝑋 = (var1‘(ℤ/nℤ‘𝑁))
aks5.3 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
aks5.4 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g𝑆)(1r𝑆))})
aks5.5 (𝜑𝑁 ∈ (ℤ‘3))
aks5.6 (𝜑𝑅 ∈ ℕ)
aks5.7 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks5.8 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
aks5.9 (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
aks5.10 (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1)
Assertion
Ref Expression
aks5 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛))
Distinct variable groups:   𝐴,𝑎   𝑁,𝑎   𝑛,𝑁,𝑝   𝑅,𝑎   𝑅,𝑛,𝑝   𝜑,𝑎   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐴(𝑛,𝑝)   𝑆(𝑛,𝑝,𝑎)   𝐿(𝑛,𝑝,𝑎)   𝑋(𝑛,𝑝,𝑎)

Proof of Theorem aks5
Dummy variables 𝑘 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . 5 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)))
2 simplr 768 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑞 ∈ ℙ)
32ad2antrr 725 . . . . . . 7 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℙ)
4 prmnn 16715 . . . . . . 7 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
53, 4syl 17 . . . . . 6 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℕ)
6 aks5.6 . . . . . . . . . 10 (𝜑𝑅 ∈ ℕ)
76ad2antrr 725 . . . . . . . . 9 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑅 ∈ ℕ)
82, 4syl 17 . . . . . . . . . 10 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑞 ∈ ℕ)
98nnzd 12660 . . . . . . . . 9 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑞 ∈ ℤ)
107nnzd 12660 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑅 ∈ ℤ)
119, 10gcdcomd 16554 . . . . . . . . . 10 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → (𝑞 gcd 𝑅) = (𝑅 gcd 𝑞))
12 aks5.5 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ‘3))
1312ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑁 ∈ (ℤ‘3))
14 eluzelz 12907 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
1513, 14syl 17 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑁 ∈ ℤ)
1610, 9, 153jca 1128 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → (𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ))
1710, 15gcdcomd 16554 . . . . . . . . . . . . 13 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → (𝑅 gcd 𝑁) = (𝑁 gcd 𝑅))
18 aks5.7 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 gcd 𝑅) = 1)
1918ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → (𝑁 gcd 𝑅) = 1)
2017, 19eqtrd 2780 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → (𝑅 gcd 𝑁) = 1)
21 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → 𝑞𝑁)
2220, 21jca 511 . . . . . . . . . . 11 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → ((𝑅 gcd 𝑁) = 1 ∧ 𝑞𝑁))
23 rpdvds 16701 . . . . . . . . . . 11 (((𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑞𝑁)) → (𝑅 gcd 𝑞) = 1)
2416, 22, 23syl2anc 583 . . . . . . . . . 10 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → (𝑅 gcd 𝑞) = 1)
2511, 24eqtrd 2780 . . . . . . . . 9 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → (𝑞 gcd 𝑅) = 1)
26 odzcl 16834 . . . . . . . . 9 ((𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ (𝑞 gcd 𝑅) = 1) → ((od𝑅)‘𝑞) ∈ ℕ)
277, 9, 25, 26syl3anc 1371 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → ((od𝑅)‘𝑞) ∈ ℕ)
2827ad2antrr 725 . . . . . . 7 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((od𝑅)‘𝑞) ∈ ℕ)
2928nnnn0d 12607 . . . . . 6 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((od𝑅)‘𝑞) ∈ ℕ0)
305, 29nnexpcld 14288 . . . . 5 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞↑((od𝑅)‘𝑞)) ∈ ℕ)
311, 30eqeltrd 2844 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (♯‘(Base‘𝑘)) ∈ ℕ)
32 eqid 2740 . . . 4 (chr‘𝑘) = (chr‘𝑘)
33 simplr 768 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑘 ∈ Field)
34 simprr 772 . . . . 5 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) = 𝑞)
3534, 3eqeltrd 2844 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) ∈ ℙ)
366ad4antr 731 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∈ ℕ)
3712ad4antr 731 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑁 ∈ (ℤ‘3))
38 simpllr 775 . . . . 5 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞𝑁)
3934, 38eqbrtrd 5188 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) ∥ 𝑁)
4018ad4antr 731 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑁 gcd 𝑅) = 1)
41 aks5.1 . . . 4 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))
42 aks5.8 . . . . 5 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
4342ad4antr 731 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
445nnzd 12660 . . . . . 6 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℤ)
4525ad2antrr 725 . . . . . 6 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞 gcd 𝑅) = 1)
46 odzid 16835 . . . . . 6 ((𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ (𝑞 gcd 𝑅) = 1) → 𝑅 ∥ ((𝑞↑((od𝑅)‘𝑞)) − 1))
4736, 44, 45, 46syl3anc 1371 . . . . 5 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∥ ((𝑞↑((od𝑅)‘𝑞)) − 1))
481eqcomd 2746 . . . . . 6 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞↑((od𝑅)‘𝑞)) = (♯‘(Base‘𝑘)))
4948oveq1d 7458 . . . . 5 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((𝑞↑((od𝑅)‘𝑞)) − 1) = ((♯‘(Base‘𝑘)) − 1))
5047, 49breqtrd 5192 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∥ ((♯‘(Base‘𝑘)) − 1))
51 aks5.9 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
5251ad4antr 731 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))
53 aks5.10 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1)
5453ad4antr 731 . . . 4 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1)
55 aks5.3 . . . 4 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
56 aks5.4 . . . 4 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g𝑆)(1r𝑆))})
57 aks5.2 . . . 4 𝑋 = (var1‘(ℤ/nℤ‘𝑁))
5831, 32, 33, 35, 36, 37, 39, 40, 41, 43, 50, 52, 54, 55, 56, 57aks5lem8 42151 . . 3 (((((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛))
592, 27exfinfldd 42153 . . 3 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑞↑((od𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞))
6058, 59r19.29a 3168 . 2 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛))
61 uzuzle23 12948 . . . 4 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
6212, 61syl 17 . . 3 (𝜑𝑁 ∈ (ℤ‘2))
63 exprmfct 16745 . . 3 (𝑁 ∈ (ℤ‘2) → ∃𝑞 ∈ ℙ 𝑞𝑁)
6462, 63syl 17 . 2 (𝜑 → ∃𝑞 ∈ ℙ 𝑞𝑁)
6560, 64r19.29a 3168 1 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {csn 4648   class class class wbr 5166  cfv 6568  (class class class)co 7443  [cec 8755  1c1 11179   · cmul 11183   < clt 11318  cmin 11514  cn 12287  2c2 12342  3c3 12343  cz 12633  cuz 12897  ...cfz 13561  cfl 13835  cexp 14106  chash 14373  csqrt 15276  cdvds 16296   gcd cgcd 16534  cprime 16712  odcodz 16804  ϕcphi 16805  Basecbs 17252  +gcplusg 17305  -gcsg 18969  .gcmg 19101   ~QG cqg 19156  mulGrpcmgp 20155  1rcur 20202  Fieldcfield 20746  RSpancrsp 21234  ℤRHomczrh 21527  chrcchr 21529  ℤ/nczn 21530  var1cv1 22190  Poly1cpl1 22191   logb clogb 26817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764  ax-inf2 9704  ax-cnex 11234  ax-resscn 11235  ax-1cn 11236  ax-icn 11237  ax-addcl 11238  ax-addrcl 11239  ax-mulcl 11240  ax-mulrcl 11241  ax-mulcom 11242  ax-addass 11243  ax-mulass 11244  ax-distr 11245  ax-i2m1 11246  ax-1ne0 11247  ax-1rid 11248  ax-rnegex 11249  ax-rrecex 11250  ax-cnre 11251  ax-pre-lttri 11252  ax-pre-lttrn 11253  ax-pre-ltadd 11254  ax-pre-mulgt0 11255  ax-pre-sup 11256  ax-addf 11257  ax-mulf 11258  ax-exfinfld 42152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5650  df-se 5651  df-we 5652  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-pred 6327  df-ord 6393  df-on 6394  df-lim 6395  df-suc 6396  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-isom 6577  df-riota 7399  df-ov 7446  df-oprab 7447  df-mpo 7448  df-of 7708  df-ofr 7709  df-om 7898  df-1st 8024  df-2nd 8025  df-supp 8196  df-tpos 8261  df-frecs 8316  df-wrecs 8347  df-recs 8421  df-rdg 8460  df-1o 8516  df-2o 8517  df-oadd 8520  df-omul 8521  df-er 8757  df-ec 8759  df-qs 8763  df-map 8880  df-pm 8881  df-ixp 8950  df-en 8998  df-dom 8999  df-sdom 9000  df-fin 9001  df-fsupp 9426  df-fi 9474  df-sup 9505  df-inf 9506  df-oi 9573  df-dju 9964  df-card 10002  df-acn 10005  df-pnf 11320  df-mnf 11321  df-xr 11322  df-ltxr 11323  df-le 11324  df-sub 11516  df-neg 11517  df-div 11942  df-nn 12288  df-2 12350  df-3 12351  df-4 12352  df-5 12353  df-6 12354  df-7 12355  df-8 12356  df-9 12357  df-n0 12548  df-xnn0 12620  df-z 12634  df-dec 12753  df-uz 12898  df-q 13008  df-rp 13052  df-xneg 13169  df-xadd 13170  df-xmul 13171  df-ioo 13405  df-ioc 13406  df-ico 13407  df-icc 13408  df-fz 13562  df-fzo 13706  df-fl 13837  df-mod 13915  df-seq 14047  df-exp 14107  df-fac 14317  df-bc 14346  df-hash 14374  df-shft 15110  df-cj 15142  df-re 15143  df-im 15144  df-sqrt 15278  df-abs 15279  df-limsup 15511  df-clim 15528  df-rlim 15529  df-sum 15729  df-prod 15946  df-fallfac 16049  df-ef 16109  df-sin 16111  df-cos 16112  df-pi 16114  df-dvds 16297  df-gcd 16535  df-prm 16713  df-odz 16806  df-phi 16807  df-pc 16878  df-struct 17188  df-sets 17205  df-slot 17223  df-ndx 17235  df-base 17253  df-ress 17282  df-plusg 17318  df-mulr 17319  df-starv 17320  df-sca 17321  df-vsca 17322  df-ip 17323  df-tset 17324  df-ple 17325  df-ds 17327  df-unif 17328  df-hom 17329  df-cco 17330  df-rest 17476  df-topn 17477  df-0g 17495  df-gsum 17496  df-topgen 17497  df-pt 17498  df-prds 17501  df-pws 17503  df-xrs 17556  df-qtop 17561  df-imas 17562  df-qus 17563  df-xps 17564  df-mre 17638  df-mrc 17639  df-acs 17641  df-mgm 18672  df-sgrp 18751  df-mnd 18767  df-mhm 18812  df-submnd 18813  df-grp 18970  df-minusg 18971  df-sbg 18972  df-mulg 19102  df-subg 19157  df-nsg 19158  df-eqg 19159  df-ghm 19247  df-gim 19293  df-cntz 19351  df-od 19564  df-cmn 19818  df-abl 19819  df-mgp 20156  df-rng 20174  df-ur 20203  df-srg 20208  df-ring 20256  df-cring 20257  df-oppr 20354  df-dvdsr 20377  df-unit 20378  df-invr 20408  df-dvr 20421  df-rhm 20492  df-rim 20493  df-nzr 20533  df-subrng 20566  df-subrg 20591  df-rlreg 20710  df-domn 20711  df-idom 20712  df-drng 20747  df-field 20748  df-lmod 20876  df-lss 20947  df-lsp 20987  df-sra 21189  df-rgmod 21190  df-lidl 21235  df-rsp 21236  df-2idl 21277  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-zring 21475  df-zrh 21531  df-chr 21533  df-zn 21534  df-assa 21890  df-asp 21891  df-ascl 21892  df-psr 21945  df-mvr 21946  df-mpl 21947  df-opsr 21949  df-evls 22114  df-evl 22115  df-psr1 22194  df-vr1 22195  df-ply1 22196  df-coe1 22197  df-evls1 22332  df-evl1 22333  df-top 22913  df-topon 22930  df-topsp 22952  df-bases 22966  df-cld 23040  df-ntr 23041  df-cls 23042  df-nei 23119  df-lp 23157  df-perf 23158  df-cn 23248  df-cnp 23249  df-haus 23336  df-tx 23583  df-hmeo 23776  df-fil 23867  df-fm 23959  df-flim 23960  df-flf 23961  df-xms 24343  df-ms 24344  df-tms 24345  df-cncf 24915  df-limc 25913  df-dv 25914  df-mdeg 26106  df-deg1 26107  df-mon1 26182  df-uc1p 26183  df-q1p 26184  df-r1p 26185  df-log 26608  df-cxp 26609  df-logb 26818  df-primroots 42042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator