| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5 | Structured version Visualization version GIF version | ||
| Description: The AKS Primality test, given an integer 𝑁 greater than or equal to 3, find a coprime 𝑅 such that 𝑅 is big enough. Then, if a bunch of polynomial equalities in the residue ring hold then 𝑁 is a prime power. Currently depends on the axiom ax-exfinfld 42185, since we currently do not have the existence of finite fields in the database. (Contributed by metakunt, 16-Aug-2025.) |
| Ref | Expression |
|---|---|
| aks5.1 | ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
| aks5.2 | ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) |
| aks5.3 | ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) |
| aks5.4 | ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) |
| aks5.5 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) |
| aks5.6 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks5.7 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks5.8 | ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| aks5.9 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| aks5.10 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) |
| Ref | Expression |
|---|---|
| aks5 | ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞))) | |
| 2 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℙ) | |
| 3 | 2 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℙ) |
| 4 | prmnn 16650 | . . . . . . 7 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℕ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℕ) |
| 6 | aks5.6 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 7 | 6 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑅 ∈ ℕ) |
| 8 | 2, 4 | syl 17 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℕ) |
| 9 | 8 | nnzd 12562 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℤ) |
| 10 | 7 | nnzd 12562 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑅 ∈ ℤ) |
| 11 | 9, 10 | gcdcomd 16490 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑞 gcd 𝑅) = (𝑅 gcd 𝑞)) |
| 12 | aks5.5 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) | |
| 13 | 12 | ad2antrr 726 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑁 ∈ (ℤ≥‘3)) |
| 14 | eluzelz 12809 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
| 15 | 13, 14 | syl 17 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑁 ∈ ℤ) |
| 16 | 10, 9, 15 | 3jca 1128 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 17 | 10, 15 | gcdcomd 16490 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑁) = (𝑁 gcd 𝑅)) |
| 18 | aks5.7 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 19 | 18 | ad2antrr 726 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑁 gcd 𝑅) = 1) |
| 20 | 17, 19 | eqtrd 2765 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑁) = 1) |
| 21 | simpr 484 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∥ 𝑁) | |
| 22 | 20, 21 | jca 511 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ((𝑅 gcd 𝑁) = 1 ∧ 𝑞 ∥ 𝑁)) |
| 23 | rpdvds 16636 | . . . . . . . . . . 11 ⊢ (((𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑞 ∥ 𝑁)) → (𝑅 gcd 𝑞) = 1) | |
| 24 | 16, 22, 23 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑞) = 1) |
| 25 | 11, 24 | eqtrd 2765 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑞 gcd 𝑅) = 1) |
| 26 | odzcl 16770 | . . . . . . . . 9 ⊢ ((𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ (𝑞 gcd 𝑅) = 1) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) | |
| 27 | 7, 9, 25, 26 | syl3anc 1373 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) |
| 28 | 27 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) |
| 29 | 28 | nnnn0d 12509 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ0) |
| 30 | 5, 29 | nnexpcld 14216 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞↑((odℤ‘𝑅)‘𝑞)) ∈ ℕ) |
| 31 | 1, 30 | eqeltrd 2829 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (♯‘(Base‘𝑘)) ∈ ℕ) |
| 32 | eqid 2730 | . . . 4 ⊢ (chr‘𝑘) = (chr‘𝑘) | |
| 33 | simplr 768 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑘 ∈ Field) | |
| 34 | simprr 772 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) = 𝑞) | |
| 35 | 34, 3 | eqeltrd 2829 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) ∈ ℙ) |
| 36 | 6 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∈ ℕ) |
| 37 | 12 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑁 ∈ (ℤ≥‘3)) |
| 38 | simpllr 775 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∥ 𝑁) | |
| 39 | 34, 38 | eqbrtrd 5131 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) ∥ 𝑁) |
| 40 | 18 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑁 gcd 𝑅) = 1) |
| 41 | aks5.1 | . . . 4 ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | |
| 42 | aks5.8 | . . . . 5 ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) | |
| 43 | 42 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| 44 | 5 | nnzd 12562 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℤ) |
| 45 | 25 | ad2antrr 726 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞 gcd 𝑅) = 1) |
| 46 | odzid 16771 | . . . . . 6 ⊢ ((𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ (𝑞 gcd 𝑅) = 1) → 𝑅 ∥ ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1)) | |
| 47 | 36, 44, 45, 46 | syl3anc 1373 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∥ ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1)) |
| 48 | 1 | eqcomd 2736 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞↑((odℤ‘𝑅)‘𝑞)) = (♯‘(Base‘𝑘))) |
| 49 | 48 | oveq1d 7404 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1) = ((♯‘(Base‘𝑘)) − 1)) |
| 50 | 47, 49 | breqtrd 5135 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∥ ((♯‘(Base‘𝑘)) − 1)) |
| 51 | aks5.9 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | |
| 52 | 51 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| 53 | aks5.10 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) | |
| 54 | 53 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) |
| 55 | aks5.3 | . . . 4 ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) | |
| 56 | aks5.4 | . . . 4 ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) | |
| 57 | aks5.2 | . . . 4 ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) | |
| 58 | 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 50, 52, 54, 55, 56, 57 | aks5lem8 42184 | . . 3 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| 59 | 2, 27 | exfinfldd 42186 | . . 3 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) |
| 60 | 58, 59 | r19.29a 3142 | . 2 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| 61 | uzuzle23 12849 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ (ℤ≥‘2)) | |
| 62 | 12, 61 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
| 63 | exprmfct 16680 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑞 ∈ ℙ 𝑞 ∥ 𝑁) | |
| 64 | 62, 63 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ ℙ 𝑞 ∥ 𝑁) |
| 65 | 60, 64 | r19.29a 3142 | 1 ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 {csn 4591 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 [cec 8671 1c1 11075 · cmul 11079 < clt 11214 − cmin 11411 ℕcn 12187 2c2 12242 3c3 12243 ℤcz 12535 ℤ≥cuz 12799 ...cfz 13474 ⌊cfl 13758 ↑cexp 14032 ♯chash 14301 √csqrt 15205 ∥ cdvds 16228 gcd cgcd 16470 ℙcprime 16647 odℤcodz 16739 ϕcphi 16740 Basecbs 17185 +gcplusg 17226 -gcsg 18873 .gcmg 19005 ~QG cqg 19060 mulGrpcmgp 20055 1rcur 20096 Fieldcfield 20645 RSpancrsp 21123 ℤRHomczrh 21415 chrcchr 21417 ℤ/nℤczn 21418 var1cv1 22066 Poly1cpl1 22067 logb clogb 26680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 ax-mulf 11154 ax-exfinfld 42185 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-disj 5077 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-ofr 7656 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-omul 8441 df-er 8673 df-ec 8675 df-qs 8679 df-map 8803 df-pm 8804 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-fi 9368 df-sup 9399 df-inf 9400 df-oi 9469 df-dju 9860 df-card 9898 df-acn 9901 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-xnn0 12522 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-ioo 13316 df-ioc 13317 df-ico 13318 df-icc 13319 df-fz 13475 df-fzo 13622 df-fl 13760 df-mod 13838 df-seq 13973 df-exp 14033 df-fac 14245 df-bc 14274 df-hash 14302 df-shft 15039 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-limsup 15443 df-clim 15460 df-rlim 15461 df-sum 15659 df-prod 15876 df-fallfac 15979 df-ef 16039 df-sin 16041 df-cos 16042 df-pi 16044 df-dvds 16229 df-gcd 16471 df-prm 16648 df-odz 16741 df-phi 16742 df-pc 16814 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-pws 17418 df-xrs 17471 df-qtop 17476 df-imas 17477 df-qus 17478 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-nsg 19062 df-eqg 19063 df-ghm 19151 df-gim 19197 df-cntz 19255 df-od 19464 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-srg 20102 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-rhm 20387 df-rim 20388 df-nzr 20428 df-subrng 20461 df-subrg 20485 df-rlreg 20609 df-domn 20610 df-idom 20611 df-drng 20646 df-field 20647 df-lmod 20774 df-lss 20844 df-lsp 20884 df-sra 21086 df-rgmod 21087 df-lidl 21124 df-rsp 21125 df-2idl 21166 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-cnfld 21271 df-zring 21363 df-zrh 21419 df-chr 21421 df-zn 21422 df-assa 21768 df-asp 21769 df-ascl 21770 df-psr 21824 df-mvr 21825 df-mpl 21826 df-opsr 21828 df-evls 21987 df-evl 21988 df-psr1 22070 df-vr1 22071 df-ply1 22072 df-coe1 22073 df-evls1 22208 df-evl1 22209 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lp 23029 df-perf 23030 df-cn 23120 df-cnp 23121 df-haus 23208 df-tx 23455 df-hmeo 23648 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-xms 24214 df-ms 24215 df-tms 24216 df-cncf 24777 df-limc 25773 df-dv 25774 df-mdeg 25966 df-deg1 25967 df-mon1 26042 df-uc1p 26043 df-q1p 26044 df-r1p 26045 df-log 26471 df-cxp 26472 df-logb 26681 df-primroots 42075 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |