| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5 | Structured version Visualization version GIF version | ||
| Description: The AKS Primality test, given an integer 𝑁 greater than or equal to 3, find a coprime 𝑅 such that 𝑅 is big enough. Then, if a bunch of polynomial equalities in the residue ring hold then 𝑁 is a prime power. Currently depends on the axiom ax-exfinfld 42178, since we currently do not have the existence of finite fields in the database. (Contributed by metakunt, 16-Aug-2025.) |
| Ref | Expression |
|---|---|
| aks5.1 | ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
| aks5.2 | ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) |
| aks5.3 | ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) |
| aks5.4 | ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) |
| aks5.5 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) |
| aks5.6 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks5.7 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks5.8 | ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| aks5.9 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| aks5.10 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) |
| Ref | Expression |
|---|---|
| aks5 | ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞))) | |
| 2 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℙ) | |
| 3 | 2 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℙ) |
| 4 | prmnn 16694 | . . . . . . 7 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℕ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℕ) |
| 6 | aks5.6 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 7 | 6 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑅 ∈ ℕ) |
| 8 | 2, 4 | syl 17 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℕ) |
| 9 | 8 | nnzd 12623 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℤ) |
| 10 | 7 | nnzd 12623 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑅 ∈ ℤ) |
| 11 | 9, 10 | gcdcomd 16534 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑞 gcd 𝑅) = (𝑅 gcd 𝑞)) |
| 12 | aks5.5 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) | |
| 13 | 12 | ad2antrr 726 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑁 ∈ (ℤ≥‘3)) |
| 14 | eluzelz 12870 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
| 15 | 13, 14 | syl 17 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑁 ∈ ℤ) |
| 16 | 10, 9, 15 | 3jca 1128 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 17 | 10, 15 | gcdcomd 16534 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑁) = (𝑁 gcd 𝑅)) |
| 18 | aks5.7 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 19 | 18 | ad2antrr 726 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑁 gcd 𝑅) = 1) |
| 20 | 17, 19 | eqtrd 2769 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑁) = 1) |
| 21 | simpr 484 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∥ 𝑁) | |
| 22 | 20, 21 | jca 511 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ((𝑅 gcd 𝑁) = 1 ∧ 𝑞 ∥ 𝑁)) |
| 23 | rpdvds 16680 | . . . . . . . . . . 11 ⊢ (((𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑞 ∥ 𝑁)) → (𝑅 gcd 𝑞) = 1) | |
| 24 | 16, 22, 23 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑞) = 1) |
| 25 | 11, 24 | eqtrd 2769 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑞 gcd 𝑅) = 1) |
| 26 | odzcl 16814 | . . . . . . . . 9 ⊢ ((𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ (𝑞 gcd 𝑅) = 1) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) | |
| 27 | 7, 9, 25, 26 | syl3anc 1372 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) |
| 28 | 27 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) |
| 29 | 28 | nnnn0d 12570 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ0) |
| 30 | 5, 29 | nnexpcld 14267 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞↑((odℤ‘𝑅)‘𝑞)) ∈ ℕ) |
| 31 | 1, 30 | eqeltrd 2833 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (♯‘(Base‘𝑘)) ∈ ℕ) |
| 32 | eqid 2734 | . . . 4 ⊢ (chr‘𝑘) = (chr‘𝑘) | |
| 33 | simplr 768 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑘 ∈ Field) | |
| 34 | simprr 772 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) = 𝑞) | |
| 35 | 34, 3 | eqeltrd 2833 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) ∈ ℙ) |
| 36 | 6 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∈ ℕ) |
| 37 | 12 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑁 ∈ (ℤ≥‘3)) |
| 38 | simpllr 775 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∥ 𝑁) | |
| 39 | 34, 38 | eqbrtrd 5145 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) ∥ 𝑁) |
| 40 | 18 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑁 gcd 𝑅) = 1) |
| 41 | aks5.1 | . . . 4 ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | |
| 42 | aks5.8 | . . . . 5 ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) | |
| 43 | 42 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| 44 | 5 | nnzd 12623 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℤ) |
| 45 | 25 | ad2antrr 726 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞 gcd 𝑅) = 1) |
| 46 | odzid 16815 | . . . . . 6 ⊢ ((𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ (𝑞 gcd 𝑅) = 1) → 𝑅 ∥ ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1)) | |
| 47 | 36, 44, 45, 46 | syl3anc 1372 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∥ ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1)) |
| 48 | 1 | eqcomd 2740 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞↑((odℤ‘𝑅)‘𝑞)) = (♯‘(Base‘𝑘))) |
| 49 | 48 | oveq1d 7428 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1) = ((♯‘(Base‘𝑘)) − 1)) |
| 50 | 47, 49 | breqtrd 5149 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∥ ((♯‘(Base‘𝑘)) − 1)) |
| 51 | aks5.9 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | |
| 52 | 51 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| 53 | aks5.10 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) | |
| 54 | 53 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) |
| 55 | aks5.3 | . . . 4 ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) | |
| 56 | aks5.4 | . . . 4 ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) | |
| 57 | aks5.2 | . . . 4 ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) | |
| 58 | 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 50, 52, 54, 55, 56, 57 | aks5lem8 42177 | . . 3 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| 59 | 2, 27 | exfinfldd 42179 | . . 3 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) |
| 60 | 58, 59 | r19.29a 3149 | . 2 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| 61 | uzuzle23 12913 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ (ℤ≥‘2)) | |
| 62 | 12, 61 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
| 63 | exprmfct 16724 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑞 ∈ ℙ 𝑞 ∥ 𝑁) | |
| 64 | 62, 63 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ ℙ 𝑞 ∥ 𝑁) |
| 65 | 60, 64 | r19.29a 3149 | 1 ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 {csn 4606 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 [cec 8725 1c1 11138 · cmul 11142 < clt 11277 − cmin 11474 ℕcn 12248 2c2 12303 3c3 12304 ℤcz 12596 ℤ≥cuz 12860 ...cfz 13529 ⌊cfl 13812 ↑cexp 14084 ♯chash 14352 √csqrt 15255 ∥ cdvds 16273 gcd cgcd 16514 ℙcprime 16691 odℤcodz 16783 ϕcphi 16784 Basecbs 17230 +gcplusg 17274 -gcsg 18923 .gcmg 19055 ~QG cqg 19110 mulGrpcmgp 20106 1rcur 20147 Fieldcfield 20699 RSpancrsp 21180 ℤRHomczrh 21473 chrcchr 21475 ℤ/nℤczn 21476 var1cv1 22126 Poly1cpl1 22127 logb clogb 26744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 ax-mulf 11217 ax-exfinfld 42178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-disj 5091 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-omul 8493 df-er 8727 df-ec 8729 df-qs 8733 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-fi 9433 df-sup 9464 df-inf 9465 df-oi 9532 df-dju 9923 df-card 9961 df-acn 9964 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-xnn0 12583 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ioo 13373 df-ioc 13374 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14296 df-bc 14325 df-hash 14353 df-shft 15089 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-limsup 15490 df-clim 15507 df-rlim 15508 df-sum 15706 df-prod 15923 df-fallfac 16026 df-ef 16086 df-sin 16088 df-cos 16089 df-pi 16091 df-dvds 16274 df-gcd 16515 df-prm 16692 df-odz 16785 df-phi 16786 df-pc 16858 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-starv 17289 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-unif 17297 df-hom 17298 df-cco 17299 df-rest 17439 df-topn 17440 df-0g 17458 df-gsum 17459 df-topgen 17460 df-pt 17461 df-prds 17464 df-pws 17466 df-xrs 17519 df-qtop 17524 df-imas 17525 df-qus 17526 df-xps 17527 df-mre 17601 df-mrc 17602 df-acs 17604 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-nsg 19112 df-eqg 19113 df-ghm 19201 df-gim 19247 df-cntz 19305 df-od 19515 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-srg 20153 df-ring 20201 df-cring 20202 df-oppr 20303 df-dvdsr 20326 df-unit 20327 df-invr 20357 df-dvr 20370 df-rhm 20441 df-rim 20442 df-nzr 20482 df-subrng 20515 df-subrg 20539 df-rlreg 20663 df-domn 20664 df-idom 20665 df-drng 20700 df-field 20701 df-lmod 20829 df-lss 20899 df-lsp 20939 df-sra 21141 df-rgmod 21142 df-lidl 21181 df-rsp 21182 df-2idl 21223 df-psmet 21319 df-xmet 21320 df-met 21321 df-bl 21322 df-mopn 21323 df-fbas 21324 df-fg 21325 df-cnfld 21328 df-zring 21421 df-zrh 21477 df-chr 21479 df-zn 21480 df-assa 21828 df-asp 21829 df-ascl 21830 df-psr 21884 df-mvr 21885 df-mpl 21886 df-opsr 21888 df-evls 22047 df-evl 22048 df-psr1 22130 df-vr1 22131 df-ply1 22132 df-coe1 22133 df-evls1 22268 df-evl1 22269 df-top 22849 df-topon 22866 df-topsp 22888 df-bases 22901 df-cld 22974 df-ntr 22975 df-cls 22976 df-nei 23053 df-lp 23091 df-perf 23092 df-cn 23182 df-cnp 23183 df-haus 23270 df-tx 23517 df-hmeo 23710 df-fil 23801 df-fm 23893 df-flim 23894 df-flf 23895 df-xms 24276 df-ms 24277 df-tms 24278 df-cncf 24841 df-limc 25838 df-dv 25839 df-mdeg 26031 df-deg1 26032 df-mon1 26107 df-uc1p 26108 df-q1p 26109 df-r1p 26110 df-log 26535 df-cxp 26536 df-logb 26745 df-primroots 42068 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |