| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5 | Structured version Visualization version GIF version | ||
| Description: The AKS Primality test, given an integer 𝑁 greater than or equal to 3, find a coprime 𝑅 such that 𝑅 is big enough. Then, if a bunch of polynomial equalities in the residue ring hold then 𝑁 is a prime power. Currently depends on the axiom ax-exfinfld 42243, since we currently do not have the existence of finite fields in the database. (Contributed by metakunt, 16-Aug-2025.) |
| Ref | Expression |
|---|---|
| aks5.1 | ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) |
| aks5.2 | ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) |
| aks5.3 | ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) |
| aks5.4 | ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) |
| aks5.5 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) |
| aks5.6 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks5.7 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks5.8 | ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| aks5.9 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| aks5.10 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) |
| Ref | Expression |
|---|---|
| aks5 | ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞))) | |
| 2 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℙ) | |
| 3 | 2 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℙ) |
| 4 | prmnn 16585 | . . . . . . 7 ⊢ (𝑞 ∈ ℙ → 𝑞 ∈ ℕ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℕ) |
| 6 | aks5.6 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 7 | 6 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑅 ∈ ℕ) |
| 8 | 2, 4 | syl 17 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℕ) |
| 9 | 8 | nnzd 12495 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∈ ℤ) |
| 10 | 7 | nnzd 12495 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑅 ∈ ℤ) |
| 11 | 9, 10 | gcdcomd 16425 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑞 gcd 𝑅) = (𝑅 gcd 𝑞)) |
| 12 | aks5.5 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) | |
| 13 | 12 | ad2antrr 726 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑁 ∈ (ℤ≥‘3)) |
| 14 | eluzelz 12742 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
| 15 | 13, 14 | syl 17 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑁 ∈ ℤ) |
| 16 | 10, 9, 15 | 3jca 1128 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 17 | 10, 15 | gcdcomd 16425 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑁) = (𝑁 gcd 𝑅)) |
| 18 | aks5.7 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 19 | 18 | ad2antrr 726 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑁 gcd 𝑅) = 1) |
| 20 | 17, 19 | eqtrd 2766 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑁) = 1) |
| 21 | simpr 484 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → 𝑞 ∥ 𝑁) | |
| 22 | 20, 21 | jca 511 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ((𝑅 gcd 𝑁) = 1 ∧ 𝑞 ∥ 𝑁)) |
| 23 | rpdvds 16571 | . . . . . . . . . . 11 ⊢ (((𝑅 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑅 gcd 𝑁) = 1 ∧ 𝑞 ∥ 𝑁)) → (𝑅 gcd 𝑞) = 1) | |
| 24 | 16, 22, 23 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑅 gcd 𝑞) = 1) |
| 25 | 11, 24 | eqtrd 2766 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → (𝑞 gcd 𝑅) = 1) |
| 26 | odzcl 16705 | . . . . . . . . 9 ⊢ ((𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ (𝑞 gcd 𝑅) = 1) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) | |
| 27 | 7, 9, 25, 26 | syl3anc 1373 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) |
| 28 | 27 | ad2antrr 726 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ) |
| 29 | 28 | nnnn0d 12442 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((odℤ‘𝑅)‘𝑞) ∈ ℕ0) |
| 30 | 5, 29 | nnexpcld 14152 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞↑((odℤ‘𝑅)‘𝑞)) ∈ ℕ) |
| 31 | 1, 30 | eqeltrd 2831 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (♯‘(Base‘𝑘)) ∈ ℕ) |
| 32 | eqid 2731 | . . . 4 ⊢ (chr‘𝑘) = (chr‘𝑘) | |
| 33 | simplr 768 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑘 ∈ Field) | |
| 34 | simprr 772 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) = 𝑞) | |
| 35 | 34, 3 | eqeltrd 2831 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) ∈ ℙ) |
| 36 | 6 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∈ ℕ) |
| 37 | 12 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑁 ∈ (ℤ≥‘3)) |
| 38 | simpllr 775 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∥ 𝑁) | |
| 39 | 34, 38 | eqbrtrd 5111 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (chr‘𝑘) ∥ 𝑁) |
| 40 | 18 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑁 gcd 𝑅) = 1) |
| 41 | aks5.1 | . . . 4 ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) | |
| 42 | aks5.8 | . . . . 5 ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) | |
| 43 | 42 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) |
| 44 | 5 | nnzd 12495 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑞 ∈ ℤ) |
| 45 | 25 | ad2antrr 726 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞 gcd 𝑅) = 1) |
| 46 | odzid 16706 | . . . . . 6 ⊢ ((𝑅 ∈ ℕ ∧ 𝑞 ∈ ℤ ∧ (𝑞 gcd 𝑅) = 1) → 𝑅 ∥ ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1)) | |
| 47 | 36, 44, 45, 46 | syl3anc 1373 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∥ ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1)) |
| 48 | 1 | eqcomd 2737 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → (𝑞↑((odℤ‘𝑅)‘𝑞)) = (♯‘(Base‘𝑘))) |
| 49 | 48 | oveq1d 7361 | . . . . 5 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ((𝑞↑((odℤ‘𝑅)‘𝑞)) − 1) = ((♯‘(Base‘𝑘)) − 1)) |
| 50 | 47, 49 | breqtrd 5115 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → 𝑅 ∥ ((♯‘(Base‘𝑘)) − 1)) |
| 51 | aks5.9 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) | |
| 52 | 51 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) |
| 53 | aks5.10 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) | |
| 54 | 53 | ad4antr 732 | . . . 4 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) |
| 55 | aks5.3 | . . . 4 ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) | |
| 56 | aks5.4 | . . . 4 ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) | |
| 57 | aks5.2 | . . . 4 ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) | |
| 58 | 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 50, 52, 54, 55, 56, 57 | aks5lem8 42242 | . . 3 ⊢ (((((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) ∧ 𝑘 ∈ Field) ∧ ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| 59 | 2, 27 | exfinfldd 42244 | . . 3 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑞↑((odℤ‘𝑅)‘𝑞)) ∧ (chr‘𝑘) = 𝑞)) |
| 60 | 58, 59 | r19.29a 3140 | . 2 ⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| 61 | uzuzle23 12782 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ (ℤ≥‘2)) | |
| 62 | 12, 61 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
| 63 | exprmfct 16615 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑞 ∈ ℙ 𝑞 ∥ 𝑁) | |
| 64 | 62, 63 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ ℙ 𝑞 ∥ 𝑁) |
| 65 | 60, 64 | r19.29a 3140 | 1 ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {csn 4573 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 [cec 8620 1c1 11007 · cmul 11011 < clt 11146 − cmin 11344 ℕcn 12125 2c2 12180 3c3 12181 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 ⌊cfl 13694 ↑cexp 13968 ♯chash 14237 √csqrt 15140 ∥ cdvds 16163 gcd cgcd 16405 ℙcprime 16582 odℤcodz 16674 ϕcphi 16675 Basecbs 17120 +gcplusg 17161 -gcsg 18848 .gcmg 18980 ~QG cqg 19035 mulGrpcmgp 20058 1rcur 20099 Fieldcfield 20645 RSpancrsp 21144 ℤRHomczrh 21436 chrcchr 21438 ℤ/nℤczn 21439 var1cv1 22088 Poly1cpl1 22089 logb clogb 26701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 ax-exfinfld 42243 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-prod 15811 df-fallfac 15914 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-dvds 16164 df-gcd 16406 df-prm 16583 df-odz 16676 df-phi 16677 df-pc 16749 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-pws 17353 df-xrs 17406 df-qtop 17411 df-imas 17412 df-qus 17413 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-nsg 19037 df-eqg 19038 df-ghm 19125 df-gim 19171 df-cntz 19229 df-od 19440 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-srg 20105 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-rhm 20390 df-rim 20391 df-nzr 20428 df-subrng 20461 df-subrg 20485 df-rlreg 20609 df-domn 20610 df-idom 20611 df-drng 20646 df-field 20647 df-lmod 20795 df-lss 20865 df-lsp 20905 df-sra 21107 df-rgmod 21108 df-lidl 21145 df-rsp 21146 df-2idl 21187 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-zring 21384 df-zrh 21440 df-chr 21442 df-zn 21443 df-assa 21790 df-asp 21791 df-ascl 21792 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-evls 22009 df-evl 22010 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-coe1 22095 df-evls1 22230 df-evl1 22231 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 df-mdeg 25987 df-deg1 25988 df-mon1 26063 df-uc1p 26064 df-q1p 26065 df-r1p 26066 df-log 26492 df-cxp 26493 df-logb 26702 df-primroots 42133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |