MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp42 Structured version   Visualization version   GIF version

Theorem exp42 435
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp42.1 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
exp42 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp42
StepHypRef Expression
1 exp42.1 . . 3 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
21exp31 419 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32expd 415 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  isofrlem  7333  f1ocnv2d  7660  oelim  8546  zorn2lem7  10516  addrid  11415  initoeu1  18024  termoeu1  18031  issubg4  19128  lmodvsdir  20843  lmodvsass  20844  gsummatr01lem4  22596  dvfsumrlim3  25992  wwlksext2clwwlk  30038  shscli  31298  f1o3d  32605  slmdvsdir  33213  slmdvsass  33214  lshpcmp  39006  relpfrlem  44978
  Copyright terms: Public domain W3C validator