MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp42 Structured version   Visualization version   GIF version

Theorem exp42 435
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp42.1 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
exp42 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp42
StepHypRef Expression
1 exp42.1 . . 3 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
21exp31 419 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32expd 415 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  isofrlem  7318  f1ocnv2d  7645  oelim  8501  zorn2lem7  10462  addrid  11361  initoeu1  17980  termoeu1  17987  issubg4  19084  lmodvsdir  20799  lmodvsass  20800  gsummatr01lem4  22552  dvfsumrlim3  25947  wwlksext2clwwlk  29993  shscli  31253  f1o3d  32558  slmdvsdir  33176  slmdvsass  33177  lshpcmp  38988  relpfrlem  44950
  Copyright terms: Public domain W3C validator