| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp42 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp42.1 | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| exp42 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp42.1 | . . 3 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | exp31 419 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
| 3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: isofrlem 7333 f1ocnv2d 7660 oelim 8546 zorn2lem7 10516 addrid 11415 initoeu1 18024 termoeu1 18031 issubg4 19128 lmodvsdir 20843 lmodvsass 20844 gsummatr01lem4 22596 dvfsumrlim3 25992 wwlksext2clwwlk 30038 shscli 31298 f1o3d 32605 slmdvsdir 33213 slmdvsass 33214 lshpcmp 39006 relpfrlem 44978 |
| Copyright terms: Public domain | W3C validator |