MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp42 Structured version   Visualization version   GIF version

Theorem exp42 436
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp42.1 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
exp42 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp42
StepHypRef Expression
1 exp42.1 . . 3 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
21exp31 420 . 2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
32expd 416 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  isofrlem  7211  f1ocnv2d  7522  oelim  8364  zorn2lem7  10258  addid1  11155  initoeu1  17726  termoeu1  17733  issubg4  18774  lmodvsdir  20147  lmodvsass  20148  gsummatr01lem4  21807  dvfsumrlim3  25197  wwlksext2clwwlk  28421  shscli  29679  f1o3d  30962  slmdvsdir  31469  slmdvsass  31470  lshpcmp  37002
  Copyright terms: Public domain W3C validator