| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp42 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp42.1 | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| exp42 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp42.1 | . . 3 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | exp31 419 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
| 3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: isofrlem 7318 f1ocnv2d 7645 oelim 8501 zorn2lem7 10462 addrid 11361 initoeu1 17980 termoeu1 17987 issubg4 19084 lmodvsdir 20799 lmodvsass 20800 gsummatr01lem4 22552 dvfsumrlim3 25947 wwlksext2clwwlk 29993 shscli 31253 f1o3d 32558 slmdvsdir 33176 slmdvsass 33177 lshpcmp 38988 relpfrlem 44950 |
| Copyright terms: Public domain | W3C validator |