![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp42 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp42.1 | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
exp42 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp42.1 | . . 3 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) | |
2 | 1 | exp31 421 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
3 | 2 | expd 417 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: isofrlem 7324 f1ocnv2d 7646 oelim 8521 zorn2lem7 10484 addrid 11381 initoeu1 17948 termoeu1 17955 issubg4 19010 lmodvsdir 20473 lmodvsass 20474 gsummatr01lem4 22129 dvfsumrlim3 25519 wwlksext2clwwlk 29277 shscli 30535 f1o3d 31820 slmdvsdir 32332 slmdvsass 32333 lshpcmp 37764 |
Copyright terms: Public domain | W3C validator |