| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp42 | Structured version Visualization version GIF version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| exp42.1 | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| exp42 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp42.1 | . . 3 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) | |
| 2 | 1 | exp31 419 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
| 3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: isofrlem 7281 f1ocnv2d 7606 oelim 8459 zorn2lem7 10415 addrid 11314 initoeu1 17936 termoeu1 17943 issubg4 19042 lmodvsdir 20807 lmodvsass 20808 gsummatr01lem4 22561 dvfsumrlim3 25956 wwlksext2clwwlk 30019 shscli 31279 f1o3d 32584 slmdvsdir 33168 slmdvsass 33169 lshpcmp 38966 relpfrlem 44927 |
| Copyright terms: Public domain | W3C validator |