Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp42 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp42.1 | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
exp42 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp42.1 | . . 3 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) | |
2 | 1 | exp31 419 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏))) |
3 | 2 | expd 415 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: isofrlem 7191 f1ocnv2d 7500 oelim 8326 zorn2lem7 10189 addid1 11085 initoeu1 17642 termoeu1 17649 issubg4 18689 lmodvsdir 20062 lmodvsass 20063 gsummatr01lem4 21715 dvfsumrlim3 25102 wwlksext2clwwlk 28322 shscli 29580 f1o3d 30863 slmdvsdir 31371 slmdvsass 31372 lshpcmp 36929 |
Copyright terms: Public domain | W3C validator |