Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpcmp Structured version   Visualization version   GIF version

Theorem lshpcmp 37450
Description: If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lshpcmp.h 𝐻 = (LSHyp‘𝑊)
lshpcmp.w (𝜑𝑊 ∈ LVec)
lshpcmp.t (𝜑𝑇𝐻)
lshpcmp.u (𝜑𝑈𝐻)
Assertion
Ref Expression
lshpcmp (𝜑 → (𝑇𝑈𝑇 = 𝑈))

Proof of Theorem lshpcmp
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 lshpcmp.h . . . . 5 𝐻 = (LSHyp‘𝑊)
3 lshpcmp.w . . . . . 6 (𝜑𝑊 ∈ LVec)
4 lveclmod 20567 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
6 lshpcmp.u . . . . 5 (𝜑𝑈𝐻)
71, 2, 5, 6lshpne 37444 . . . 4 (𝜑𝑈 ≠ (Base‘𝑊))
8 eqid 2736 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
98, 2, 5, 6lshplss 37443 . . . . . . 7 (𝜑𝑈 ∈ (LSubSp‘𝑊))
101, 8lssss 20397 . . . . . . 7 (𝑈 ∈ (LSubSp‘𝑊) → 𝑈 ⊆ (Base‘𝑊))
119, 10syl 17 . . . . . 6 (𝜑𝑈 ⊆ (Base‘𝑊))
12 lshpcmp.t . . . . . . . . 9 (𝜑𝑇𝐻)
13 eqid 2736 . . . . . . . . . 10 (LSpan‘𝑊) = (LSpan‘𝑊)
14 eqid 2736 . . . . . . . . . 10 (LSSum‘𝑊) = (LSSum‘𝑊)
151, 13, 8, 14, 2, 5islshpsm 37442 . . . . . . . . 9 (𝜑 → (𝑇𝐻 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ 𝑇 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))))
1612, 15mpbid 231 . . . . . . . 8 (𝜑 → (𝑇 ∈ (LSubSp‘𝑊) ∧ 𝑇 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊)))
1716simp3d 1144 . . . . . . 7 (𝜑 → ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))
18 id 22 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → (𝜑𝑣 ∈ (Base‘𝑊)))
1918adantrr 715 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) → (𝜑𝑣 ∈ (Base‘𝑊)))
203adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑊 ∈ LVec)
218, 2, 5, 12lshplss 37443 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ (LSubSp‘𝑊))
2221adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑇 ∈ (LSubSp‘𝑊))
239adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑈 ∈ (LSubSp‘𝑊))
24 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊))
251, 8, 13, 14, 20, 22, 23, 24lsmcv 20602 . . . . . . . . . . . 12 (((𝜑𝑣 ∈ (Base‘𝑊)) ∧ 𝑇𝑈𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})))
2619, 25syl3an1 1163 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})))
27263expia 1121 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))))
28 simplrr 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))
2928sseq2d 3976 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) ↔ 𝑈 ⊆ (Base‘𝑊)))
3028eqeq2d 2747 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) ↔ 𝑈 = (Base‘𝑊)))
3127, 29, 303imtr3d 292 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊)))
3231exp42 436 . . . . . . . 8 (𝜑 → (𝑣 ∈ (Base‘𝑊) → ((𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊) → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊))))))
3332rexlimdv 3150 . . . . . . 7 (𝜑 → (∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊) → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊)))))
3417, 33mpd 15 . . . . . 6 (𝜑 → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊))))
3511, 34mpid 44 . . . . 5 (𝜑 → (𝑇𝑈𝑈 = (Base‘𝑊)))
3635necon3ad 2956 . . . 4 (𝜑 → (𝑈 ≠ (Base‘𝑊) → ¬ 𝑇𝑈))
377, 36mpd 15 . . 3 (𝜑 → ¬ 𝑇𝑈)
38 df-pss 3929 . . . . 5 (𝑇𝑈 ↔ (𝑇𝑈𝑇𝑈))
3938simplbi2 501 . . . 4 (𝑇𝑈 → (𝑇𝑈𝑇𝑈))
4039necon1bd 2961 . . 3 (𝑇𝑈 → (¬ 𝑇𝑈𝑇 = 𝑈))
4137, 40syl5com 31 . 2 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
42 eqimss 4000 . 2 (𝑇 = 𝑈𝑇𝑈)
4341, 42impbid1 224 1 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  wss 3910  wpss 3911  {csn 4586  cfv 6496  (class class class)co 7357  Basecbs 17083  LSSumclsm 19416  LModclmod 20322  LSubSpclss 20392  LSpanclspn 20432  LVecclvec 20563  LSHypclsh 37437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-lshyp 37439
This theorem is referenced by:  lshpinN  37451  lfl1dim  37583  lfl1dim2N  37584  lkrpssN  37625  dochlkr  39848  dochsatshpb  39915  lcfl9a  39968  lclkrlem2e  39974  lclkrlem2g  39976  lclkrlem2s  39988  lcfrlem25  40030  lcfrlem35  40040  hdmaplkr  40376
  Copyright terms: Public domain W3C validator