Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpcmp Structured version   Visualization version   GIF version

Theorem lshpcmp 36929
Description: If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lshpcmp.h 𝐻 = (LSHyp‘𝑊)
lshpcmp.w (𝜑𝑊 ∈ LVec)
lshpcmp.t (𝜑𝑇𝐻)
lshpcmp.u (𝜑𝑈𝐻)
Assertion
Ref Expression
lshpcmp (𝜑 → (𝑇𝑈𝑇 = 𝑈))

Proof of Theorem lshpcmp
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 lshpcmp.h . . . . 5 𝐻 = (LSHyp‘𝑊)
3 lshpcmp.w . . . . . 6 (𝜑𝑊 ∈ LVec)
4 lveclmod 20283 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
6 lshpcmp.u . . . . 5 (𝜑𝑈𝐻)
71, 2, 5, 6lshpne 36923 . . . 4 (𝜑𝑈 ≠ (Base‘𝑊))
8 eqid 2738 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
98, 2, 5, 6lshplss 36922 . . . . . . 7 (𝜑𝑈 ∈ (LSubSp‘𝑊))
101, 8lssss 20113 . . . . . . 7 (𝑈 ∈ (LSubSp‘𝑊) → 𝑈 ⊆ (Base‘𝑊))
119, 10syl 17 . . . . . 6 (𝜑𝑈 ⊆ (Base‘𝑊))
12 lshpcmp.t . . . . . . . . 9 (𝜑𝑇𝐻)
13 eqid 2738 . . . . . . . . . 10 (LSpan‘𝑊) = (LSpan‘𝑊)
14 eqid 2738 . . . . . . . . . 10 (LSSum‘𝑊) = (LSSum‘𝑊)
151, 13, 8, 14, 2, 5islshpsm 36921 . . . . . . . . 9 (𝜑 → (𝑇𝐻 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ 𝑇 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))))
1612, 15mpbid 231 . . . . . . . 8 (𝜑 → (𝑇 ∈ (LSubSp‘𝑊) ∧ 𝑇 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊)))
1716simp3d 1142 . . . . . . 7 (𝜑 → ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))
18 id 22 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → (𝜑𝑣 ∈ (Base‘𝑊)))
1918adantrr 713 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) → (𝜑𝑣 ∈ (Base‘𝑊)))
203adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑊 ∈ LVec)
218, 2, 5, 12lshplss 36922 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ (LSubSp‘𝑊))
2221adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑇 ∈ (LSubSp‘𝑊))
239adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑈 ∈ (LSubSp‘𝑊))
24 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊))
251, 8, 13, 14, 20, 22, 23, 24lsmcv 20318 . . . . . . . . . . . 12 (((𝜑𝑣 ∈ (Base‘𝑊)) ∧ 𝑇𝑈𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})))
2619, 25syl3an1 1161 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})))
27263expia 1119 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))))
28 simplrr 774 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))
2928sseq2d 3949 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) ↔ 𝑈 ⊆ (Base‘𝑊)))
3028eqeq2d 2749 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) ↔ 𝑈 = (Base‘𝑊)))
3127, 29, 303imtr3d 292 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊)))
3231exp42 435 . . . . . . . 8 (𝜑 → (𝑣 ∈ (Base‘𝑊) → ((𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊) → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊))))))
3332rexlimdv 3211 . . . . . . 7 (𝜑 → (∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊) → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊)))))
3417, 33mpd 15 . . . . . 6 (𝜑 → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊))))
3511, 34mpid 44 . . . . 5 (𝜑 → (𝑇𝑈𝑈 = (Base‘𝑊)))
3635necon3ad 2955 . . . 4 (𝜑 → (𝑈 ≠ (Base‘𝑊) → ¬ 𝑇𝑈))
377, 36mpd 15 . . 3 (𝜑 → ¬ 𝑇𝑈)
38 df-pss 3902 . . . . 5 (𝑇𝑈 ↔ (𝑇𝑈𝑇𝑈))
3938simplbi2 500 . . . 4 (𝑇𝑈 → (𝑇𝑈𝑇𝑈))
4039necon1bd 2960 . . 3 (𝑇𝑈 → (¬ 𝑇𝑈𝑇 = 𝑈))
4137, 40syl5com 31 . 2 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
42 eqimss 3973 . 2 (𝑇 = 𝑈𝑇𝑈)
4341, 42impbid1 224 1 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  wss 3883  wpss 3884  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  LSSumclsm 19154  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LVecclvec 20279  LSHypclsh 36916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lshyp 36918
This theorem is referenced by:  lshpinN  36930  lfl1dim  37062  lfl1dim2N  37063  lkrpssN  37104  dochlkr  39326  dochsatshpb  39393  lcfl9a  39446  lclkrlem2e  39452  lclkrlem2g  39454  lclkrlem2s  39466  lcfrlem25  39508  lcfrlem35  39518  hdmaplkr  39854
  Copyright terms: Public domain W3C validator