Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpcmp Structured version   Visualization version   GIF version

Theorem lshpcmp 36004
Description: If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lshpcmp.h 𝐻 = (LSHyp‘𝑊)
lshpcmp.w (𝜑𝑊 ∈ LVec)
lshpcmp.t (𝜑𝑇𝐻)
lshpcmp.u (𝜑𝑈𝐻)
Assertion
Ref Expression
lshpcmp (𝜑 → (𝑇𝑈𝑇 = 𝑈))

Proof of Theorem lshpcmp
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 lshpcmp.h . . . . 5 𝐻 = (LSHyp‘𝑊)
3 lshpcmp.w . . . . . 6 (𝜑𝑊 ∈ LVec)
4 lveclmod 19807 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
6 lshpcmp.u . . . . 5 (𝜑𝑈𝐻)
71, 2, 5, 6lshpne 35998 . . . 4 (𝜑𝑈 ≠ (Base‘𝑊))
8 eqid 2818 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
98, 2, 5, 6lshplss 35997 . . . . . . 7 (𝜑𝑈 ∈ (LSubSp‘𝑊))
101, 8lssss 19637 . . . . . . 7 (𝑈 ∈ (LSubSp‘𝑊) → 𝑈 ⊆ (Base‘𝑊))
119, 10syl 17 . . . . . 6 (𝜑𝑈 ⊆ (Base‘𝑊))
12 lshpcmp.t . . . . . . . . 9 (𝜑𝑇𝐻)
13 eqid 2818 . . . . . . . . . 10 (LSpan‘𝑊) = (LSpan‘𝑊)
14 eqid 2818 . . . . . . . . . 10 (LSSum‘𝑊) = (LSSum‘𝑊)
151, 13, 8, 14, 2, 5islshpsm 35996 . . . . . . . . 9 (𝜑 → (𝑇𝐻 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ 𝑇 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))))
1612, 15mpbid 233 . . . . . . . 8 (𝜑 → (𝑇 ∈ (LSubSp‘𝑊) ∧ 𝑇 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊)))
1716simp3d 1136 . . . . . . 7 (𝜑 → ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))
18 id 22 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → (𝜑𝑣 ∈ (Base‘𝑊)))
1918adantrr 713 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) → (𝜑𝑣 ∈ (Base‘𝑊)))
203adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑊 ∈ LVec)
218, 2, 5, 12lshplss 35997 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ (LSubSp‘𝑊))
2221adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑇 ∈ (LSubSp‘𝑊))
239adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑈 ∈ (LSubSp‘𝑊))
24 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊))
251, 8, 13, 14, 20, 22, 23, 24lsmcv 19842 . . . . . . . . . . . 12 (((𝜑𝑣 ∈ (Base‘𝑊)) ∧ 𝑇𝑈𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})))
2619, 25syl3an1 1155 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})))
27263expia 1113 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))))
28 simplrr 774 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))
2928sseq2d 3996 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) ↔ 𝑈 ⊆ (Base‘𝑊)))
3028eqeq2d 2829 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) ↔ 𝑈 = (Base‘𝑊)))
3127, 29, 303imtr3d 294 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊)))
3231exp42 436 . . . . . . . 8 (𝜑 → (𝑣 ∈ (Base‘𝑊) → ((𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊) → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊))))))
3332rexlimdv 3280 . . . . . . 7 (𝜑 → (∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊) → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊)))))
3417, 33mpd 15 . . . . . 6 (𝜑 → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊))))
3511, 34mpid 44 . . . . 5 (𝜑 → (𝑇𝑈𝑈 = (Base‘𝑊)))
3635necon3ad 3026 . . . 4 (𝜑 → (𝑈 ≠ (Base‘𝑊) → ¬ 𝑇𝑈))
377, 36mpd 15 . . 3 (𝜑 → ¬ 𝑇𝑈)
38 df-pss 3951 . . . . 5 (𝑇𝑈 ↔ (𝑇𝑈𝑇𝑈))
3938simplbi2 501 . . . 4 (𝑇𝑈 → (𝑇𝑈𝑇𝑈))
4039necon1bd 3031 . . 3 (𝑇𝑈 → (¬ 𝑇𝑈𝑇 = 𝑈))
4137, 40syl5com 31 . 2 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
42 eqimss 4020 . 2 (𝑇 = 𝑈𝑇𝑈)
4341, 42impbid1 226 1 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wrex 3136  wss 3933  wpss 3934  {csn 4557  cfv 6348  (class class class)co 7145  Basecbs 16471  LSSumclsm 18688  LModclmod 19563  LSubSpclss 19632  LSpanclspn 19672  LVecclvec 19803  LSHypclsh 35991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-cntz 18385  df-lsm 18690  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-drng 19433  df-lmod 19565  df-lss 19633  df-lsp 19673  df-lvec 19804  df-lshyp 35993
This theorem is referenced by:  lshpinN  36005  lfl1dim  36137  lfl1dim2N  36138  lkrpssN  36179  dochlkr  38401  dochsatshpb  38468  lcfl9a  38521  lclkrlem2e  38527  lclkrlem2g  38529  lclkrlem2s  38541  lcfrlem25  38583  lcfrlem35  38593  hdmaplkr  38929
  Copyright terms: Public domain W3C validator