Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpcmp Structured version   Visualization version   GIF version

Theorem lshpcmp 39026
Description: If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lshpcmp.h 𝐻 = (LSHyp‘𝑊)
lshpcmp.w (𝜑𝑊 ∈ LVec)
lshpcmp.t (𝜑𝑇𝐻)
lshpcmp.u (𝜑𝑈𝐻)
Assertion
Ref Expression
lshpcmp (𝜑 → (𝑇𝑈𝑇 = 𝑈))

Proof of Theorem lshpcmp
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
2 lshpcmp.h . . . . 5 𝐻 = (LSHyp‘𝑊)
3 lshpcmp.w . . . . . 6 (𝜑𝑊 ∈ LVec)
4 lveclmod 21038 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
6 lshpcmp.u . . . . 5 (𝜑𝑈𝐻)
71, 2, 5, 6lshpne 39020 . . . 4 (𝜑𝑈 ≠ (Base‘𝑊))
8 eqid 2731 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
98, 2, 5, 6lshplss 39019 . . . . . . 7 (𝜑𝑈 ∈ (LSubSp‘𝑊))
101, 8lssss 20867 . . . . . . 7 (𝑈 ∈ (LSubSp‘𝑊) → 𝑈 ⊆ (Base‘𝑊))
119, 10syl 17 . . . . . 6 (𝜑𝑈 ⊆ (Base‘𝑊))
12 lshpcmp.t . . . . . . . . 9 (𝜑𝑇𝐻)
13 eqid 2731 . . . . . . . . . 10 (LSpan‘𝑊) = (LSpan‘𝑊)
14 eqid 2731 . . . . . . . . . 10 (LSSum‘𝑊) = (LSSum‘𝑊)
151, 13, 8, 14, 2, 5islshpsm 39018 . . . . . . . . 9 (𝜑 → (𝑇𝐻 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ 𝑇 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))))
1612, 15mpbid 232 . . . . . . . 8 (𝜑 → (𝑇 ∈ (LSubSp‘𝑊) ∧ 𝑇 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊)))
1716simp3d 1144 . . . . . . 7 (𝜑 → ∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))
18 id 22 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → (𝜑𝑣 ∈ (Base‘𝑊)))
1918adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) → (𝜑𝑣 ∈ (Base‘𝑊)))
203adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑊 ∈ LVec)
218, 2, 5, 12lshplss 39019 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ (LSubSp‘𝑊))
2221adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑇 ∈ (LSubSp‘𝑊))
239adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑈 ∈ (LSubSp‘𝑊))
24 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ (Base‘𝑊))
251, 8, 13, 14, 20, 22, 23, 24lsmcv 21076 . . . . . . . . . . . 12 (((𝜑𝑣 ∈ (Base‘𝑊)) ∧ 𝑇𝑈𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})))
2619, 25syl3an1 1163 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})))
27263expia 1121 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) → 𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣}))))
28 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))
2928sseq2d 3967 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) ↔ 𝑈 ⊆ (Base‘𝑊)))
3028eqeq2d 2742 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 = (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) ↔ 𝑈 = (Base‘𝑊)))
3127, 29, 303imtr3d 293 . . . . . . . . 9 (((𝜑 ∧ (𝑣 ∈ (Base‘𝑊) ∧ (𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊))) ∧ 𝑇𝑈) → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊)))
3231exp42 435 . . . . . . . 8 (𝜑 → (𝑣 ∈ (Base‘𝑊) → ((𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊) → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊))))))
3332rexlimdv 3131 . . . . . . 7 (𝜑 → (∃𝑣 ∈ (Base‘𝑊)(𝑇(LSSum‘𝑊)((LSpan‘𝑊)‘{𝑣})) = (Base‘𝑊) → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊)))))
3417, 33mpd 15 . . . . . 6 (𝜑 → (𝑇𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑊))))
3511, 34mpid 44 . . . . 5 (𝜑 → (𝑇𝑈𝑈 = (Base‘𝑊)))
3635necon3ad 2941 . . . 4 (𝜑 → (𝑈 ≠ (Base‘𝑊) → ¬ 𝑇𝑈))
377, 36mpd 15 . . 3 (𝜑 → ¬ 𝑇𝑈)
38 df-pss 3922 . . . . 5 (𝑇𝑈 ↔ (𝑇𝑈𝑇𝑈))
3938simplbi2 500 . . . 4 (𝑇𝑈 → (𝑇𝑈𝑇𝑈))
4039necon1bd 2946 . . 3 (𝑇𝑈 → (¬ 𝑇𝑈𝑇 = 𝑈))
4137, 40syl5com 31 . 2 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
42 eqimss 3993 . 2 (𝑇 = 𝑈𝑇𝑈)
4341, 42impbid1 225 1 (𝜑 → (𝑇𝑈𝑇 = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  wss 3902  wpss 3903  {csn 4576  cfv 6481  (class class class)co 7346  Basecbs 17117  LSSumclsm 19544  LModclmod 20791  LSubSpclss 20862  LSpanclspn 20902  LVecclvec 21034  LSHypclsh 39013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-subg 19033  df-cntz 19227  df-lsm 19546  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-drng 20644  df-lmod 20793  df-lss 20863  df-lsp 20903  df-lvec 21035  df-lshyp 39015
This theorem is referenced by:  lshpinN  39027  lfl1dim  39159  lfl1dim2N  39160  lkrpssN  39201  dochlkr  41423  dochsatshpb  41490  lcfl9a  41543  lclkrlem2e  41549  lclkrlem2g  41551  lclkrlem2s  41563  lcfrlem25  41605  lcfrlem35  41615  hdmaplkr  41951
  Copyright terms: Public domain W3C validator