MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksext2clwwlk Structured version   Visualization version   GIF version

Theorem wwlksext2clwwlk 27842
Description: If a word represents a walk in (in a graph) and there are edges between the last vertex of the word and another vertex and between this other vertex and the first vertex of the word, then the concatenation of the word representing the walk with this other vertex represents a closed walk. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 27-Apr-2021.) (Revised by AV, 14-Mar-2022.)
Hypotheses
Ref Expression
clwwlkext2edg.v 𝑉 = (Vtx‘𝐺)
clwwlkext2edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksext2clwwlk ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑍𝑉) → (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))

Proof of Theorem wwlksext2clwwlk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlknbp1 27630 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
2 clwwlkext2edg.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
32wrdeqi 13880 . . . . . . . . . . . 12 Word 𝑉 = Word (Vtx‘𝐺)
43eleq2i 2881 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉𝑊 ∈ Word (Vtx‘𝐺))
54biimpri 231 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉)
653ad2ant2 1131 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑊 ∈ Word 𝑉)
76ad2antlr 726 . . . . . . . 8 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → 𝑊 ∈ Word 𝑉)
8 s1cl 13947 . . . . . . . . 9 (𝑍𝑉 → ⟨“𝑍”⟩ ∈ Word 𝑉)
98adantl 485 . . . . . . . 8 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → ⟨“𝑍”⟩ ∈ Word 𝑉)
10 ccatcl 13917 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉) → (𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉)
117, 9, 10syl2anc 587 . . . . . . 7 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → (𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉)
1211adantr 484 . . . . . 6 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → (𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉)
13 clwwlkext2edg.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
142, 13wwlknp 27629 . . . . . . . . 9 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
15 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑊 ∈ Word 𝑉)
168adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑍𝑉𝑁 ∈ ℕ0) → ⟨“𝑍”⟩ ∈ Word 𝑉)
1716ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ⟨“𝑍”⟩ ∈ Word 𝑉)
18 elfzo0 13073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖 ∈ (0..^𝑁) ↔ (𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁))
19 simp1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 ∈ ℕ0)
20 peano2nn 11637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
21203ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → (𝑁 + 1) ∈ ℕ)
22 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
23223ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 ∈ ℝ)
24 nnre 11632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
25243ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑁 ∈ ℝ)
26 peano2re 10802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
2724, 26syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
28273ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → (𝑁 + 1) ∈ ℝ)
29 simp3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 < 𝑁)
3024ltp1d 11559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 1))
31303ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑁 < (𝑁 + 1))
3223, 25, 28, 29, 31lttrd 10790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 < (𝑁 + 1))
33 elfzo0 13073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖 ∈ (0..^(𝑁 + 1)) ↔ (𝑖 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ ∧ 𝑖 < (𝑁 + 1)))
3419, 21, 32, 33syl3anbrc 1340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 ∈ (0..^(𝑁 + 1)))
3518, 34sylbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1)))
3635adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(𝑁 + 1)))
37 oveq2 7143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((♯‘𝑊) = (𝑁 + 1) → (0..^(♯‘𝑊)) = (0..^(𝑁 + 1)))
3837adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (0..^(♯‘𝑊)) = (0..^(𝑁 + 1)))
3938eleq2d 2875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^(♯‘𝑊)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
4039ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 ∈ (0..^(♯‘𝑊)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
4136, 40mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(♯‘𝑊)))
42 ccatval1 13921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑍”⟩)‘𝑖) = (𝑊𝑖))
4315, 17, 41, 42syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 ++ ⟨“𝑍”⟩)‘𝑖) = (𝑊𝑖))
44 fzonn0p1p1 13111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
4544adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
4637eleq2d 2875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((♯‘𝑊) = (𝑁 + 1) → ((𝑖 + 1) ∈ (0..^(♯‘𝑊)) ↔ (𝑖 + 1) ∈ (0..^(𝑁 + 1))))
4746ad3antlr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑖 + 1) ∈ (0..^(♯‘𝑊)) ↔ (𝑖 + 1) ∈ (0..^(𝑁 + 1))))
4845, 47mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(♯‘𝑊)))
49 ccatval1 13921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
5015, 17, 48, 49syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
5143, 50preq12d 4637 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})
5251ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))}))
5352expcom 417 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑍𝑉𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})))
5453expcom 417 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (𝑍𝑉 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))}))))
55543ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑍𝑉 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))}))))
5655imp 410 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})))
5756expdcom 418 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = (𝑁 + 1) → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))}))))
58573imp1 1344 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ 𝑖 ∈ (0..^𝑁)) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})
5958eleq1d 2874 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ 𝑖 ∈ (0..^𝑁)) → ({((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
6059ralbidva 3161 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → (∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
6160biimprd 251 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))
62613exp 1116 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = (𝑁 + 1) → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))))
6362com34 91 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = (𝑁 + 1) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))))
64633imp1 1344 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
6564adantr 484 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
66 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 𝑊 ∈ Word 𝑉)
678ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ⟨“𝑍”⟩ ∈ Word 𝑉)
68 nn0p1gt0 11914 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
6968ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 0 < (𝑁 + 1))
70 breq2 5034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑊) = (𝑁 + 1) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
7170ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
7269, 71mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 0 < (♯‘𝑊))
73 hashneq0 13721 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
7473ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
7572, 74mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 𝑊 ≠ ∅)
76 ccatval1lsw 13929 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
7766, 67, 75, 76syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
78 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
7978ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
80 nn0cn 11895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8180ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
82 pncan1 11053 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑁 + 1) − 1) = 𝑁)
8479, 83eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((♯‘𝑊) − 1) = 𝑁)
8584fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)) = ((𝑊 ++ ⟨“𝑍”⟩)‘𝑁))
8677, 85eqtr3d 2835 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → (lastS‘𝑊) = ((𝑊 ++ ⟨“𝑍”⟩)‘𝑁))
87 ccatws1ls 13983 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word 𝑉𝑍𝑉) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = 𝑍)
8887ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = 𝑍)
89 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑊) = (𝑁 + 1) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1)))
9089ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1)))
9188, 90eqtr3d 2835 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 𝑍 = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1)))
9286, 91preq12d 4637 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})
9392expcom 417 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑍𝑉𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))}))
9493expcom 417 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑍𝑉 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})))
95943ad2ant1 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑍𝑉 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})))
9695imp 410 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))}))
9796com12 32 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))}))
98973adant3 1129 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))}))
9998imp 410 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})
10099eleq1d 2874 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸))
101100biimpa 480 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸)
102 simprl1 1215 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → 𝑁 ∈ ℕ0)
103102adantr 484 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → 𝑁 ∈ ℕ0)
104 fveq2 6645 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑁 → ((𝑊 ++ ⟨“𝑍”⟩)‘𝑖) = ((𝑊 ++ ⟨“𝑍”⟩)‘𝑁))
105 fvoveq1 7158 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑁 → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1)) = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1)))
106104, 105preq12d 4637 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑁 → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})
107106eleq1d 2874 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑁 → ({((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸))
108107ralsng 4573 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (∀𝑖 ∈ {𝑁} {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸))
109103, 108syl 17 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (∀𝑖 ∈ {𝑁} {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸))
110101, 109mpbird 260 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ {𝑁} {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
111 ralunb 4118 . . . . . . . . . . . . 13 (∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ (∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ ∀𝑖 ∈ {𝑁} {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))
11265, 110, 111sylanbrc 586 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
113 elnn0uz 12271 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
114102, 113sylib 221 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → 𝑁 ∈ (ℤ‘0))
115114adantr 484 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → 𝑁 ∈ (ℤ‘0))
116 fzosplitsn 13140 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
117115, 116syl 17 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
118117raleqdv 3364 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))
119112, 118mpbird 260 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
120 ccatws1len 13965 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝑉 → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
1211203ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
122121ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
123122oveq1d 7150 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1) = (((♯‘𝑊) + 1) − 1))
124 oveq1 7142 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) + 1) = ((𝑁 + 1) + 1))
125124oveq1d 7150 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = (𝑁 + 1) → (((♯‘𝑊) + 1) − 1) = (((𝑁 + 1) + 1) − 1))
126 1cnd 10625 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
12780, 126addcld 10649 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
128127, 126pncand 10987 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
1291283ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
130129adantr 484 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
131125, 130sylan9eq 2853 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → (((♯‘𝑊) + 1) − 1) = (𝑁 + 1))
1321313ad2antl2 1183 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → (((♯‘𝑊) + 1) − 1) = (𝑁 + 1))
133132adantr 484 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (((♯‘𝑊) + 1) − 1) = (𝑁 + 1))
134123, 133eqtrd 2833 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1) = (𝑁 + 1))
135134oveq2d 7151 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) = (0..^(𝑁 + 1)))
136135raleqdv 3364 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))
137119, 136mpbird 260 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
138137exp42 439 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑍𝑉 → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))))
13914, 138syl 17 . . . . . . . 8 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑍𝑉 → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))))
140139imp41 429 . . . . . . 7 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
141140adantrr 716 . . . . . 6 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
142 lswccats1 13984 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑍𝑉) → (lastS‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑍)
1437, 142sylancom 591 . . . . . . . . . . 11 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → (lastS‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑍)
144683ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 < (𝑁 + 1))
145703ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
146144, 145mpbird 260 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 < (♯‘𝑊))
147146ad2antlr 726 . . . . . . . . . . . 12 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → 0 < (♯‘𝑊))
148 ccatfv0 13928 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑍”⟩)‘0) = (𝑊‘0))
1497, 9, 147, 148syl3anc 1368 . . . . . . . . . . 11 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → ((𝑊 ++ ⟨“𝑍”⟩)‘0) = (𝑊‘0))
150143, 149preq12d 4637 . . . . . . . . . 10 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)})
151150eleq1d 2874 . . . . . . . . 9 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → ({(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸 ↔ {𝑍, (𝑊‘0)} ∈ 𝐸))
152151biimprcd 253 . . . . . . . 8 ({𝑍, (𝑊‘0)} ∈ 𝐸 → (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸))
153152adantl 485 . . . . . . 7 (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸))
154153impcom 411 . . . . . 6 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸)
15512, 141, 1543jca 1125 . . . . 5 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → ((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸))
156 ccatws1len 13965 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
1571563ad2ant2 1131 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
1581243ad2ant3 1132 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) + 1) = ((𝑁 + 1) + 1))
15980, 126, 126addassd 10652 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
160 1p1e2 11750 . . . . . . . . . 10 (1 + 1) = 2
161160oveq2i 7146 . . . . . . . . 9 (𝑁 + (1 + 1)) = (𝑁 + 2)
162159, 161eqtrdi 2849 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + 2))
1631623ad2ant1 1130 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑁 + 1) + 1) = (𝑁 + 2))
164157, 158, 1633eqtrd 2837 . . . . . 6 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))
165164ad3antlr 730 . . . . 5 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))
166 2nn 11698 . . . . . . . . 9 2 ∈ ℕ
167 nn0nnaddcl 11916 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑁 + 2) ∈ ℕ)
168166, 167mpan2 690 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 2) ∈ ℕ)
1691683ad2ant1 1130 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 + 2) ∈ ℕ)
1702, 13isclwwlknx 27821 . . . . . . 7 ((𝑁 + 2) ∈ ℕ → ((𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))))
171169, 170syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))))
172171ad3antlr 730 . . . . 5 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → ((𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))))
173155, 165, 172mpbir2and 712 . . . 4 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
174173exp31 423 . . 3 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑍𝑉 → (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))))
1751, 174mpdan 686 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑍𝑉 → (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))))
176175imp 410 1 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑍𝑉) → (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  cun 3879  c0 4243  {csn 4525  {cpr 4527   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cmin 10859  cn 11625  2c2 11680  0cn0 11885  cuz 12231  ..^cfzo 13028  chash 13686  Word cword 13857  lastSclsw 13905   ++ cconcat 13913  ⟨“cs1 13940  Vtxcvtx 26789  Edgcedg 26840   WWalksN cwwlksn 27612   ClWWalksN cclwwlkn 27809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-wwlks 27616  df-wwlksn 27617  df-clwwlk 27767  df-clwwlkn 27810
This theorem is referenced by:  numclwwlk2lem1  28161
  Copyright terms: Public domain W3C validator