MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksext2clwwlk Structured version   Visualization version   GIF version

Theorem wwlksext2clwwlk 30037
Description: If a word represents a walk in (in a graph) and there are edges between the last vertex of the word and another vertex and between this other vertex and the first vertex of the word, then the concatenation of the word representing the walk with this other vertex represents a closed walk. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 27-Apr-2021.) (Revised by AV, 14-Mar-2022.)
Hypotheses
Ref Expression
clwwlkext2edg.v 𝑉 = (Vtx‘𝐺)
clwwlkext2edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksext2clwwlk ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑍𝑉) → (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))

Proof of Theorem wwlksext2clwwlk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlknbp1 29822 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
2 clwwlkext2edg.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
32wrdeqi 14444 . . . . . . . . . . . 12 Word 𝑉 = Word (Vtx‘𝐺)
43eleq2i 2823 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉𝑊 ∈ Word (Vtx‘𝐺))
54biimpri 228 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉)
653ad2ant2 1134 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑊 ∈ Word 𝑉)
76ad2antlr 727 . . . . . . . 8 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → 𝑊 ∈ Word 𝑉)
8 s1cl 14510 . . . . . . . . 9 (𝑍𝑉 → ⟨“𝑍”⟩ ∈ Word 𝑉)
98adantl 481 . . . . . . . 8 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → ⟨“𝑍”⟩ ∈ Word 𝑉)
10 ccatcl 14481 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉) → (𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉)
117, 9, 10syl2anc 584 . . . . . . 7 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → (𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉)
1211adantr 480 . . . . . 6 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → (𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉)
13 clwwlkext2edg.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
142, 13wwlknp 29821 . . . . . . . . 9 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
15 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑊 ∈ Word 𝑉)
168adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑍𝑉𝑁 ∈ ℕ0) → ⟨“𝑍”⟩ ∈ Word 𝑉)
1716ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ⟨“𝑍”⟩ ∈ Word 𝑉)
18 elfzo0 13600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖 ∈ (0..^𝑁) ↔ (𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁))
19 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 ∈ ℕ0)
20 peano2nn 12137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
21203ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → (𝑁 + 1) ∈ ℕ)
22 nn0re 12390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
23223ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 ∈ ℝ)
24 nnre 12132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
25243ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑁 ∈ ℝ)
26 peano2re 11286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
2724, 26syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
28273ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → (𝑁 + 1) ∈ ℝ)
29 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 < 𝑁)
3024ltp1d 12052 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 1))
31303ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑁 < (𝑁 + 1))
3223, 25, 28, 29, 31lttrd 11274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 < (𝑁 + 1))
33 elfzo0 13600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖 ∈ (0..^(𝑁 + 1)) ↔ (𝑖 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ ∧ 𝑖 < (𝑁 + 1)))
3419, 21, 32, 33syl3anbrc 1344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 ∈ (0..^(𝑁 + 1)))
3518, 34sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1)))
3635adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(𝑁 + 1)))
37 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((♯‘𝑊) = (𝑁 + 1) → (0..^(♯‘𝑊)) = (0..^(𝑁 + 1)))
3837adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (0..^(♯‘𝑊)) = (0..^(𝑁 + 1)))
3938eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^(♯‘𝑊)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
4039ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 ∈ (0..^(♯‘𝑊)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
4136, 40mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(♯‘𝑊)))
42 ccatval1 14484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑍”⟩)‘𝑖) = (𝑊𝑖))
4315, 17, 41, 42syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 ++ ⟨“𝑍”⟩)‘𝑖) = (𝑊𝑖))
44 fzonn0p1p1 13644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
4544adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
4637eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((♯‘𝑊) = (𝑁 + 1) → ((𝑖 + 1) ∈ (0..^(♯‘𝑊)) ↔ (𝑖 + 1) ∈ (0..^(𝑁 + 1))))
4746ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑖 + 1) ∈ (0..^(♯‘𝑊)) ↔ (𝑖 + 1) ∈ (0..^(𝑁 + 1))))
4845, 47mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(♯‘𝑊)))
49 ccatval1 14484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
5015, 17, 48, 49syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
5143, 50preq12d 4691 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})
5251ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))}))
5352expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑍𝑉𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})))
5453expcom 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (𝑍𝑉 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))}))))
55543ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑍𝑉 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))}))))
5655imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})))
5756expdcom 414 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = (𝑁 + 1) → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))}))))
58573imp1 1348 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ 𝑖 ∈ (0..^𝑁)) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})
5958eleq1d 2816 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ 𝑖 ∈ (0..^𝑁)) → ({((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
6059ralbidva 3153 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → (∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
6160biimprd 248 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))
62613exp 1119 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = (𝑁 + 1) → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))))
6362com34 91 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = (𝑁 + 1) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))))
64633imp1 1348 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
6564adantr 480 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
66 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 𝑊 ∈ Word 𝑉)
678ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ⟨“𝑍”⟩ ∈ Word 𝑉)
68 nn0p1gt0 12410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
6968ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 0 < (𝑁 + 1))
70 breq2 5093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑊) = (𝑁 + 1) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
7170ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
7269, 71mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 0 < (♯‘𝑊))
73 hashneq0 14271 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
7473ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
7572, 74mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 𝑊 ≠ ∅)
76 ccatval1lsw 14492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
7766, 67, 75, 76syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
78 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
7978ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
80 nn0cn 12391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8180ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
82 pncan1 11541 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑁 + 1) − 1) = 𝑁)
8479, 83eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((♯‘𝑊) − 1) = 𝑁)
8584fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)) = ((𝑊 ++ ⟨“𝑍”⟩)‘𝑁))
8677, 85eqtr3d 2768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → (lastS‘𝑊) = ((𝑊 ++ ⟨“𝑍”⟩)‘𝑁))
87 ccatws1ls 14541 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word 𝑉𝑍𝑉) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = 𝑍)
8887ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = 𝑍)
89 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑊) = (𝑁 + 1) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1)))
9089ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1)))
9188, 90eqtr3d 2768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 𝑍 = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1)))
9286, 91preq12d 4691 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})
9392expcom 413 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑍𝑉𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))}))
9493expcom 413 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑍𝑉 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})))
95943ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑍𝑉 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})))
9695imp 406 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))}))
9796com12 32 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))}))
98973adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))}))
9998imp 406 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})
10099eleq1d 2816 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸))
101100biimpa 476 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸)
102 simprl1 1219 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → 𝑁 ∈ ℕ0)
103102adantr 480 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → 𝑁 ∈ ℕ0)
104 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑁 → ((𝑊 ++ ⟨“𝑍”⟩)‘𝑖) = ((𝑊 ++ ⟨“𝑍”⟩)‘𝑁))
105 fvoveq1 7369 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑁 → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1)) = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1)))
106104, 105preq12d 4691 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑁 → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})
107106eleq1d 2816 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑁 → ({((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸))
108107ralsng 4625 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (∀𝑖 ∈ {𝑁} {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸))
109103, 108syl 17 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (∀𝑖 ∈ {𝑁} {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸))
110101, 109mpbird 257 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ {𝑁} {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
111 ralunb 4144 . . . . . . . . . . . . 13 (∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ (∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ ∀𝑖 ∈ {𝑁} {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))
11265, 110, 111sylanbrc 583 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
113 elnn0uz 12777 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
114102, 113sylib 218 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → 𝑁 ∈ (ℤ‘0))
115114adantr 480 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → 𝑁 ∈ (ℤ‘0))
116 fzosplitsn 13676 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
117115, 116syl 17 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
118112, 117raleqtrrdv 3296 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
119 ccatws1len 14528 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word 𝑉 → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
1201193ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
121120ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
122121oveq1d 7361 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1) = (((♯‘𝑊) + 1) − 1))
123 oveq1 7353 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) + 1) = ((𝑁 + 1) + 1))
124123oveq1d 7361 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) = (𝑁 + 1) → (((♯‘𝑊) + 1) − 1) = (((𝑁 + 1) + 1) − 1))
125 1cnd 11107 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
12680, 125addcld 11131 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
127126, 125pncand 11473 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
1281273ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
129128adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
130124, 129sylan9eq 2786 . . . . . . . . . . . . . . 15 (((♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → (((♯‘𝑊) + 1) − 1) = (𝑁 + 1))
1311303ad2antl2 1187 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → (((♯‘𝑊) + 1) − 1) = (𝑁 + 1))
132131adantr 480 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (((♯‘𝑊) + 1) − 1) = (𝑁 + 1))
133122, 132eqtrd 2766 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1) = (𝑁 + 1))
134133oveq2d 7362 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) = (0..^(𝑁 + 1)))
135118, 134raleqtrrdv 3296 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
136135exp42 435 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑍𝑉 → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))))
13714, 136syl 17 . . . . . . . 8 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑍𝑉 → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))))
138137imp41 425 . . . . . . 7 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
139138adantrr 717 . . . . . 6 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
140 lswccats1 14542 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑍𝑉) → (lastS‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑍)
1417, 140sylancom 588 . . . . . . . . . . 11 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → (lastS‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑍)
142683ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 < (𝑁 + 1))
143703ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
144142, 143mpbird 257 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 < (♯‘𝑊))
145144ad2antlr 727 . . . . . . . . . . . 12 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → 0 < (♯‘𝑊))
146 ccatfv0 14491 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑍”⟩)‘0) = (𝑊‘0))
1477, 9, 145, 146syl3anc 1373 . . . . . . . . . . 11 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → ((𝑊 ++ ⟨“𝑍”⟩)‘0) = (𝑊‘0))
148141, 147preq12d 4691 . . . . . . . . . 10 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)})
149148eleq1d 2816 . . . . . . . . 9 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → ({(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸 ↔ {𝑍, (𝑊‘0)} ∈ 𝐸))
150149biimprcd 250 . . . . . . . 8 ({𝑍, (𝑊‘0)} ∈ 𝐸 → (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸))
151150adantl 481 . . . . . . 7 (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸))
152151impcom 407 . . . . . 6 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸)
15312, 139, 1523jca 1128 . . . . 5 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → ((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸))
154 ccatws1len 14528 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
1551543ad2ant2 1134 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
1561233ad2ant3 1135 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) + 1) = ((𝑁 + 1) + 1))
15780, 125, 125addassd 11134 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
158 1p1e2 12245 . . . . . . . . . 10 (1 + 1) = 2
159158oveq2i 7357 . . . . . . . . 9 (𝑁 + (1 + 1)) = (𝑁 + 2)
160157, 159eqtrdi 2782 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + 2))
1611603ad2ant1 1133 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑁 + 1) + 1) = (𝑁 + 2))
162155, 156, 1613eqtrd 2770 . . . . . 6 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))
163162ad3antlr 731 . . . . 5 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))
164 2nn 12198 . . . . . . . . 9 2 ∈ ℕ
165 nn0nnaddcl 12412 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑁 + 2) ∈ ℕ)
166164, 165mpan2 691 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 2) ∈ ℕ)
1671663ad2ant1 1133 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 + 2) ∈ ℕ)
1682, 13isclwwlknx 30016 . . . . . . 7 ((𝑁 + 2) ∈ ℕ → ((𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))))
169167, 168syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))))
170169ad3antlr 731 . . . . 5 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → ((𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))))
171153, 163, 170mpbir2and 713 . . . 4 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
172171exp31 419 . . 3 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑍𝑉 → (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))))
1731, 172mpdan 687 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑍𝑉 → (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))))
174173imp 406 1 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑍𝑉) → (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  cun 3895  c0 4280  {csn 4573  {cpr 4575   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cmin 11344  cn 12125  2c2 12180  0cn0 12381  cuz 12732  ..^cfzo 13554  chash 14237  Word cword 14420  lastSclsw 14469   ++ cconcat 14477  ⟨“cs1 14503  Vtxcvtx 28974  Edgcedg 29025   WWalksN cwwlksn 29804   ClWWalksN cclwwlkn 30004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-wwlks 29808  df-wwlksn 29809  df-clwwlk 29962  df-clwwlkn 30005
This theorem is referenced by:  numclwwlk2lem1  30356
  Copyright terms: Public domain W3C validator