MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksext2clwwlk Structured version   Visualization version   GIF version

Theorem wwlksext2clwwlk 30089
Description: If a word represents a walk in (in a graph) and there are edges between the last vertex of the word and another vertex and between this other vertex and the first vertex of the word, then the concatenation of the word representing the walk with this other vertex represents a closed walk. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 27-Apr-2021.) (Revised by AV, 14-Mar-2022.)
Hypotheses
Ref Expression
clwwlkext2edg.v 𝑉 = (Vtx‘𝐺)
clwwlkext2edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksext2clwwlk ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑍𝑉) → (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))

Proof of Theorem wwlksext2clwwlk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlknbp1 29877 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
2 clwwlkext2edg.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
32wrdeqi 14585 . . . . . . . . . . . 12 Word 𝑉 = Word (Vtx‘𝐺)
43eleq2i 2836 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉𝑊 ∈ Word (Vtx‘𝐺))
54biimpri 228 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 ∈ Word 𝑉)
653ad2ant2 1134 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑊 ∈ Word 𝑉)
76ad2antlr 726 . . . . . . . 8 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → 𝑊 ∈ Word 𝑉)
8 s1cl 14650 . . . . . . . . 9 (𝑍𝑉 → ⟨“𝑍”⟩ ∈ Word 𝑉)
98adantl 481 . . . . . . . 8 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → ⟨“𝑍”⟩ ∈ Word 𝑉)
10 ccatcl 14622 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉) → (𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉)
117, 9, 10syl2anc 583 . . . . . . 7 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → (𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉)
1211adantr 480 . . . . . 6 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → (𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉)
13 clwwlkext2edg.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
142, 13wwlknp 29876 . . . . . . . . 9 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
15 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑊 ∈ Word 𝑉)
168adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑍𝑉𝑁 ∈ ℕ0) → ⟨“𝑍”⟩ ∈ Word 𝑉)
1716ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ⟨“𝑍”⟩ ∈ Word 𝑉)
18 elfzo0 13757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖 ∈ (0..^𝑁) ↔ (𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁))
19 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 ∈ ℕ0)
20 peano2nn 12305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
21203ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → (𝑁 + 1) ∈ ℕ)
22 nn0re 12562 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
23223ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 ∈ ℝ)
24 nnre 12300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
25243ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑁 ∈ ℝ)
26 peano2re 11463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
2724, 26syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
28273ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → (𝑁 + 1) ∈ ℝ)
29 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 < 𝑁)
3024ltp1d 12225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 1))
31303ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑁 < (𝑁 + 1))
3223, 25, 28, 29, 31lttrd 11451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 < (𝑁 + 1))
33 elfzo0 13757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖 ∈ (0..^(𝑁 + 1)) ↔ (𝑖 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ ∧ 𝑖 < (𝑁 + 1)))
3419, 21, 32, 33syl3anbrc 1343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁) → 𝑖 ∈ (0..^(𝑁 + 1)))
3518, 34sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0..^(𝑁 + 1)))
3635adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(𝑁 + 1)))
37 oveq2 7456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((♯‘𝑊) = (𝑁 + 1) → (0..^(♯‘𝑊)) = (0..^(𝑁 + 1)))
3837adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (0..^(♯‘𝑊)) = (0..^(𝑁 + 1)))
3938eleq2d 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^(♯‘𝑊)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
4039ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 ∈ (0..^(♯‘𝑊)) ↔ 𝑖 ∈ (0..^(𝑁 + 1))))
4136, 40mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^(♯‘𝑊)))
42 ccatval1 14625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑍”⟩)‘𝑖) = (𝑊𝑖))
4315, 17, 41, 42syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 ++ ⟨“𝑍”⟩)‘𝑖) = (𝑊𝑖))
44 fzonn0p1p1 13795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
4544adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(𝑁 + 1)))
4637eleq2d 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((♯‘𝑊) = (𝑁 + 1) → ((𝑖 + 1) ∈ (0..^(♯‘𝑊)) ↔ (𝑖 + 1) ∈ (0..^(𝑁 + 1))))
4746ad3antlr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑖 + 1) ∈ (0..^(♯‘𝑊)) ↔ (𝑖 + 1) ∈ (0..^(𝑁 + 1))))
4845, 47mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0..^(♯‘𝑊)))
49 ccatval1 14625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
5015, 17, 48, 49syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
5143, 50preq12d 4766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) ∧ 𝑖 ∈ (0..^𝑁)) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})
5251ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))}))
5352expcom 413 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑍𝑉𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})))
5453expcom 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0 → (𝑍𝑉 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))}))))
55543ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑍𝑉 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))}))))
5655imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})))
5756expdcom 414 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = (𝑁 + 1) → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → (𝑖 ∈ (0..^𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))}))))
58573imp1 1347 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ 𝑖 ∈ (0..^𝑁)) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})
5958eleq1d 2829 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ 𝑖 ∈ (0..^𝑁)) → ({((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
6059ralbidva 3182 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → (∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
6160biimprd 248 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))
62613exp 1119 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = (𝑁 + 1) → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))))
6362com34 91 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = (𝑁 + 1) → (∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))))
64633imp1 1347 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
6564adantr 480 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
66 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 𝑊 ∈ Word 𝑉)
678ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ⟨“𝑍”⟩ ∈ Word 𝑉)
68 nn0p1gt0 12582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
6968ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 0 < (𝑁 + 1))
70 breq2 5170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑊) = (𝑁 + 1) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
7170ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
7269, 71mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 0 < (♯‘𝑊))
73 hashneq0 14413 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
7473ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
7572, 74mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 𝑊 ≠ ∅)
76 ccatval1lsw 14632 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
7766, 67, 75, 76syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
78 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
7978ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
80 nn0cn 12563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
8180ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
82 pncan1 11714 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑁 + 1) − 1) = 𝑁)
8479, 83eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((♯‘𝑊) − 1) = 𝑁)
8584fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)) = ((𝑊 ++ ⟨“𝑍”⟩)‘𝑁))
8677, 85eqtr3d 2782 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → (lastS‘𝑊) = ((𝑊 ++ ⟨“𝑍”⟩)‘𝑁))
87 ccatws1ls 14681 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ Word 𝑉𝑍𝑉) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = 𝑍)
8887ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = 𝑍)
89 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑊) = (𝑁 + 1) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1)))
9089ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1)))
9188, 90eqtr3d 2782 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → 𝑍 = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1)))
9286, 91preq12d 4766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑍𝑉𝑁 ∈ ℕ0)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})
9392expcom 413 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑍𝑉𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))}))
9493expcom 413 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑍𝑉 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})))
95943ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑍𝑉 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})))
9695imp 406 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))}))
9796com12 32 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))}))
98973adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))}))
9998imp 406 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → {(lastS‘𝑊), 𝑍} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})
10099eleq1d 2829 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸))
101100biimpa 476 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸)
102 simprl1 1218 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → 𝑁 ∈ ℕ0)
103102adantr 480 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → 𝑁 ∈ ℕ0)
104 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑁 → ((𝑊 ++ ⟨“𝑍”⟩)‘𝑖) = ((𝑊 ++ ⟨“𝑍”⟩)‘𝑁))
105 fvoveq1 7471 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑁 → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1)) = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1)))
106104, 105preq12d 4766 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑁 → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))})
107106eleq1d 2829 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑁 → ({((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸))
108107ralsng 4697 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (∀𝑖 ∈ {𝑁} {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸))
109103, 108syl 17 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (∀𝑖 ∈ {𝑁} {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘𝑁), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 + 1))} ∈ 𝐸))
110101, 109mpbird 257 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ {𝑁} {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
111 ralunb 4220 . . . . . . . . . . . . 13 (∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ (∀𝑖 ∈ (0..^𝑁){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ ∀𝑖 ∈ {𝑁} {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))
11265, 110, 111sylanbrc 582 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ ((0..^𝑁) ∪ {𝑁}){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
113 elnn0uz 12948 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
114102, 113sylib 218 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → 𝑁 ∈ (ℤ‘0))
115114adantr 480 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → 𝑁 ∈ (ℤ‘0))
116 fzosplitsn 13825 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
117115, 116syl 17 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
118112, 117raleqtrrdv 3338 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ (0..^(𝑁 + 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
119 ccatws1len 14668 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Word 𝑉 → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
1201193ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
121120ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
122121oveq1d 7463 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1) = (((♯‘𝑊) + 1) − 1))
123 oveq1 7455 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) + 1) = ((𝑁 + 1) + 1))
124123oveq1d 7463 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) = (𝑁 + 1) → (((♯‘𝑊) + 1) − 1) = (((𝑁 + 1) + 1) − 1))
125 1cnd 11285 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
12680, 125addcld 11309 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
127126, 125pncand 11648 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
1281273ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
129128adantr 480 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉) → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
130124, 129sylan9eq 2800 . . . . . . . . . . . . . . 15 (((♯‘𝑊) = (𝑁 + 1) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → (((♯‘𝑊) + 1) − 1) = (𝑁 + 1))
1311303ad2antl2 1186 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) → (((♯‘𝑊) + 1) − 1) = (𝑁 + 1))
132131adantr 480 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (((♯‘𝑊) + 1) − 1) = (𝑁 + 1))
133122, 132eqtrd 2780 . . . . . . . . . . . 12 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1) = (𝑁 + 1))
134133oveq2d 7464 . . . . . . . . . . 11 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) = (0..^(𝑁 + 1)))
135118, 134raleqtrrdv 3338 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑍𝑉)) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
136135exp42 435 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑍𝑉 → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))))
13714, 136syl 17 . . . . . . . 8 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑍𝑉 → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸))))
138137imp41 425 . . . . . . 7 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ {(lastS‘𝑊), 𝑍} ∈ 𝐸) → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
139138adantrr 716 . . . . . 6 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸)
140 lswccats1 14682 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑍𝑉) → (lastS‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑍)
1417, 140sylancom 587 . . . . . . . . . . 11 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → (lastS‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑍)
142683ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 < (𝑁 + 1))
143703ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
144142, 143mpbird 257 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 < (♯‘𝑊))
145144ad2antlr 726 . . . . . . . . . . . 12 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → 0 < (♯‘𝑊))
146 ccatfv0 14631 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑍”⟩)‘0) = (𝑊‘0))
1477, 9, 145, 146syl3anc 1371 . . . . . . . . . . 11 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → ((𝑊 ++ ⟨“𝑍”⟩)‘0) = (𝑊‘0))
148141, 147preq12d 4766 . . . . . . . . . 10 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)})
149148eleq1d 2829 . . . . . . . . 9 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → ({(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸 ↔ {𝑍, (𝑊‘0)} ∈ 𝐸))
150149biimprcd 250 . . . . . . . 8 ({𝑍, (𝑊‘0)} ∈ 𝐸 → (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸))
151150adantl 481 . . . . . . 7 (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸))
152151impcom 407 . . . . . 6 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸)
15312, 139, 1523jca 1128 . . . . 5 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → ((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸))
154 ccatws1len 14668 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
1551543ad2ant2 1134 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = ((♯‘𝑊) + 1))
1561233ad2ant3 1135 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) + 1) = ((𝑁 + 1) + 1))
15780, 125, 125addassd 11312 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
158 1p1e2 12418 . . . . . . . . . 10 (1 + 1) = 2
159158oveq2i 7459 . . . . . . . . 9 (𝑁 + (1 + 1)) = (𝑁 + 2)
160157, 159eqtrdi 2796 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) = (𝑁 + 2))
1611603ad2ant1 1133 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑁 + 1) + 1) = (𝑁 + 2))
162155, 156, 1613eqtrd 2784 . . . . . 6 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))
163162ad3antlr 730 . . . . 5 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))
164 2nn 12366 . . . . . . . . 9 2 ∈ ℕ
165 nn0nnaddcl 12584 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑁 + 2) ∈ ℕ)
166164, 165mpan2 690 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 2) ∈ ℕ)
1671663ad2ant1 1133 . . . . . . 7 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 + 2) ∈ ℕ)
1682, 13isclwwlknx 30068 . . . . . . 7 ((𝑁 + 2) ∈ ℕ → ((𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))))
169167, 168syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))))
170169ad3antlr 730 . . . . 5 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → ((𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = (𝑁 + 2))))
171153, 163, 170mpbir2and 712 . . . 4 ((((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) ∧ 𝑍𝑉) ∧ ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
172171exp31 419 . . 3 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) → (𝑍𝑉 → (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))))
1731, 172mpdan 686 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑍𝑉 → (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))))
174173imp 406 1 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑍𝑉) → (({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸) → (𝑊 ++ ⟨“𝑍”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  cun 3974  c0 4352  {csn 4648  {cpr 4650   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cmin 11520  cn 12293  2c2 12348  0cn0 12553  cuz 12903  ..^cfzo 13711  chash 14379  Word cword 14562  lastSclsw 14610   ++ cconcat 14618  ⟨“cs1 14643  Vtxcvtx 29031  Edgcedg 29082   WWalksN cwwlksn 29859   ClWWalksN cclwwlkn 30056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-wwlks 29863  df-wwlksn 29864  df-clwwlk 30014  df-clwwlkn 30057
This theorem is referenced by:  numclwwlk2lem1  30408
  Copyright terms: Public domain W3C validator