MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg4 Structured version   Visualization version   GIF version

Theorem issubg4 19058
Description: A subgroup is a nonempty subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
issubg4.b 𝐵 = (Base‘𝐺)
issubg4.p = (-g𝐺)
Assertion
Ref Expression
issubg4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, ,𝑦   𝑥,𝑆,𝑦

Proof of Theorem issubg4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 issubg4.b . . . 4 𝐵 = (Base‘𝐺)
21subgss 19040 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
3 eqid 2731 . . . . 5 (0g𝐺) = (0g𝐺)
43subg0cl 19047 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
54ne0d 4289 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ≠ ∅)
6 issubg4.p . . . . . 6 = (-g𝐺)
76subgsubcl 19050 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 𝑦) ∈ 𝑆)
873expb 1120 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 𝑦) ∈ 𝑆)
98ralrimivva 3175 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
102, 5, 93jca 1128 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆))
11 simplrl 776 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆𝐵)
12 simplrr 777 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆 ≠ ∅)
13 oveq1 7353 . . . . . . . . . . . . 13 (𝑥 = (0g𝐺) → (𝑥 𝑦) = ((0g𝐺) 𝑦))
1413eleq1d 2816 . . . . . . . . . . . 12 (𝑥 = (0g𝐺) → ((𝑥 𝑦) ∈ 𝑆 ↔ ((0g𝐺) 𝑦) ∈ 𝑆))
1514ralbidv 3155 . . . . . . . . . . 11 (𝑥 = (0g𝐺) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆))
16 simpr 484 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
17 simprr 772 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
18 r19.2z 4442 . . . . . . . . . . . . 13 ((𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
1917, 18sylan 580 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
20 oveq2 7354 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → (𝑥 𝑦) = (𝑥 𝑥))
2120eleq1d 2816 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → ((𝑥 𝑦) ∈ 𝑆 ↔ (𝑥 𝑥) ∈ 𝑆))
2221rspcv 3568 . . . . . . . . . . . . . . . 16 (𝑥𝑆 → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 𝑥) ∈ 𝑆))
2322adantl 481 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 𝑥) ∈ 𝑆))
24 simprl 770 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑆𝐵)
2524sselda 3929 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥𝐵)
261, 3, 6grpsubid 18937 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 𝑥) = (0g𝐺))
2726adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝐵) → (𝑥 𝑥) = (0g𝐺))
2825, 27syldan 591 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑥 𝑥) = (0g𝐺))
2928eleq1d 2816 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → ((𝑥 𝑥) ∈ 𝑆 ↔ (0g𝐺) ∈ 𝑆))
3023, 29sylibd 239 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (0g𝐺) ∈ 𝑆))
3130rexlimdva 3133 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → (∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (0g𝐺) ∈ 𝑆))
3231imp 406 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
3319, 32syldan 591 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
3415, 16, 33rspcdva 3573 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆)
351, 3grpidcl 18878 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
3635ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (0g𝐺) ∈ 𝐵)
3724sselda 3929 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝑦𝐵)
38 eqid 2731 . . . . . . . . . . . . . . . 16 (+g𝐺) = (+g𝐺)
39 eqid 2731 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
401, 38, 39, 6grpsubval 18898 . . . . . . . . . . . . . . 15 (((0g𝐺) ∈ 𝐵𝑦𝐵) → ((0g𝐺) 𝑦) = ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)))
4136, 37, 40syl2anc 584 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((0g𝐺) 𝑦) = ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)))
42 simpll 766 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝐺 ∈ Grp)
431, 39grpinvcl 18900 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
4442, 37, 43syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((invg𝐺)‘𝑦) ∈ 𝐵)
451, 38, 3grplid 18880 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑦) ∈ 𝐵) → ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)) = ((invg𝐺)‘𝑦))
4642, 44, 45syl2anc 584 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)) = ((invg𝐺)‘𝑦))
4741, 46eqtrd 2766 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((0g𝐺) 𝑦) = ((invg𝐺)‘𝑦))
4847eleq1d 2816 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (((0g𝐺) 𝑦) ∈ 𝑆 ↔ ((invg𝐺)‘𝑦) ∈ 𝑆))
4948ralbidva 3153 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → (∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
5049adantr 480 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
5134, 50mpbid 232 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆)
52 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → ((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑧))
5352eleq1d 2816 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (((invg𝐺)‘𝑦) ∈ 𝑆 ↔ ((invg𝐺)‘𝑧) ∈ 𝑆))
5453rspccva 3571 . . . . . . . . . . . . . . . 16 ((∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆𝑧𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
5554ad2ant2l 746 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → ((invg𝐺)‘𝑧) ∈ 𝑆)
56 oveq2 7354 . . . . . . . . . . . . . . . . 17 (𝑦 = ((invg𝐺)‘𝑧) → (𝑥 𝑦) = (𝑥 ((invg𝐺)‘𝑧)))
5756eleq1d 2816 . . . . . . . . . . . . . . . 16 (𝑦 = ((invg𝐺)‘𝑧) → ((𝑥 𝑦) ∈ 𝑆 ↔ (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
5857rspcv 3568 . . . . . . . . . . . . . . 15 (((invg𝐺)‘𝑧) ∈ 𝑆 → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
5955, 58syl 17 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
60 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝐺 ∈ Grp)
61 simplrl 776 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) → 𝑆𝐵)
6261adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑆𝐵)
63 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝑆)
6462, 63sseldd 3930 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝐵)
65 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝑆)
6662, 65sseldd 3930 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝐵)
671, 38, 6, 39, 60, 64, 66grpsubinv 18925 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 ((invg𝐺)‘𝑧)) = (𝑥(+g𝐺)𝑧))
6867eleq1d 2816 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → ((𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆 ↔ (𝑥(+g𝐺)𝑧) ∈ 𝑆))
6959, 68sylibd 239 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7069anassrs 467 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ 𝑥𝑆) ∧ 𝑧𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7170ralrimdva 3132 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → ∀𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7271ralimdva 3144 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7372impancom 451 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆 → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7451, 73mpd 15 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆)
75 oveq1 7353 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥(+g𝐺)𝑧) = (𝑦(+g𝐺)𝑧))
7675eleq1d 2816 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑆))
7776ralbidv 3155 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ ∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆))
7877cbvralvw 3210 . . . . . . . 8 (∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ ∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆)
7974, 78sylib 218 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆)
80 r19.26 3092 . . . . . . 7 (∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆) ↔ (∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
8179, 51, 80sylanbrc 583 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))
8211, 12, 813jca 1128 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆)))
8382exp42 435 . . . 4 (𝐺 ∈ Grp → (𝑆𝐵 → (𝑆 ≠ ∅ → (∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))))
84833impd 1349 . . 3 (𝐺 ∈ Grp → ((𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))
851, 38, 39issubg2 19054 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))
8684, 85sylibrd 259 . 2 (𝐺 ∈ Grp → ((𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)))
8710, 86impbid2 226 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  wss 3897  c0 4280  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846  invgcminusg 18847  -gcsg 18848  SubGrpcsubg 19033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036
This theorem is referenced by:  dprdsubg  19938  dmatsgrp  22414  scmatsgrp  22434  scmatsgrp1  22437  clssubg  24024  tgpconncomp  24028
  Copyright terms: Public domain W3C validator