MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg4 Structured version   Visualization version   GIF version

Theorem issubg4 19025
Description: A subgroup is a nonempty subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
issubg4.b 𝐵 = (Base‘𝐺)
issubg4.p = (-g𝐺)
Assertion
Ref Expression
issubg4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, ,𝑦   𝑥,𝑆,𝑦

Proof of Theorem issubg4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 issubg4.b . . . 4 𝐵 = (Base‘𝐺)
21subgss 19007 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
3 eqid 2733 . . . . 5 (0g𝐺) = (0g𝐺)
43subg0cl 19014 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
54ne0d 4336 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ≠ ∅)
6 issubg4.p . . . . . 6 = (-g𝐺)
76subgsubcl 19017 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 𝑦) ∈ 𝑆)
873expb 1121 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 𝑦) ∈ 𝑆)
98ralrimivva 3201 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
102, 5, 93jca 1129 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆))
11 simplrl 776 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆𝐵)
12 simplrr 777 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆 ≠ ∅)
13 oveq1 7416 . . . . . . . . . . . . 13 (𝑥 = (0g𝐺) → (𝑥 𝑦) = ((0g𝐺) 𝑦))
1413eleq1d 2819 . . . . . . . . . . . 12 (𝑥 = (0g𝐺) → ((𝑥 𝑦) ∈ 𝑆 ↔ ((0g𝐺) 𝑦) ∈ 𝑆))
1514ralbidv 3178 . . . . . . . . . . 11 (𝑥 = (0g𝐺) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆))
16 simpr 486 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
17 simprr 772 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
18 r19.2z 4495 . . . . . . . . . . . . 13 ((𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
1917, 18sylan 581 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
20 oveq2 7417 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → (𝑥 𝑦) = (𝑥 𝑥))
2120eleq1d 2819 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → ((𝑥 𝑦) ∈ 𝑆 ↔ (𝑥 𝑥) ∈ 𝑆))
2221rspcv 3609 . . . . . . . . . . . . . . . 16 (𝑥𝑆 → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 𝑥) ∈ 𝑆))
2322adantl 483 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 𝑥) ∈ 𝑆))
24 simprl 770 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑆𝐵)
2524sselda 3983 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥𝐵)
261, 3, 6grpsubid 18907 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 𝑥) = (0g𝐺))
2726adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝐵) → (𝑥 𝑥) = (0g𝐺))
2825, 27syldan 592 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑥 𝑥) = (0g𝐺))
2928eleq1d 2819 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → ((𝑥 𝑥) ∈ 𝑆 ↔ (0g𝐺) ∈ 𝑆))
3023, 29sylibd 238 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (0g𝐺) ∈ 𝑆))
3130rexlimdva 3156 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → (∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (0g𝐺) ∈ 𝑆))
3231imp 408 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
3319, 32syldan 592 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
3415, 16, 33rspcdva 3614 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆)
351, 3grpidcl 18850 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
3635ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (0g𝐺) ∈ 𝐵)
3724sselda 3983 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝑦𝐵)
38 eqid 2733 . . . . . . . . . . . . . . . 16 (+g𝐺) = (+g𝐺)
39 eqid 2733 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
401, 38, 39, 6grpsubval 18870 . . . . . . . . . . . . . . 15 (((0g𝐺) ∈ 𝐵𝑦𝐵) → ((0g𝐺) 𝑦) = ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)))
4136, 37, 40syl2anc 585 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((0g𝐺) 𝑦) = ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)))
42 simpll 766 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝐺 ∈ Grp)
431, 39grpinvcl 18872 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
4442, 37, 43syl2anc 585 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((invg𝐺)‘𝑦) ∈ 𝐵)
451, 38, 3grplid 18852 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑦) ∈ 𝐵) → ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)) = ((invg𝐺)‘𝑦))
4642, 44, 45syl2anc 585 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)) = ((invg𝐺)‘𝑦))
4741, 46eqtrd 2773 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((0g𝐺) 𝑦) = ((invg𝐺)‘𝑦))
4847eleq1d 2819 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (((0g𝐺) 𝑦) ∈ 𝑆 ↔ ((invg𝐺)‘𝑦) ∈ 𝑆))
4948ralbidva 3176 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → (∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
5049adantr 482 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
5134, 50mpbid 231 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆)
52 fveq2 6892 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → ((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑧))
5352eleq1d 2819 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (((invg𝐺)‘𝑦) ∈ 𝑆 ↔ ((invg𝐺)‘𝑧) ∈ 𝑆))
5453rspccva 3612 . . . . . . . . . . . . . . . 16 ((∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆𝑧𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
5554ad2ant2l 745 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → ((invg𝐺)‘𝑧) ∈ 𝑆)
56 oveq2 7417 . . . . . . . . . . . . . . . . 17 (𝑦 = ((invg𝐺)‘𝑧) → (𝑥 𝑦) = (𝑥 ((invg𝐺)‘𝑧)))
5756eleq1d 2819 . . . . . . . . . . . . . . . 16 (𝑦 = ((invg𝐺)‘𝑧) → ((𝑥 𝑦) ∈ 𝑆 ↔ (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
5857rspcv 3609 . . . . . . . . . . . . . . 15 (((invg𝐺)‘𝑧) ∈ 𝑆 → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
5955, 58syl 17 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
60 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝐺 ∈ Grp)
61 simplrl 776 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) → 𝑆𝐵)
6261adantr 482 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑆𝐵)
63 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝑆)
6462, 63sseldd 3984 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝐵)
65 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝑆)
6662, 65sseldd 3984 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝐵)
671, 38, 6, 39, 60, 64, 66grpsubinv 18896 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 ((invg𝐺)‘𝑧)) = (𝑥(+g𝐺)𝑧))
6867eleq1d 2819 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → ((𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆 ↔ (𝑥(+g𝐺)𝑧) ∈ 𝑆))
6959, 68sylibd 238 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7069anassrs 469 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ 𝑥𝑆) ∧ 𝑧𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7170ralrimdva 3155 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → ∀𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7271ralimdva 3168 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7372impancom 453 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆 → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7451, 73mpd 15 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆)
75 oveq1 7416 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥(+g𝐺)𝑧) = (𝑦(+g𝐺)𝑧))
7675eleq1d 2819 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑆))
7776ralbidv 3178 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ ∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆))
7877cbvralvw 3235 . . . . . . . 8 (∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ ∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆)
7974, 78sylib 217 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆)
80 r19.26 3112 . . . . . . 7 (∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆) ↔ (∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
8179, 51, 80sylanbrc 584 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))
8211, 12, 813jca 1129 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆)))
8382exp42 437 . . . 4 (𝐺 ∈ Grp → (𝑆𝐵 → (𝑆 ≠ ∅ → (∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))))
84833impd 1349 . . 3 (𝐺 ∈ Grp → ((𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))
851, 38, 39issubg2 19021 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))
8684, 85sylibrd 259 . 2 (𝐺 ∈ Grp → ((𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)))
8710, 86impbid2 225 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  wss 3949  c0 4323  cfv 6544  (class class class)co 7409  Basecbs 17144  +gcplusg 17197  0gc0g 17385  Grpcgrp 18819  invgcminusg 18820  -gcsg 18821  SubGrpcsubg 19000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-sbg 18824  df-subg 19003
This theorem is referenced by:  dprdsubg  19894  dmatsgrp  22001  scmatsgrp  22021  scmatsgrp1  22024  clssubg  23613  tgpconncomp  23617
  Copyright terms: Public domain W3C validator