MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg4 Structured version   Visualization version   GIF version

Theorem issubg4 18999
Description: A subgroup is a nonempty subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
issubg4.b 𝐵 = (Base‘𝐺)
issubg4.p = (-g𝐺)
Assertion
Ref Expression
issubg4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, ,𝑦   𝑥,𝑆,𝑦

Proof of Theorem issubg4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 issubg4.b . . . 4 𝐵 = (Base‘𝐺)
21subgss 18981 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
3 eqid 2732 . . . . 5 (0g𝐺) = (0g𝐺)
43subg0cl 18988 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
54ne0d 4332 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ≠ ∅)
6 issubg4.p . . . . . 6 = (-g𝐺)
76subgsubcl 18991 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 𝑦) ∈ 𝑆)
873expb 1120 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 𝑦) ∈ 𝑆)
98ralrimivva 3200 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
102, 5, 93jca 1128 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆))
11 simplrl 775 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆𝐵)
12 simplrr 776 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆 ≠ ∅)
13 oveq1 7401 . . . . . . . . . . . . 13 (𝑥 = (0g𝐺) → (𝑥 𝑦) = ((0g𝐺) 𝑦))
1413eleq1d 2818 . . . . . . . . . . . 12 (𝑥 = (0g𝐺) → ((𝑥 𝑦) ∈ 𝑆 ↔ ((0g𝐺) 𝑦) ∈ 𝑆))
1514ralbidv 3177 . . . . . . . . . . 11 (𝑥 = (0g𝐺) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆))
16 simpr 485 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
17 simprr 771 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
18 r19.2z 4489 . . . . . . . . . . . . 13 ((𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
1917, 18sylan 580 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
20 oveq2 7402 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → (𝑥 𝑦) = (𝑥 𝑥))
2120eleq1d 2818 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → ((𝑥 𝑦) ∈ 𝑆 ↔ (𝑥 𝑥) ∈ 𝑆))
2221rspcv 3606 . . . . . . . . . . . . . . . 16 (𝑥𝑆 → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 𝑥) ∈ 𝑆))
2322adantl 482 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 𝑥) ∈ 𝑆))
24 simprl 769 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑆𝐵)
2524sselda 3979 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥𝐵)
261, 3, 6grpsubid 18883 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 𝑥) = (0g𝐺))
2726adantlr 713 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝐵) → (𝑥 𝑥) = (0g𝐺))
2825, 27syldan 591 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑥 𝑥) = (0g𝐺))
2928eleq1d 2818 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → ((𝑥 𝑥) ∈ 𝑆 ↔ (0g𝐺) ∈ 𝑆))
3023, 29sylibd 238 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (0g𝐺) ∈ 𝑆))
3130rexlimdva 3155 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → (∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (0g𝐺) ∈ 𝑆))
3231imp 407 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
3319, 32syldan 591 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
3415, 16, 33rspcdva 3611 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆)
351, 3grpidcl 18827 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
3635ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (0g𝐺) ∈ 𝐵)
3724sselda 3979 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝑦𝐵)
38 eqid 2732 . . . . . . . . . . . . . . . 16 (+g𝐺) = (+g𝐺)
39 eqid 2732 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
401, 38, 39, 6grpsubval 18847 . . . . . . . . . . . . . . 15 (((0g𝐺) ∈ 𝐵𝑦𝐵) → ((0g𝐺) 𝑦) = ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)))
4136, 37, 40syl2anc 584 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((0g𝐺) 𝑦) = ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)))
42 simpll 765 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝐺 ∈ Grp)
431, 39grpinvcl 18849 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
4442, 37, 43syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((invg𝐺)‘𝑦) ∈ 𝐵)
451, 38, 3grplid 18829 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑦) ∈ 𝐵) → ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)) = ((invg𝐺)‘𝑦))
4642, 44, 45syl2anc 584 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)) = ((invg𝐺)‘𝑦))
4741, 46eqtrd 2772 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((0g𝐺) 𝑦) = ((invg𝐺)‘𝑦))
4847eleq1d 2818 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (((0g𝐺) 𝑦) ∈ 𝑆 ↔ ((invg𝐺)‘𝑦) ∈ 𝑆))
4948ralbidva 3175 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → (∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
5049adantr 481 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
5134, 50mpbid 231 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆)
52 fveq2 6879 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → ((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑧))
5352eleq1d 2818 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (((invg𝐺)‘𝑦) ∈ 𝑆 ↔ ((invg𝐺)‘𝑧) ∈ 𝑆))
5453rspccva 3609 . . . . . . . . . . . . . . . 16 ((∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆𝑧𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
5554ad2ant2l 744 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → ((invg𝐺)‘𝑧) ∈ 𝑆)
56 oveq2 7402 . . . . . . . . . . . . . . . . 17 (𝑦 = ((invg𝐺)‘𝑧) → (𝑥 𝑦) = (𝑥 ((invg𝐺)‘𝑧)))
5756eleq1d 2818 . . . . . . . . . . . . . . . 16 (𝑦 = ((invg𝐺)‘𝑧) → ((𝑥 𝑦) ∈ 𝑆 ↔ (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
5857rspcv 3606 . . . . . . . . . . . . . . 15 (((invg𝐺)‘𝑧) ∈ 𝑆 → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
5955, 58syl 17 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
60 simplll 773 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝐺 ∈ Grp)
61 simplrl 775 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) → 𝑆𝐵)
6261adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑆𝐵)
63 simprl 769 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝑆)
6462, 63sseldd 3980 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝐵)
65 simprr 771 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝑆)
6662, 65sseldd 3980 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝐵)
671, 38, 6, 39, 60, 64, 66grpsubinv 18872 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 ((invg𝐺)‘𝑧)) = (𝑥(+g𝐺)𝑧))
6867eleq1d 2818 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → ((𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆 ↔ (𝑥(+g𝐺)𝑧) ∈ 𝑆))
6959, 68sylibd 238 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7069anassrs 468 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ 𝑥𝑆) ∧ 𝑧𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7170ralrimdva 3154 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → ∀𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7271ralimdva 3167 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7372impancom 452 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆 → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7451, 73mpd 15 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆)
75 oveq1 7401 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥(+g𝐺)𝑧) = (𝑦(+g𝐺)𝑧))
7675eleq1d 2818 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑆))
7776ralbidv 3177 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ ∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆))
7877cbvralvw 3234 . . . . . . . 8 (∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ ∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆)
7974, 78sylib 217 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆)
80 r19.26 3111 . . . . . . 7 (∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆) ↔ (∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
8179, 51, 80sylanbrc 583 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))
8211, 12, 813jca 1128 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆)))
8382exp42 436 . . . 4 (𝐺 ∈ Grp → (𝑆𝐵 → (𝑆 ≠ ∅ → (∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))))
84833impd 1348 . . 3 (𝐺 ∈ Grp → ((𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))
851, 38, 39issubg2 18995 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))
8684, 85sylibrd 258 . 2 (𝐺 ∈ Grp → ((𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)))
8710, 86impbid2 225 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  wss 3945  c0 4319  cfv 6533  (class class class)co 7394  Basecbs 17128  +gcplusg 17181  0gc0g 17369  Grpcgrp 18796  invgcminusg 18797  -gcsg 18798  SubGrpcsubg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-2 12259  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-ress 17158  df-plusg 17194  df-0g 17371  df-mgm 18545  df-sgrp 18594  df-mnd 18605  df-grp 18799  df-minusg 18800  df-sbg 18801  df-subg 18977
This theorem is referenced by:  dprdsubg  19855  dmatsgrp  21932  scmatsgrp  21952  scmatsgrp1  21955  clssubg  23544  tgpconncomp  23548
  Copyright terms: Public domain W3C validator