| Step | Hyp | Ref
| Expression |
| 1 | | issubg4.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
| 2 | 1 | subgss 19146 |
. . 3
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| 3 | | eqid 2736 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 4 | 3 | subg0cl 19153 |
. . . 4
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝑆) |
| 5 | 4 | ne0d 4341 |
. . 3
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ≠ ∅) |
| 6 | | issubg4.p |
. . . . . 6
⊢ − =
(-g‘𝐺) |
| 7 | 6 | subgsubcl 19156 |
. . . . 5
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 − 𝑦) ∈ 𝑆) |
| 8 | 7 | 3expb 1120 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 − 𝑦) ∈ 𝑆) |
| 9 | 8 | ralrimivva 3201 |
. . 3
⊢ (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) |
| 10 | 2, 5, 9 | 3jca 1128 |
. 2
⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆)) |
| 11 | | simplrl 776 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
| 12 | | simplrr 777 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → 𝑆 ≠ ∅) |
| 13 | | oveq1 7439 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (0g‘𝐺) → (𝑥 − 𝑦) = ((0g‘𝐺) − 𝑦)) |
| 14 | 13 | eleq1d 2825 |
. . . . . . . . . . . 12
⊢ (𝑥 = (0g‘𝐺) → ((𝑥 − 𝑦) ∈ 𝑆 ↔ ((0g‘𝐺) − 𝑦) ∈ 𝑆)) |
| 15 | 14 | ralbidv 3177 |
. . . . . . . . . . 11
⊢ (𝑥 = (0g‘𝐺) → (∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆 ↔ ∀𝑦 ∈ 𝑆 ((0g‘𝐺) − 𝑦) ∈ 𝑆)) |
| 16 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) |
| 17 | | simprr 772 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) → 𝑆 ≠ ∅) |
| 18 | | r19.2z 4494 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ≠ ∅ ∧
∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) |
| 19 | 17, 18 | sylan 580 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) |
| 20 | | oveq2 7440 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑥 → (𝑥 − 𝑦) = (𝑥 − 𝑥)) |
| 21 | 20 | eleq1d 2825 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → ((𝑥 − 𝑦) ∈ 𝑆 ↔ (𝑥 − 𝑥) ∈ 𝑆)) |
| 22 | 21 | rspcv 3617 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑆 → (∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆 → (𝑥 − 𝑥) ∈ 𝑆)) |
| 23 | 22 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆 → (𝑥 − 𝑥) ∈ 𝑆)) |
| 24 | | simprl 770 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ 𝐵) |
| 25 | 24 | sselda 3982 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) |
| 26 | 1, 3, 6 | grpsubid 19043 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑥 − 𝑥) = (0g‘𝐺)) |
| 27 | 26 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝐵) → (𝑥 − 𝑥) = (0g‘𝐺)) |
| 28 | 25, 27 | syldan 591 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (𝑥 − 𝑥) = (0g‘𝐺)) |
| 29 | 28 | eleq1d 2825 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → ((𝑥 − 𝑥) ∈ 𝑆 ↔ (0g‘𝐺) ∈ 𝑆)) |
| 30 | 23, 29 | sylibd 239 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ 𝑆) → (∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆 → (0g‘𝐺) ∈ 𝑆)) |
| 31 | 30 | rexlimdva 3154 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) → (∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆 → (0g‘𝐺) ∈ 𝑆)) |
| 32 | 31 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → (0g‘𝐺) ∈ 𝑆) |
| 33 | 19, 32 | syldan 591 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → (0g‘𝐺) ∈ 𝑆) |
| 34 | 15, 16, 33 | rspcdva 3622 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → ∀𝑦 ∈ 𝑆 ((0g‘𝐺) − 𝑦) ∈ 𝑆) |
| 35 | 1, 3 | grpidcl 18984 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
| 36 | 35 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → (0g‘𝐺) ∈ 𝐵) |
| 37 | 24 | sselda 3982 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐵) |
| 38 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 39 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 40 | 1, 38, 39, 6 | grpsubval 19004 |
. . . . . . . . . . . . . . 15
⊢
(((0g‘𝐺) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((0g‘𝐺) − 𝑦) = ((0g‘𝐺)(+g‘𝐺)((invg‘𝐺)‘𝑦))) |
| 41 | 36, 37, 40 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → ((0g‘𝐺) − 𝑦) = ((0g‘𝐺)(+g‘𝐺)((invg‘𝐺)‘𝑦))) |
| 42 | | simpll 766 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 43 | 1, 39 | grpinvcl 19006 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) |
| 44 | 42, 37, 43 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) |
| 45 | 1, 38, 3 | grplid 18986 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧
((invg‘𝐺)‘𝑦) ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)((invg‘𝐺)‘𝑦)) = ((invg‘𝐺)‘𝑦)) |
| 46 | 42, 44, 45 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → ((0g‘𝐺)(+g‘𝐺)((invg‘𝐺)‘𝑦)) = ((invg‘𝐺)‘𝑦)) |
| 47 | 41, 46 | eqtrd 2776 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → ((0g‘𝐺) − 𝑦) = ((invg‘𝐺)‘𝑦)) |
| 48 | 47 | eleq1d 2825 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → (((0g‘𝐺) − 𝑦) ∈ 𝑆 ↔ ((invg‘𝐺)‘𝑦) ∈ 𝑆)) |
| 49 | 48 | ralbidva 3175 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) → (∀𝑦 ∈ 𝑆 ((0g‘𝐺) − 𝑦) ∈ 𝑆 ↔ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆)) |
| 50 | 49 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → (∀𝑦 ∈ 𝑆 ((0g‘𝐺) − 𝑦) ∈ 𝑆 ↔ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆)) |
| 51 | 34, 50 | mpbid 232 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) |
| 52 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → ((invg‘𝐺)‘𝑦) = ((invg‘𝐺)‘𝑧)) |
| 53 | 52 | eleq1d 2825 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → (((invg‘𝐺)‘𝑦) ∈ 𝑆 ↔ ((invg‘𝐺)‘𝑧) ∈ 𝑆)) |
| 54 | 53 | rspccva 3620 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑦 ∈
𝑆
((invg‘𝐺)‘𝑦) ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → ((invg‘𝐺)‘𝑧) ∈ 𝑆) |
| 55 | 54 | ad2ant2l 746 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((invg‘𝐺)‘𝑧) ∈ 𝑆) |
| 56 | | oveq2 7440 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = ((invg‘𝐺)‘𝑧) → (𝑥 − 𝑦) = (𝑥 −
((invg‘𝐺)‘𝑧))) |
| 57 | 56 | eleq1d 2825 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = ((invg‘𝐺)‘𝑧) → ((𝑥 − 𝑦) ∈ 𝑆 ↔ (𝑥 −
((invg‘𝐺)‘𝑧)) ∈ 𝑆)) |
| 58 | 57 | rspcv 3617 |
. . . . . . . . . . . . . . 15
⊢
(((invg‘𝐺)‘𝑧) ∈ 𝑆 → (∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆 → (𝑥 −
((invg‘𝐺)‘𝑧)) ∈ 𝑆)) |
| 59 | 55, 58 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆 → (𝑥 −
((invg‘𝐺)‘𝑧)) ∈ 𝑆)) |
| 60 | | simplll 774 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝐺 ∈ Grp) |
| 61 | | simplrl 776 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
| 62 | 61 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑆 ⊆ 𝐵) |
| 63 | | simprl 770 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑥 ∈ 𝑆) |
| 64 | 62, 63 | sseldd 3983 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑥 ∈ 𝐵) |
| 65 | | simprr 772 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ 𝑆) |
| 66 | 62, 65 | sseldd 3983 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ 𝐵) |
| 67 | 1, 38, 6, 39, 60, 64, 66 | grpsubinv 19031 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥 −
((invg‘𝐺)‘𝑧)) = (𝑥(+g‘𝐺)𝑧)) |
| 68 | 67 | eleq1d 2825 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 −
((invg‘𝐺)‘𝑧)) ∈ 𝑆 ↔ (𝑥(+g‘𝐺)𝑧) ∈ 𝑆)) |
| 69 | 59, 68 | sylibd 239 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆 → (𝑥(+g‘𝐺)𝑧) ∈ 𝑆)) |
| 70 | 69 | anassrs 467 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈ Grp
∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆 → (𝑥(+g‘𝐺)𝑧) ∈ 𝑆)) |
| 71 | 70 | ralrimdva 3153 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → (∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆 → ∀𝑧 ∈ 𝑆 (𝑥(+g‘𝐺)𝑧) ∈ 𝑆)) |
| 72 | 71 | ralimdva 3166 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆 → ∀𝑥 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑥(+g‘𝐺)𝑧) ∈ 𝑆)) |
| 73 | 72 | impancom 451 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → (∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆 → ∀𝑥 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑥(+g‘𝐺)𝑧) ∈ 𝑆)) |
| 74 | 51, 73 | mpd 15 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → ∀𝑥 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑥(+g‘𝐺)𝑧) ∈ 𝑆) |
| 75 | | oveq1 7439 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥(+g‘𝐺)𝑧) = (𝑦(+g‘𝐺)𝑧)) |
| 76 | 75 | eleq1d 2825 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑥(+g‘𝐺)𝑧) ∈ 𝑆 ↔ (𝑦(+g‘𝐺)𝑧) ∈ 𝑆)) |
| 77 | 76 | ralbidv 3177 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (∀𝑧 ∈ 𝑆 (𝑥(+g‘𝐺)𝑧) ∈ 𝑆 ↔ ∀𝑧 ∈ 𝑆 (𝑦(+g‘𝐺)𝑧) ∈ 𝑆)) |
| 78 | 77 | cbvralvw 3236 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑆 ∀𝑧 ∈ 𝑆 (𝑥(+g‘𝐺)𝑧) ∈ 𝑆 ↔ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑦(+g‘𝐺)𝑧) ∈ 𝑆) |
| 79 | 74, 78 | sylib 218 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑦(+g‘𝐺)𝑧) ∈ 𝑆) |
| 80 | | r19.26 3110 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑆 (∀𝑧 ∈ 𝑆 (𝑦(+g‘𝐺)𝑧) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑦) ∈ 𝑆) ↔ (∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑦(+g‘𝐺)𝑧) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 ((invg‘𝐺)‘𝑦) ∈ 𝑆)) |
| 81 | 79, 51, 80 | sylanbrc 583 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → ∀𝑦 ∈ 𝑆 (∀𝑧 ∈ 𝑆 (𝑦(+g‘𝐺)𝑧) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑦) ∈ 𝑆)) |
| 82 | 11, 12, 81 | 3jca 1128 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅)) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑦 ∈ 𝑆 (∀𝑧 ∈ 𝑆 (𝑦(+g‘𝐺)𝑧) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑦) ∈ 𝑆))) |
| 83 | 82 | exp42 435 |
. . . 4
⊢ (𝐺 ∈ Grp → (𝑆 ⊆ 𝐵 → (𝑆 ≠ ∅ → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆 → (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑦 ∈ 𝑆 (∀𝑧 ∈ 𝑆 (𝑦(+g‘𝐺)𝑧) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑦) ∈ 𝑆)))))) |
| 84 | 83 | 3impd 1348 |
. . 3
⊢ (𝐺 ∈ Grp → ((𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑦 ∈ 𝑆 (∀𝑧 ∈ 𝑆 (𝑦(+g‘𝐺)𝑧) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑦) ∈ 𝑆)))) |
| 85 | 1, 38, 39 | issubg2 19160 |
. . 3
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑦 ∈ 𝑆 (∀𝑧 ∈ 𝑆 (𝑦(+g‘𝐺)𝑧) ∈ 𝑆 ∧ ((invg‘𝐺)‘𝑦) ∈ 𝑆)))) |
| 86 | 84, 85 | sylibrd 259 |
. 2
⊢ (𝐺 ∈ Grp → ((𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺))) |
| 87 | 10, 86 | impbid2 226 |
1
⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆))) |