MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg4 Structured version   Visualization version   GIF version

Theorem issubg4 19059
Description: A subgroup is a nonempty subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
issubg4.b 𝐵 = (Base‘𝐺)
issubg4.p = (-g𝐺)
Assertion
Ref Expression
issubg4 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, ,𝑦   𝑥,𝑆,𝑦

Proof of Theorem issubg4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 issubg4.b . . . 4 𝐵 = (Base‘𝐺)
21subgss 19041 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
3 eqid 2729 . . . . 5 (0g𝐺) = (0g𝐺)
43subg0cl 19048 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
54ne0d 4301 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ≠ ∅)
6 issubg4.p . . . . . 6 = (-g𝐺)
76subgsubcl 19051 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 𝑦) ∈ 𝑆)
873expb 1120 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 𝑦) ∈ 𝑆)
98ralrimivva 3178 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
102, 5, 93jca 1128 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆))
11 simplrl 776 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆𝐵)
12 simplrr 777 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆 ≠ ∅)
13 oveq1 7376 . . . . . . . . . . . . 13 (𝑥 = (0g𝐺) → (𝑥 𝑦) = ((0g𝐺) 𝑦))
1413eleq1d 2813 . . . . . . . . . . . 12 (𝑥 = (0g𝐺) → ((𝑥 𝑦) ∈ 𝑆 ↔ ((0g𝐺) 𝑦) ∈ 𝑆))
1514ralbidv 3156 . . . . . . . . . . 11 (𝑥 = (0g𝐺) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆))
16 simpr 484 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
17 simprr 772 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑆 ≠ ∅)
18 r19.2z 4454 . . . . . . . . . . . . 13 ((𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
1917, 18sylan 580 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)
20 oveq2 7377 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → (𝑥 𝑦) = (𝑥 𝑥))
2120eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → ((𝑥 𝑦) ∈ 𝑆 ↔ (𝑥 𝑥) ∈ 𝑆))
2221rspcv 3581 . . . . . . . . . . . . . . . 16 (𝑥𝑆 → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 𝑥) ∈ 𝑆))
2322adantl 481 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 𝑥) ∈ 𝑆))
24 simprl 770 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑆𝐵)
2524sselda 3943 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → 𝑥𝐵)
261, 3, 6grpsubid 18938 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 𝑥) = (0g𝐺))
2726adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝐵) → (𝑥 𝑥) = (0g𝐺))
2825, 27syldan 591 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (𝑥 𝑥) = (0g𝐺))
2928eleq1d 2813 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → ((𝑥 𝑥) ∈ 𝑆 ↔ (0g𝐺) ∈ 𝑆))
3023, 29sylibd 239 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (0g𝐺) ∈ 𝑆))
3130rexlimdva 3134 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → (∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (0g𝐺) ∈ 𝑆))
3231imp 406 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∃𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
3319, 32syldan 591 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
3415, 16, 33rspcdva 3586 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆)
351, 3grpidcl 18879 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
3635ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (0g𝐺) ∈ 𝐵)
3724sselda 3943 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝑦𝐵)
38 eqid 2729 . . . . . . . . . . . . . . . 16 (+g𝐺) = (+g𝐺)
39 eqid 2729 . . . . . . . . . . . . . . . 16 (invg𝐺) = (invg𝐺)
401, 38, 39, 6grpsubval 18899 . . . . . . . . . . . . . . 15 (((0g𝐺) ∈ 𝐵𝑦𝐵) → ((0g𝐺) 𝑦) = ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)))
4136, 37, 40syl2anc 584 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((0g𝐺) 𝑦) = ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)))
42 simpll 766 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → 𝐺 ∈ Grp)
431, 39grpinvcl 18901 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
4442, 37, 43syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((invg𝐺)‘𝑦) ∈ 𝐵)
451, 38, 3grplid 18881 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑦) ∈ 𝐵) → ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)) = ((invg𝐺)‘𝑦))
4642, 44, 45syl2anc 584 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((0g𝐺)(+g𝐺)((invg𝐺)‘𝑦)) = ((invg𝐺)‘𝑦))
4741, 46eqtrd 2764 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → ((0g𝐺) 𝑦) = ((invg𝐺)‘𝑦))
4847eleq1d 2813 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑦𝑆) → (((0g𝐺) 𝑦) ∈ 𝑆 ↔ ((invg𝐺)‘𝑦) ∈ 𝑆))
4948ralbidva 3154 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) → (∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
5049adantr 480 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (∀𝑦𝑆 ((0g𝐺) 𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
5134, 50mpbid 232 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆)
52 fveq2 6840 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → ((invg𝐺)‘𝑦) = ((invg𝐺)‘𝑧))
5352eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (((invg𝐺)‘𝑦) ∈ 𝑆 ↔ ((invg𝐺)‘𝑧) ∈ 𝑆))
5453rspccva 3584 . . . . . . . . . . . . . . . 16 ((∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆𝑧𝑆) → ((invg𝐺)‘𝑧) ∈ 𝑆)
5554ad2ant2l 746 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → ((invg𝐺)‘𝑧) ∈ 𝑆)
56 oveq2 7377 . . . . . . . . . . . . . . . . 17 (𝑦 = ((invg𝐺)‘𝑧) → (𝑥 𝑦) = (𝑥 ((invg𝐺)‘𝑧)))
5756eleq1d 2813 . . . . . . . . . . . . . . . 16 (𝑦 = ((invg𝐺)‘𝑧) → ((𝑥 𝑦) ∈ 𝑆 ↔ (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
5857rspcv 3581 . . . . . . . . . . . . . . 15 (((invg𝐺)‘𝑧) ∈ 𝑆 → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
5955, 58syl 17 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆))
60 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝐺 ∈ Grp)
61 simplrl 776 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) → 𝑆𝐵)
6261adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑆𝐵)
63 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝑆)
6462, 63sseldd 3944 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝐵)
65 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝑆)
6662, 65sseldd 3944 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝐵)
671, 38, 6, 39, 60, 64, 66grpsubinv 18926 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 ((invg𝐺)‘𝑧)) = (𝑥(+g𝐺)𝑧))
6867eleq1d 2813 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → ((𝑥 ((invg𝐺)‘𝑧)) ∈ 𝑆 ↔ (𝑥(+g𝐺)𝑧) ∈ 𝑆))
6959, 68sylibd 239 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7069anassrs 467 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ 𝑥𝑆) ∧ 𝑧𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7170ralrimdva 3133 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) ∧ 𝑥𝑆) → (∀𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → ∀𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7271ralimdva 3145 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7372impancom 451 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆 → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆))
7451, 73mpd 15 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆)
75 oveq1 7376 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥(+g𝐺)𝑧) = (𝑦(+g𝐺)𝑧))
7675eleq1d 2813 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑆))
7776ralbidv 3156 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ ∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆))
7877cbvralvw 3213 . . . . . . . 8 (∀𝑥𝑆𝑧𝑆 (𝑥(+g𝐺)𝑧) ∈ 𝑆 ↔ ∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆)
7974, 78sylib 218 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆)
80 r19.26 3091 . . . . . . 7 (∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆) ↔ (∀𝑦𝑆𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ∀𝑦𝑆 ((invg𝐺)‘𝑦) ∈ 𝑆))
8179, 51, 80sylanbrc 583 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))
8211, 12, 813jca 1128 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆)))
8382exp42 435 . . . 4 (𝐺 ∈ Grp → (𝑆𝐵 → (𝑆 ≠ ∅ → (∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆 → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))))
84833impd 1349 . . 3 (𝐺 ∈ Grp → ((𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))
851, 38, 39issubg2 19055 . . 3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑦𝑆 (∀𝑧𝑆 (𝑦(+g𝐺)𝑧) ∈ 𝑆 ∧ ((invg𝐺)‘𝑦) ∈ 𝑆))))
8684, 85sylibrd 259 . 2 (𝐺 ∈ Grp → ((𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)))
8710, 86impbid2 226 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵𝑆 ≠ ∅ ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3911  c0 4292  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Grpcgrp 18847  invgcminusg 18848  -gcsg 18849  SubGrpcsubg 19034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037
This theorem is referenced by:  dprdsubg  19940  dmatsgrp  22419  scmatsgrp  22439  scmatsgrp1  22442  clssubg  24029  tgpconncomp  24033
  Copyright terms: Public domain W3C validator