| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvfsumrlim3 | Structured version Visualization version GIF version | ||
| Description: Conjoin the statements of dvfsumrlim 25995 and dvfsumrlim2 25996. (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016.) |
| Ref | Expression |
|---|---|
| dvfsum.s | ⊢ 𝑆 = (𝑇(,)+∞) |
| dvfsum.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| dvfsum.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| dvfsum.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| dvfsum.md | ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) |
| dvfsum.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| dvfsum.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
| dvfsum.b1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
| dvfsum.b2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| dvfsum.b3 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
| dvfsum.c | ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) |
| dvfsumrlim.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) |
| dvfsumrlim.g | ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) |
| dvfsumrlim.k | ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) |
| dvfsumrlim3.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐸) |
| Ref | Expression |
|---|---|
| dvfsumrlim3 | ⊢ (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | . . 3 ⊢ 𝑆 = (𝑇(,)+∞) | |
| 2 | dvfsum.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | dvfsum.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | dvfsum.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 5 | dvfsum.md | . . 3 ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) | |
| 6 | dvfsum.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
| 7 | dvfsum.a | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
| 8 | dvfsum.b1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) | |
| 9 | dvfsum.b2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
| 10 | dvfsum.b3 | . . 3 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) | |
| 11 | dvfsum.c | . . 3 ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) | |
| 12 | dvfsumrlim.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dvfsumrlimf 25988 | . 2 ⊢ (𝜑 → 𝐺:𝑆⟶ℝ) |
| 14 | dvfsumrlim.l | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) | |
| 15 | dvfsumrlim.k | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) | |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 12, 15 | dvfsumrlim 25995 | . 2 ⊢ (𝜑 → 𝐺 ∈ dom ⇝𝑟 ) |
| 17 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑀 ∈ ℤ) |
| 18 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝐷 ∈ ℝ) |
| 19 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑀 ≤ (𝐷 + 1)) |
| 20 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑇 ∈ ℝ) |
| 21 | 7 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
| 22 | 8 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
| 23 | 9 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| 24 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
| 25 | 14 | 3adant1r 1178 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) |
| 26 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) |
| 27 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑋 ∈ 𝑆) | |
| 28 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝐷 ≤ 𝑋) | |
| 29 | 1, 2, 17, 18, 19, 20, 21, 22, 23, 24, 11, 25, 12, 26, 27, 28 | dvfsumrlim2 25996 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ ⦋𝑋 / 𝑥⦌𝐵) |
| 30 | 27 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → 𝑋 ∈ 𝑆) |
| 31 | nfcvd 2900 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑆 → Ⅎ𝑥𝐸) | |
| 32 | dvfsumrlim3.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐸) | |
| 33 | 31, 32 | csbiegf 3912 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑆 → ⦋𝑋 / 𝑥⦌𝐵 = 𝐸) |
| 34 | 30, 33 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → ⦋𝑋 / 𝑥⦌𝐵 = 𝐸) |
| 35 | 29, 34 | breqtrd 5150 | . . . . 5 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸) |
| 36 | 35 | exp42 435 | . . . 4 ⊢ (𝜑 → (𝐷 ≤ 𝑋 → (𝑋 ∈ 𝑆 → (𝐺 ⇝𝑟 𝐿 → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)))) |
| 37 | 36 | com24 95 | . . 3 ⊢ (𝜑 → (𝐺 ⇝𝑟 𝐿 → (𝑋 ∈ 𝑆 → (𝐷 ≤ 𝑋 → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)))) |
| 38 | 37 | 3impd 1349 | . 2 ⊢ (𝜑 → ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)) |
| 39 | 13, 16, 38 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⦋csb 3879 class class class wbr 5124 ↦ cmpt 5206 dom cdm 5659 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 +∞cpnf 11271 ≤ cle 11275 − cmin 11471 ℤcz 12593 ℤ≥cuz 12857 (,)cioo 13367 ...cfz 13529 ⌊cfl 13812 abscabs 15258 ⇝𝑟 crli 15506 Σcsu 15707 D cdv 25821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-haus 23258 df-cmp 23330 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-xms 24264 df-ms 24265 df-tms 24266 df-cncf 24827 df-limc 25824 df-dv 25825 |
| This theorem is referenced by: divsqrtsumlem 26947 logdivsum 27501 |
| Copyright terms: Public domain | W3C validator |