MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlim3 Structured version   Visualization version   GIF version

Theorem dvfsumrlim3 25102
Description: Conjoin the statements of dvfsumrlim 25100 and dvfsumrlim2 25101. (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
dvfsumrlim3.1 (𝑥 = 𝑋𝐵 = 𝐸)
Assertion
Ref Expression
dvfsumrlim3 (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺𝑟 𝐿𝑋𝑆𝐷𝑋) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸)))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝑥,𝐸   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐸(𝑘)   𝐺(𝑥,𝑘)   𝐿(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlim3
StepHypRef Expression
1 dvfsum.s . . 3 𝑆 = (𝑇(,)+∞)
2 dvfsum.z . . 3 𝑍 = (ℤ𝑀)
3 dvfsum.m . . 3 (𝜑𝑀 ∈ ℤ)
4 dvfsum.d . . 3 (𝜑𝐷 ∈ ℝ)
5 dvfsum.md . . 3 (𝜑𝑀 ≤ (𝐷 + 1))
6 dvfsum.t . . 3 (𝜑𝑇 ∈ ℝ)
7 dvfsum.a . . 3 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
8 dvfsum.b1 . . 3 ((𝜑𝑥𝑆) → 𝐵𝑉)
9 dvfsum.b2 . . 3 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
10 dvfsum.b3 . . 3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
11 dvfsum.c . . 3 (𝑥 = 𝑘𝐵 = 𝐶)
12 dvfsumrlim.g . . 3 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dvfsumrlimf 25094 . 2 (𝜑𝐺:𝑆⟶ℝ)
14 dvfsumrlim.l . . 3 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
15 dvfsumrlim.k . . 3 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 12, 15dvfsumrlim 25100 . 2 (𝜑𝐺 ∈ dom ⇝𝑟 )
173adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑀 ∈ ℤ)
184adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝐷 ∈ ℝ)
195adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑀 ≤ (𝐷 + 1))
206adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑇 ∈ ℝ)
217adantlr 711 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
228adantlr 711 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝑥𝑆) → 𝐵𝑉)
239adantlr 711 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
2410adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
25143adant1r 1175 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
2615adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → (𝑥𝑆𝐵) ⇝𝑟 0)
27 simprr 769 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑋𝑆)
28 simprl 767 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝐷𝑋)
291, 2, 17, 18, 19, 20, 21, 22, 23, 24, 11, 25, 12, 26, 27, 28dvfsumrlim2 25101 . . . . . 6 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
3027adantr 480 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → 𝑋𝑆)
31 nfcvd 2907 . . . . . . . 8 (𝑋𝑆𝑥𝐸)
32 dvfsumrlim3.1 . . . . . . . 8 (𝑥 = 𝑋𝐵 = 𝐸)
3331, 32csbiegf 3862 . . . . . . 7 (𝑋𝑆𝑋 / 𝑥𝐵 = 𝐸)
3430, 33syl 17 . . . . . 6 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → 𝑋 / 𝑥𝐵 = 𝐸)
3529, 34breqtrd 5096 . . . . 5 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸)
3635exp42 435 . . . 4 (𝜑 → (𝐷𝑋 → (𝑋𝑆 → (𝐺𝑟 𝐿 → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸))))
3736com24 95 . . 3 (𝜑 → (𝐺𝑟 𝐿 → (𝑋𝑆 → (𝐷𝑋 → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸))))
38373impd 1346 . 2 (𝜑 → ((𝐺𝑟 𝐿𝑋𝑆𝐷𝑋) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸))
3913, 16, 383jca 1126 1 (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺𝑟 𝐿𝑋𝑆𝐷𝑋) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  csb 3828   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937  cle 10941  cmin 11135  cz 12249  cuz 12511  (,)cioo 13008  ...cfz 13168  cfl 13438  abscabs 14873  𝑟 crli 15122  Σcsu 15325   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  divsqrtsumlem  26034  logdivsum  26586
  Copyright terms: Public domain W3C validator