![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvfsumrlim3 | Structured version Visualization version GIF version |
Description: Conjoin the statements of dvfsumrlim 25888 and dvfsumrlim2 25889. (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
dvfsum.s | ⊢ 𝑆 = (𝑇(,)+∞) |
dvfsum.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
dvfsum.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
dvfsum.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
dvfsum.md | ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) |
dvfsum.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
dvfsum.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
dvfsum.b1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
dvfsum.b2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
dvfsum.b3 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
dvfsum.c | ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) |
dvfsumrlim.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) |
dvfsumrlim.g | ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) |
dvfsumrlim.k | ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) |
dvfsumrlim3.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐸) |
Ref | Expression |
---|---|
dvfsumrlim3 | ⊢ (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvfsum.s | . . 3 ⊢ 𝑆 = (𝑇(,)+∞) | |
2 | dvfsum.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | dvfsum.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | dvfsum.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
5 | dvfsum.md | . . 3 ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) | |
6 | dvfsum.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
7 | dvfsum.a | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
8 | dvfsum.b1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) | |
9 | dvfsum.b2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
10 | dvfsum.b3 | . . 3 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) | |
11 | dvfsum.c | . . 3 ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) | |
12 | dvfsumrlim.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dvfsumrlimf 25881 | . 2 ⊢ (𝜑 → 𝐺:𝑆⟶ℝ) |
14 | dvfsumrlim.l | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) | |
15 | dvfsumrlim.k | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) | |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 12, 15 | dvfsumrlim 25888 | . 2 ⊢ (𝜑 → 𝐺 ∈ dom ⇝𝑟 ) |
17 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑀 ∈ ℤ) |
18 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝐷 ∈ ℝ) |
19 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑀 ≤ (𝐷 + 1)) |
20 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑇 ∈ ℝ) |
21 | 7 | adantlr 712 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
22 | 8 | adantlr 712 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
23 | 9 | adantlr 712 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
24 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
25 | 14 | 3adant1r 1174 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) |
26 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) |
27 | simprr 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑋 ∈ 𝑆) | |
28 | simprl 768 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝐷 ≤ 𝑋) | |
29 | 1, 2, 17, 18, 19, 20, 21, 22, 23, 24, 11, 25, 12, 26, 27, 28 | dvfsumrlim2 25889 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ ⦋𝑋 / 𝑥⦌𝐵) |
30 | 27 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → 𝑋 ∈ 𝑆) |
31 | nfcvd 2896 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑆 → Ⅎ𝑥𝐸) | |
32 | dvfsumrlim3.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐸) | |
33 | 31, 32 | csbiegf 3919 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑆 → ⦋𝑋 / 𝑥⦌𝐵 = 𝐸) |
34 | 30, 33 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → ⦋𝑋 / 𝑥⦌𝐵 = 𝐸) |
35 | 29, 34 | breqtrd 5164 | . . . . 5 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸) |
36 | 35 | exp42 435 | . . . 4 ⊢ (𝜑 → (𝐷 ≤ 𝑋 → (𝑋 ∈ 𝑆 → (𝐺 ⇝𝑟 𝐿 → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)))) |
37 | 36 | com24 95 | . . 3 ⊢ (𝜑 → (𝐺 ⇝𝑟 𝐿 → (𝑋 ∈ 𝑆 → (𝐷 ≤ 𝑋 → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)))) |
38 | 37 | 3impd 1345 | . 2 ⊢ (𝜑 → ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)) |
39 | 13, 16, 38 | 3jca 1125 | 1 ⊢ (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⦋csb 3885 class class class wbr 5138 ↦ cmpt 5221 dom cdm 5666 ⟶wf 6529 ‘cfv 6533 (class class class)co 7401 ℝcr 11105 0cc0 11106 1c1 11107 + caddc 11109 +∞cpnf 11242 ≤ cle 11246 − cmin 11441 ℤcz 12555 ℤ≥cuz 12819 (,)cioo 13321 ...cfz 13481 ⌊cfl 13752 abscabs 15178 ⇝𝑟 crli 15426 Σcsu 15629 D cdv 25714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-ioo 13325 df-ico 13327 df-icc 13328 df-fz 13482 df-fzo 13625 df-fl 13754 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-limsup 15412 df-clim 15429 df-rlim 15430 df-sum 15630 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-submnd 18704 df-mulg 18986 df-cntz 19223 df-cmn 19692 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-mopn 21224 df-fbas 21225 df-fg 21226 df-cnfld 21229 df-top 22718 df-topon 22735 df-topsp 22757 df-bases 22771 df-cld 22845 df-ntr 22846 df-cls 22847 df-nei 22924 df-lp 22962 df-perf 22963 df-cn 23053 df-cnp 23054 df-haus 23141 df-cmp 23213 df-tx 23388 df-hmeo 23581 df-fil 23672 df-fm 23764 df-flim 23765 df-flf 23766 df-xms 24148 df-ms 24149 df-tms 24150 df-cncf 24720 df-limc 25717 df-dv 25718 |
This theorem is referenced by: divsqrtsumlem 26828 logdivsum 27382 |
Copyright terms: Public domain | W3C validator |