![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvfsumrlim3 | Structured version Visualization version GIF version |
Description: Conjoin the statements of dvfsumrlim 26087 and dvfsumrlim2 26088. (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
dvfsum.s | ⊢ 𝑆 = (𝑇(,)+∞) |
dvfsum.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
dvfsum.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
dvfsum.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
dvfsum.md | ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) |
dvfsum.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
dvfsum.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
dvfsum.b1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
dvfsum.b2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
dvfsum.b3 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
dvfsum.c | ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) |
dvfsumrlim.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) |
dvfsumrlim.g | ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) |
dvfsumrlim.k | ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) |
dvfsumrlim3.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐸) |
Ref | Expression |
---|---|
dvfsumrlim3 | ⊢ (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvfsum.s | . . 3 ⊢ 𝑆 = (𝑇(,)+∞) | |
2 | dvfsum.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | dvfsum.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | dvfsum.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
5 | dvfsum.md | . . 3 ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) | |
6 | dvfsum.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
7 | dvfsum.a | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
8 | dvfsum.b1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) | |
9 | dvfsum.b2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
10 | dvfsum.b3 | . . 3 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) | |
11 | dvfsum.c | . . 3 ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) | |
12 | dvfsumrlim.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dvfsumrlimf 26080 | . 2 ⊢ (𝜑 → 𝐺:𝑆⟶ℝ) |
14 | dvfsumrlim.l | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) | |
15 | dvfsumrlim.k | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) | |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 12, 15 | dvfsumrlim 26087 | . 2 ⊢ (𝜑 → 𝐺 ∈ dom ⇝𝑟 ) |
17 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑀 ∈ ℤ) |
18 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝐷 ∈ ℝ) |
19 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑀 ≤ (𝐷 + 1)) |
20 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑇 ∈ ℝ) |
21 | 7 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
22 | 8 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
23 | 9 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
24 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
25 | 14 | 3adant1r 1176 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) |
26 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) |
27 | simprr 773 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑋 ∈ 𝑆) | |
28 | simprl 771 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝐷 ≤ 𝑋) | |
29 | 1, 2, 17, 18, 19, 20, 21, 22, 23, 24, 11, 25, 12, 26, 27, 28 | dvfsumrlim2 26088 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ ⦋𝑋 / 𝑥⦌𝐵) |
30 | 27 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → 𝑋 ∈ 𝑆) |
31 | nfcvd 2904 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑆 → Ⅎ𝑥𝐸) | |
32 | dvfsumrlim3.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐸) | |
33 | 31, 32 | csbiegf 3942 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑆 → ⦋𝑋 / 𝑥⦌𝐵 = 𝐸) |
34 | 30, 33 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → ⦋𝑋 / 𝑥⦌𝐵 = 𝐸) |
35 | 29, 34 | breqtrd 5174 | . . . . 5 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸) |
36 | 35 | exp42 435 | . . . 4 ⊢ (𝜑 → (𝐷 ≤ 𝑋 → (𝑋 ∈ 𝑆 → (𝐺 ⇝𝑟 𝐿 → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)))) |
37 | 36 | com24 95 | . . 3 ⊢ (𝜑 → (𝐺 ⇝𝑟 𝐿 → (𝑋 ∈ 𝑆 → (𝐷 ≤ 𝑋 → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)))) |
38 | 37 | 3impd 1347 | . 2 ⊢ (𝜑 → ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)) |
39 | 13, 16, 38 | 3jca 1127 | 1 ⊢ (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ⦋csb 3908 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5689 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 +∞cpnf 11290 ≤ cle 11294 − cmin 11490 ℤcz 12611 ℤ≥cuz 12876 (,)cioo 13384 ...cfz 13544 ⌊cfl 13827 abscabs 15270 ⇝𝑟 crli 15518 Σcsu 15719 D cdv 25913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-cmp 23411 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-limc 25916 df-dv 25917 |
This theorem is referenced by: divsqrtsumlem 27038 logdivsum 27592 |
Copyright terms: Public domain | W3C validator |