![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvfsumrlim3 | Structured version Visualization version GIF version |
Description: Conjoin the statements of dvfsumrlim 24134 and dvfsumrlim2 24135. (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
dvfsum.s | ⊢ 𝑆 = (𝑇(,)+∞) |
dvfsum.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
dvfsum.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
dvfsum.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
dvfsum.md | ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) |
dvfsum.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
dvfsum.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
dvfsum.b1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
dvfsum.b2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
dvfsum.b3 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
dvfsum.c | ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) |
dvfsumrlim.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) |
dvfsumrlim.g | ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) |
dvfsumrlim.k | ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) |
dvfsumrlim3.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐸) |
Ref | Expression |
---|---|
dvfsumrlim3 | ⊢ (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvfsum.s | . . 3 ⊢ 𝑆 = (𝑇(,)+∞) | |
2 | dvfsum.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | dvfsum.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | dvfsum.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
5 | dvfsum.md | . . 3 ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) | |
6 | dvfsum.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
7 | dvfsum.a | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
8 | dvfsum.b1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) | |
9 | dvfsum.b2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
10 | dvfsum.b3 | . . 3 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) | |
11 | dvfsum.c | . . 3 ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) | |
12 | dvfsumrlim.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dvfsumrlimf 24128 | . 2 ⊢ (𝜑 → 𝐺:𝑆⟶ℝ) |
14 | dvfsumrlim.l | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) | |
15 | dvfsumrlim.k | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) | |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 12, 15 | dvfsumrlim 24134 | . 2 ⊢ (𝜑 → 𝐺 ∈ dom ⇝𝑟 ) |
17 | 3 | adantr 473 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑀 ∈ ℤ) |
18 | 4 | adantr 473 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝐷 ∈ ℝ) |
19 | 5 | adantr 473 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑀 ≤ (𝐷 + 1)) |
20 | 6 | adantr 473 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑇 ∈ ℝ) |
21 | 7 | adantlr 707 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
22 | 8 | adantlr 707 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
23 | 9 | adantlr 707 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
24 | 10 | adantr 473 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
25 | 14 | 3adant1r 1224 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) |
26 | 15 | adantr 473 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) |
27 | simprr 790 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑋 ∈ 𝑆) | |
28 | simprl 788 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝐷 ≤ 𝑋) | |
29 | 1, 2, 17, 18, 19, 20, 21, 22, 23, 24, 11, 25, 12, 26, 27, 28 | dvfsumrlim2 24135 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ ⦋𝑋 / 𝑥⦌𝐵) |
30 | 27 | adantr 473 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → 𝑋 ∈ 𝑆) |
31 | nfcvd 2943 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑆 → Ⅎ𝑥𝐸) | |
32 | dvfsumrlim3.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐸) | |
33 | 31, 32 | csbiegf 3753 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑆 → ⦋𝑋 / 𝑥⦌𝐵 = 𝐸) |
34 | 30, 33 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → ⦋𝑋 / 𝑥⦌𝐵 = 𝐸) |
35 | 29, 34 | breqtrd 4870 | . . . . 5 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸) |
36 | 35 | exp42 427 | . . . 4 ⊢ (𝜑 → (𝐷 ≤ 𝑋 → (𝑋 ∈ 𝑆 → (𝐺 ⇝𝑟 𝐿 → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)))) |
37 | 36 | com24 95 | . . 3 ⊢ (𝜑 → (𝐺 ⇝𝑟 𝐿 → (𝑋 ∈ 𝑆 → (𝐷 ≤ 𝑋 → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)))) |
38 | 37 | 3impd 1458 | . 2 ⊢ (𝜑 → ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)) |
39 | 13, 16, 38 | 3jca 1159 | 1 ⊢ (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ⦋csb 3729 class class class wbr 4844 ↦ cmpt 4923 dom cdm 5313 ⟶wf 6098 ‘cfv 6102 (class class class)co 6879 ℝcr 10224 0cc0 10225 1c1 10226 + caddc 10228 +∞cpnf 10361 ≤ cle 10365 − cmin 10557 ℤcz 11665 ℤ≥cuz 11929 (,)cioo 12423 ...cfz 12579 ⌊cfl 12845 abscabs 14314 ⇝𝑟 crli 14556 Σcsu 14756 D cdv 23967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-inf2 8789 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 ax-pre-sup 10303 ax-addf 10304 ax-mulf 10305 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-iin 4714 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-se 5273 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-isom 6111 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-of 7132 df-om 7301 df-1st 7402 df-2nd 7403 df-supp 7534 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-2o 7801 df-oadd 7804 df-er 7983 df-map 8098 df-pm 8099 df-ixp 8150 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-fsupp 8519 df-fi 8560 df-sup 8591 df-inf 8592 df-oi 8658 df-card 9052 df-cda 9279 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-div 10978 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-5 11378 df-6 11379 df-7 11380 df-8 11381 df-9 11382 df-n0 11580 df-z 11666 df-dec 11783 df-uz 11930 df-q 12033 df-rp 12074 df-xneg 12192 df-xadd 12193 df-xmul 12194 df-ioo 12427 df-ico 12429 df-icc 12430 df-fz 12580 df-fzo 12720 df-fl 12847 df-seq 13055 df-exp 13114 df-hash 13370 df-cj 14179 df-re 14180 df-im 14181 df-sqrt 14315 df-abs 14316 df-limsup 14542 df-clim 14559 df-rlim 14560 df-sum 14757 df-struct 16185 df-ndx 16186 df-slot 16187 df-base 16189 df-sets 16190 df-ress 16191 df-plusg 16279 df-mulr 16280 df-starv 16281 df-sca 16282 df-vsca 16283 df-ip 16284 df-tset 16285 df-ple 16286 df-ds 16288 df-unif 16289 df-hom 16290 df-cco 16291 df-rest 16397 df-topn 16398 df-0g 16416 df-gsum 16417 df-topgen 16418 df-pt 16419 df-prds 16422 df-xrs 16476 df-qtop 16481 df-imas 16482 df-xps 16484 df-mre 16560 df-mrc 16561 df-acs 16563 df-mgm 17556 df-sgrp 17598 df-mnd 17609 df-submnd 17650 df-mulg 17856 df-cntz 18061 df-cmn 18509 df-psmet 20059 df-xmet 20060 df-met 20061 df-bl 20062 df-mopn 20063 df-fbas 20064 df-fg 20065 df-cnfld 20068 df-top 21026 df-topon 21043 df-topsp 21065 df-bases 21078 df-cld 21151 df-ntr 21152 df-cls 21153 df-nei 21230 df-lp 21268 df-perf 21269 df-cn 21359 df-cnp 21360 df-haus 21447 df-cmp 21518 df-tx 21693 df-hmeo 21886 df-fil 21977 df-fm 22069 df-flim 22070 df-flf 22071 df-xms 22452 df-ms 22453 df-tms 22454 df-cncf 23008 df-limc 23970 df-dv 23971 |
This theorem is referenced by: divsqrtsumlem 25057 logdivsum 25573 |
Copyright terms: Public domain | W3C validator |