MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlim3 Structured version   Visualization version   GIF version

Theorem dvfsumrlim3 24633
Description: Conjoin the statements of dvfsumrlim 24631 and dvfsumrlim2 24632. (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
dvfsumrlim3.1 (𝑥 = 𝑋𝐵 = 𝐸)
Assertion
Ref Expression
dvfsumrlim3 (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺𝑟 𝐿𝑋𝑆𝐷𝑋) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸)))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝑥,𝐸   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐸(𝑘)   𝐺(𝑥,𝑘)   𝐿(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlim3
StepHypRef Expression
1 dvfsum.s . . 3 𝑆 = (𝑇(,)+∞)
2 dvfsum.z . . 3 𝑍 = (ℤ𝑀)
3 dvfsum.m . . 3 (𝜑𝑀 ∈ ℤ)
4 dvfsum.d . . 3 (𝜑𝐷 ∈ ℝ)
5 dvfsum.md . . 3 (𝜑𝑀 ≤ (𝐷 + 1))
6 dvfsum.t . . 3 (𝜑𝑇 ∈ ℝ)
7 dvfsum.a . . 3 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
8 dvfsum.b1 . . 3 ((𝜑𝑥𝑆) → 𝐵𝑉)
9 dvfsum.b2 . . 3 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
10 dvfsum.b3 . . 3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
11 dvfsum.c . . 3 (𝑥 = 𝑘𝐵 = 𝐶)
12 dvfsumrlim.g . . 3 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dvfsumrlimf 24625 . 2 (𝜑𝐺:𝑆⟶ℝ)
14 dvfsumrlim.l . . 3 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
15 dvfsumrlim.k . . 3 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 12, 15dvfsumrlim 24631 . 2 (𝜑𝐺 ∈ dom ⇝𝑟 )
173adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑀 ∈ ℤ)
184adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝐷 ∈ ℝ)
195adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑀 ≤ (𝐷 + 1))
206adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑇 ∈ ℝ)
217adantlr 713 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
228adantlr 713 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝑥𝑆) → 𝐵𝑉)
239adantlr 713 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
2410adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
25143adant1r 1173 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
2615adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → (𝑥𝑆𝐵) ⇝𝑟 0)
27 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑋𝑆)
28 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝐷𝑋)
291, 2, 17, 18, 19, 20, 21, 22, 23, 24, 11, 25, 12, 26, 27, 28dvfsumrlim2 24632 . . . . . 6 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
3027adantr 483 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → 𝑋𝑆)
31 nfcvd 2981 . . . . . . . 8 (𝑋𝑆𝑥𝐸)
32 dvfsumrlim3.1 . . . . . . . 8 (𝑥 = 𝑋𝐵 = 𝐸)
3331, 32csbiegf 3919 . . . . . . 7 (𝑋𝑆𝑋 / 𝑥𝐵 = 𝐸)
3430, 33syl 17 . . . . . 6 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → 𝑋 / 𝑥𝐵 = 𝐸)
3529, 34breqtrd 5095 . . . . 5 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸)
3635exp42 438 . . . 4 (𝜑 → (𝐷𝑋 → (𝑋𝑆 → (𝐺𝑟 𝐿 → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸))))
3736com24 95 . . 3 (𝜑 → (𝐺𝑟 𝐿 → (𝑋𝑆 → (𝐷𝑋 → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸))))
38373impd 1344 . 2 (𝜑 → ((𝐺𝑟 𝐿𝑋𝑆𝐷𝑋) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸))
3913, 16, 383jca 1124 1 (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺𝑟 𝐿𝑋𝑆𝐷𝑋) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  csb 3886   class class class wbr 5069  cmpt 5149  dom cdm 5558  wf 6354  cfv 6358  (class class class)co 7159  cr 10539  0cc0 10540  1c1 10541   + caddc 10543  +∞cpnf 10675  cle 10679  cmin 10873  cz 11984  cuz 12246  (,)cioo 12741  ...cfz 12895  cfl 13163  abscabs 14596  𝑟 crli 14845  Σcsu 15045   D cdv 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-cmp 21998  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468
This theorem is referenced by:  divsqrtsumlem  25560  logdivsum  26112
  Copyright terms: Public domain W3C validator