MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlim3 Structured version   Visualization version   GIF version

Theorem dvfsumrlim3 26074
Description: Conjoin the statements of dvfsumrlim 26072 and dvfsumrlim2 26073. (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
dvfsumrlim3.1 (𝑥 = 𝑋𝐵 = 𝐸)
Assertion
Ref Expression
dvfsumrlim3 (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺𝑟 𝐿𝑋𝑆𝐷𝑋) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸)))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝑥,𝐸   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐸(𝑘)   𝐺(𝑥,𝑘)   𝐿(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlim3
StepHypRef Expression
1 dvfsum.s . . 3 𝑆 = (𝑇(,)+∞)
2 dvfsum.z . . 3 𝑍 = (ℤ𝑀)
3 dvfsum.m . . 3 (𝜑𝑀 ∈ ℤ)
4 dvfsum.d . . 3 (𝜑𝐷 ∈ ℝ)
5 dvfsum.md . . 3 (𝜑𝑀 ≤ (𝐷 + 1))
6 dvfsum.t . . 3 (𝜑𝑇 ∈ ℝ)
7 dvfsum.a . . 3 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
8 dvfsum.b1 . . 3 ((𝜑𝑥𝑆) → 𝐵𝑉)
9 dvfsum.b2 . . 3 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
10 dvfsum.b3 . . 3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
11 dvfsum.c . . 3 (𝑥 = 𝑘𝐵 = 𝐶)
12 dvfsumrlim.g . . 3 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dvfsumrlimf 26065 . 2 (𝜑𝐺:𝑆⟶ℝ)
14 dvfsumrlim.l . . 3 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
15 dvfsumrlim.k . . 3 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 12, 15dvfsumrlim 26072 . 2 (𝜑𝐺 ∈ dom ⇝𝑟 )
173adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑀 ∈ ℤ)
184adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝐷 ∈ ℝ)
195adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑀 ≤ (𝐷 + 1))
206adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑇 ∈ ℝ)
217adantlr 715 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
228adantlr 715 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝑥𝑆) → 𝐵𝑉)
239adantlr 715 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
2410adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
25143adant1r 1178 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
2615adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → (𝑥𝑆𝐵) ⇝𝑟 0)
27 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑋𝑆)
28 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝐷𝑋)
291, 2, 17, 18, 19, 20, 21, 22, 23, 24, 11, 25, 12, 26, 27, 28dvfsumrlim2 26073 . . . . . 6 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
3027adantr 480 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → 𝑋𝑆)
31 nfcvd 2906 . . . . . . . 8 (𝑋𝑆𝑥𝐸)
32 dvfsumrlim3.1 . . . . . . . 8 (𝑥 = 𝑋𝐵 = 𝐸)
3331, 32csbiegf 3932 . . . . . . 7 (𝑋𝑆𝑋 / 𝑥𝐵 = 𝐸)
3430, 33syl 17 . . . . . 6 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → 𝑋 / 𝑥𝐵 = 𝐸)
3529, 34breqtrd 5169 . . . . 5 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸)
3635exp42 435 . . . 4 (𝜑 → (𝐷𝑋 → (𝑋𝑆 → (𝐺𝑟 𝐿 → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸))))
3736com24 95 . . 3 (𝜑 → (𝐺𝑟 𝐿 → (𝑋𝑆 → (𝐷𝑋 → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸))))
38373impd 1349 . 2 (𝜑 → ((𝐺𝑟 𝐿𝑋𝑆𝐷𝑋) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸))
3913, 16, 383jca 1129 1 (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺𝑟 𝐿𝑋𝑆𝐷𝑋) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  csb 3899   class class class wbr 5143  cmpt 5225  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  +∞cpnf 11292  cle 11296  cmin 11492  cz 12613  cuz 12878  (,)cioo 13387  ...cfz 13547  cfl 13830  abscabs 15273  𝑟 crli 15521  Σcsu 15722   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  divsqrtsumlem  27023  logdivsum  27577
  Copyright terms: Public domain W3C validator