![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvfsumrlim3 | Structured version Visualization version GIF version |
Description: Conjoin the statements of dvfsumrlim 25395 and dvfsumrlim2 25396. (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
dvfsum.s | ⊢ 𝑆 = (𝑇(,)+∞) |
dvfsum.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
dvfsum.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
dvfsum.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
dvfsum.md | ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) |
dvfsum.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
dvfsum.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
dvfsum.b1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
dvfsum.b2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
dvfsum.b3 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
dvfsum.c | ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) |
dvfsumrlim.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) |
dvfsumrlim.g | ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) |
dvfsumrlim.k | ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) |
dvfsumrlim3.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐸) |
Ref | Expression |
---|---|
dvfsumrlim3 | ⊢ (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvfsum.s | . . 3 ⊢ 𝑆 = (𝑇(,)+∞) | |
2 | dvfsum.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | dvfsum.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | dvfsum.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
5 | dvfsum.md | . . 3 ⊢ (𝜑 → 𝑀 ≤ (𝐷 + 1)) | |
6 | dvfsum.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
7 | dvfsum.a | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
8 | dvfsum.b1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) | |
9 | dvfsum.b2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
10 | dvfsum.b3 | . . 3 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) | |
11 | dvfsum.c | . . 3 ⊢ (𝑥 = 𝑘 → 𝐵 = 𝐶) | |
12 | dvfsumrlim.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶 − 𝐴)) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dvfsumrlimf 25389 | . 2 ⊢ (𝜑 → 𝐺:𝑆⟶ℝ) |
14 | dvfsumrlim.l | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) | |
15 | dvfsumrlim.k | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) | |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 12, 15 | dvfsumrlim 25395 | . 2 ⊢ (𝜑 → 𝐺 ∈ dom ⇝𝑟 ) |
17 | 3 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑀 ∈ ℤ) |
18 | 4 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝐷 ∈ ℝ) |
19 | 5 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑀 ≤ (𝐷 + 1)) |
20 | 6 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑇 ∈ ℝ) |
21 | 7 | adantlr 713 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
22 | 8 | adantlr 713 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
23 | 9 | adantlr 713 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ ℝ) |
24 | 10 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → (ℝ D (𝑥 ∈ 𝑆 ↦ 𝐴)) = (𝑥 ∈ 𝑆 ↦ 𝐵)) |
25 | 14 | 3adant1r 1177 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆) ∧ (𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘)) → 𝐶 ≤ 𝐵) |
26 | 15 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → (𝑥 ∈ 𝑆 ↦ 𝐵) ⇝𝑟 0) |
27 | simprr 771 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝑋 ∈ 𝑆) | |
28 | simprl 769 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) → 𝐷 ≤ 𝑋) | |
29 | 1, 2, 17, 18, 19, 20, 21, 22, 23, 24, 11, 25, 12, 26, 27, 28 | dvfsumrlim2 25396 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ ⦋𝑋 / 𝑥⦌𝐵) |
30 | 27 | adantr 481 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → 𝑋 ∈ 𝑆) |
31 | nfcvd 2908 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑆 → Ⅎ𝑥𝐸) | |
32 | dvfsumrlim3.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐸) | |
33 | 31, 32 | csbiegf 3889 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑆 → ⦋𝑋 / 𝑥⦌𝐵 = 𝐸) |
34 | 30, 33 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → ⦋𝑋 / 𝑥⦌𝐵 = 𝐸) |
35 | 29, 34 | breqtrd 5131 | . . . . 5 ⊢ (((𝜑 ∧ (𝐷 ≤ 𝑋 ∧ 𝑋 ∈ 𝑆)) ∧ 𝐺 ⇝𝑟 𝐿) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸) |
36 | 35 | exp42 436 | . . . 4 ⊢ (𝜑 → (𝐷 ≤ 𝑋 → (𝑋 ∈ 𝑆 → (𝐺 ⇝𝑟 𝐿 → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)))) |
37 | 36 | com24 95 | . . 3 ⊢ (𝜑 → (𝐺 ⇝𝑟 𝐿 → (𝑋 ∈ 𝑆 → (𝐷 ≤ 𝑋 → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)))) |
38 | 37 | 3impd 1348 | . 2 ⊢ (𝜑 → ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸)) |
39 | 13, 16, 38 | 3jca 1128 | 1 ⊢ (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺 ⇝𝑟 𝐿 ∧ 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋) → (abs‘((𝐺‘𝑋) − 𝐿)) ≤ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⦋csb 3855 class class class wbr 5105 ↦ cmpt 5188 dom cdm 5633 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ℝcr 11050 0cc0 11051 1c1 11052 + caddc 11054 +∞cpnf 11186 ≤ cle 11190 − cmin 11385 ℤcz 12499 ℤ≥cuz 12763 (,)cioo 13264 ...cfz 13424 ⌊cfl 13695 abscabs 15119 ⇝𝑟 crli 15367 Σcsu 15570 D cdv 25227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-cmp 22738 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-limc 25230 df-dv 25231 |
This theorem is referenced by: divsqrtsumlem 26329 logdivsum 26881 |
Copyright terms: Public domain | W3C validator |