MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlim3 Structured version   Visualization version   GIF version

Theorem dvfsumrlim3 25968
Description: Conjoin the statements of dvfsumrlim 25966 and dvfsumrlim2 25967. (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsumrlim.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
dvfsumrlim.g 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
dvfsumrlim.k (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
dvfsumrlim3.1 (𝑥 = 𝑋𝐵 = 𝐸)
Assertion
Ref Expression
dvfsumrlim3 (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺𝑟 𝐿𝑋𝑆𝐷𝑋) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸)))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝑥,𝐸   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑥,𝑍   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐸(𝑘)   𝐺(𝑥,𝑘)   𝐿(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumrlim3
StepHypRef Expression
1 dvfsum.s . . 3 𝑆 = (𝑇(,)+∞)
2 dvfsum.z . . 3 𝑍 = (ℤ𝑀)
3 dvfsum.m . . 3 (𝜑𝑀 ∈ ℤ)
4 dvfsum.d . . 3 (𝜑𝐷 ∈ ℝ)
5 dvfsum.md . . 3 (𝜑𝑀 ≤ (𝐷 + 1))
6 dvfsum.t . . 3 (𝜑𝑇 ∈ ℝ)
7 dvfsum.a . . 3 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
8 dvfsum.b1 . . 3 ((𝜑𝑥𝑆) → 𝐵𝑉)
9 dvfsum.b2 . . 3 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
10 dvfsum.b3 . . 3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
11 dvfsum.c . . 3 (𝑥 = 𝑘𝐵 = 𝐶)
12 dvfsumrlim.g . . 3 𝐺 = (𝑥𝑆 ↦ (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dvfsumrlimf 25959 . 2 (𝜑𝐺:𝑆⟶ℝ)
14 dvfsumrlim.l . . 3 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
15 dvfsumrlim.k . . 3 (𝜑 → (𝑥𝑆𝐵) ⇝𝑟 0)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 12, 15dvfsumrlim 25966 . 2 (𝜑𝐺 ∈ dom ⇝𝑟 )
173adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑀 ∈ ℤ)
184adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝐷 ∈ ℝ)
195adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑀 ≤ (𝐷 + 1))
206adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑇 ∈ ℝ)
217adantlr 715 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝑥𝑆) → 𝐴 ∈ ℝ)
228adantlr 715 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝑥𝑆) → 𝐵𝑉)
239adantlr 715 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝑥𝑍) → 𝐵 ∈ ℝ)
2410adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
25143adant1r 1178 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘)) → 𝐶𝐵)
2615adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → (𝑥𝑆𝐵) ⇝𝑟 0)
27 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝑋𝑆)
28 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝐷𝑋𝑋𝑆)) → 𝐷𝑋)
291, 2, 17, 18, 19, 20, 21, 22, 23, 24, 11, 25, 12, 26, 27, 28dvfsumrlim2 25967 . . . . . 6 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝑋 / 𝑥𝐵)
3027adantr 480 . . . . . . 7 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → 𝑋𝑆)
31 nfcvd 2895 . . . . . . . 8 (𝑋𝑆𝑥𝐸)
32 dvfsumrlim3.1 . . . . . . . 8 (𝑥 = 𝑋𝐵 = 𝐸)
3331, 32csbiegf 3883 . . . . . . 7 (𝑋𝑆𝑋 / 𝑥𝐵 = 𝐸)
3430, 33syl 17 . . . . . 6 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → 𝑋 / 𝑥𝐵 = 𝐸)
3529, 34breqtrd 5117 . . . . 5 (((𝜑 ∧ (𝐷𝑋𝑋𝑆)) ∧ 𝐺𝑟 𝐿) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸)
3635exp42 435 . . . 4 (𝜑 → (𝐷𝑋 → (𝑋𝑆 → (𝐺𝑟 𝐿 → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸))))
3736com24 95 . . 3 (𝜑 → (𝐺𝑟 𝐿 → (𝑋𝑆 → (𝐷𝑋 → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸))))
38373impd 1349 . 2 (𝜑 → ((𝐺𝑟 𝐿𝑋𝑆𝐷𝑋) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸))
3913, 16, 383jca 1128 1 (𝜑 → (𝐺:𝑆⟶ℝ ∧ 𝐺 ∈ dom ⇝𝑟 ∧ ((𝐺𝑟 𝐿𝑋𝑆𝐷𝑋) → (abs‘((𝐺𝑋) − 𝐿)) ≤ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  csb 3850   class class class wbr 5091  cmpt 5172  dom cdm 5616  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009  +∞cpnf 11143  cle 11147  cmin 11344  cz 12468  cuz 12732  (,)cioo 13245  ...cfz 13407  cfl 13694  abscabs 15141  𝑟 crli 15392  Σcsu 15593   D cdv 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-fbas 21289  df-fg 21290  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-cmp 23303  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796
This theorem is referenced by:  divsqrtsumlem  26918  logdivsum  27472
  Copyright terms: Public domain W3C validator