MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnv2d Structured version   Visualization version   GIF version

Theorem f1ocnv2d 7514
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
f1od.1 𝐹 = (𝑥𝐴𝐶)
f1o2d.2 ((𝜑𝑥𝐴) → 𝐶𝐵)
f1o2d.3 ((𝜑𝑦𝐵) → 𝐷𝐴)
f1o2d.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
Assertion
Ref Expression
f1ocnv2d (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem f1ocnv2d
StepHypRef Expression
1 f1od.1 . 2 𝐹 = (𝑥𝐴𝐶)
2 f1o2d.2 . 2 ((𝜑𝑥𝐴) → 𝐶𝐵)
3 f1o2d.3 . 2 ((𝜑𝑦𝐵) → 𝐷𝐴)
4 eleq1a 2836 . . . . . 6 (𝐶𝐵 → (𝑦 = 𝐶𝑦𝐵))
52, 4syl 17 . . . . 5 ((𝜑𝑥𝐴) → (𝑦 = 𝐶𝑦𝐵))
65impr 455 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → 𝑦𝐵)
7 f1o2d.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
87biimpar 478 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑦 = 𝐶) → 𝑥 = 𝐷)
98exp42 436 . . . . . 6 (𝜑 → (𝑥𝐴 → (𝑦𝐵 → (𝑦 = 𝐶𝑥 = 𝐷))))
109com34 91 . . . . 5 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐶 → (𝑦𝐵𝑥 = 𝐷))))
1110imp32 419 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → (𝑦𝐵𝑥 = 𝐷))
126, 11jcai 517 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → (𝑦𝐵𝑥 = 𝐷))
13 eleq1a 2836 . . . . . 6 (𝐷𝐴 → (𝑥 = 𝐷𝑥𝐴))
143, 13syl 17 . . . . 5 ((𝜑𝑦𝐵) → (𝑥 = 𝐷𝑥𝐴))
1514impr 455 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → 𝑥𝐴)
167biimpa 477 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑥 = 𝐷) → 𝑦 = 𝐶)
1716exp42 436 . . . . . . 7 (𝜑 → (𝑥𝐴 → (𝑦𝐵 → (𝑥 = 𝐷𝑦 = 𝐶))))
1817com23 86 . . . . . 6 (𝜑 → (𝑦𝐵 → (𝑥𝐴 → (𝑥 = 𝐷𝑦 = 𝐶))))
1918com34 91 . . . . 5 (𝜑 → (𝑦𝐵 → (𝑥 = 𝐷 → (𝑥𝐴𝑦 = 𝐶))))
2019imp32 419 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → (𝑥𝐴𝑦 = 𝐶))
2115, 20jcai 517 . . 3 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → (𝑥𝐴𝑦 = 𝐶))
2212, 21impbida 798 . 2 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
231, 2, 3, 22f1ocnvd 7512 1 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  cmpt 5162  ccnv 5588  1-1-ontowf1o 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438
This theorem is referenced by:  f1o2d  7515  negiso  11947  iccf1o  13219  bitsf1ocnv  16141  grpinvcnv  18633  grplactcnv  18668  issrngd  20111  opncldf1  22225  txhmeo  22944  ptuncnv  22948  icopnfcnv  24095  iccpnfcnv  24097  xrge0iifcnv  31871  rfovcnvf1od  41574
  Copyright terms: Public domain W3C validator