MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnv2d Structured version   Visualization version   GIF version

Theorem f1ocnv2d 7163
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
f1od.1 𝐹 = (𝑥𝐴𝐶)
f1o2d.2 ((𝜑𝑥𝐴) → 𝐶𝐵)
f1o2d.3 ((𝜑𝑦𝐵) → 𝐷𝐴)
f1o2d.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
Assertion
Ref Expression
f1ocnv2d (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem f1ocnv2d
StepHypRef Expression
1 f1od.1 . 2 𝐹 = (𝑥𝐴𝐶)
2 f1o2d.2 . 2 ((𝜑𝑥𝐴) → 𝐶𝐵)
3 f1o2d.3 . 2 ((𝜑𝑦𝐵) → 𝐷𝐴)
4 eleq1a 2854 . . . . . 6 (𝐶𝐵 → (𝑦 = 𝐶𝑦𝐵))
52, 4syl 17 . . . . 5 ((𝜑𝑥𝐴) → (𝑦 = 𝐶𝑦𝐵))
65impr 448 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → 𝑦𝐵)
7 f1o2d.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
87biimpar 471 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑦 = 𝐶) → 𝑥 = 𝐷)
98exp42 428 . . . . . 6 (𝜑 → (𝑥𝐴 → (𝑦𝐵 → (𝑦 = 𝐶𝑥 = 𝐷))))
109com34 91 . . . . 5 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐶 → (𝑦𝐵𝑥 = 𝐷))))
1110imp32 411 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → (𝑦𝐵𝑥 = 𝐷))
126, 11jcai 512 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → (𝑦𝐵𝑥 = 𝐷))
13 eleq1a 2854 . . . . . 6 (𝐷𝐴 → (𝑥 = 𝐷𝑥𝐴))
143, 13syl 17 . . . . 5 ((𝜑𝑦𝐵) → (𝑥 = 𝐷𝑥𝐴))
1514impr 448 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → 𝑥𝐴)
167biimpa 470 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑥 = 𝐷) → 𝑦 = 𝐶)
1716exp42 428 . . . . . . 7 (𝜑 → (𝑥𝐴 → (𝑦𝐵 → (𝑥 = 𝐷𝑦 = 𝐶))))
1817com23 86 . . . . . 6 (𝜑 → (𝑦𝐵 → (𝑥𝐴 → (𝑥 = 𝐷𝑦 = 𝐶))))
1918com34 91 . . . . 5 (𝜑 → (𝑦𝐵 → (𝑥 = 𝐷 → (𝑥𝐴𝑦 = 𝐶))))
2019imp32 411 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → (𝑥𝐴𝑦 = 𝐶))
2115, 20jcai 512 . . 3 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → (𝑥𝐴𝑦 = 𝐶))
2212, 21impbida 791 . 2 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
231, 2, 3, 22f1ocnvd 7161 1 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  cmpt 4965  ccnv 5354  1-1-ontowf1o 6134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142
This theorem is referenced by:  f1o2d  7164  negiso  11357  iccf1o  12633  bitsf1ocnv  15572  grpinvcnv  17870  grplactcnv  17905  issrngd  19253  opncldf1  21296  txhmeo  22015  ptuncnv  22019  icopnfcnv  23149  iccpnfcnv  23151  xrge0iifcnv  30577  rfovcnvf1od  39254
  Copyright terms: Public domain W3C validator