![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnv2d | Structured version Visualization version GIF version |
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
f1od.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
f1o2d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
f1o2d.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝐴) |
f1o2d.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) |
Ref | Expression |
---|---|
f1ocnv2d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1od.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
2 | f1o2d.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) | |
3 | f1o2d.3 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝐴) | |
4 | eleq1a 2829 | . . . . . 6 ⊢ (𝐶 ∈ 𝐵 → (𝑦 = 𝐶 → 𝑦 ∈ 𝐵)) | |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 = 𝐶 → 𝑦 ∈ 𝐵)) |
6 | 5 | impr 456 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)) → 𝑦 ∈ 𝐵) |
7 | f1o2d.4 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) | |
8 | 7 | biimpar 479 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑦 = 𝐶) → 𝑥 = 𝐷) |
9 | 8 | exp42 437 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → (𝑦 = 𝐶 → 𝑥 = 𝐷)))) |
10 | 9 | com34 91 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 = 𝐶 → (𝑦 ∈ 𝐵 → 𝑥 = 𝐷)))) |
11 | 10 | imp32 420 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)) → (𝑦 ∈ 𝐵 → 𝑥 = 𝐷)) |
12 | 6, 11 | jcai 518 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)) → (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) |
13 | eleq1a 2829 | . . . . . 6 ⊢ (𝐷 ∈ 𝐴 → (𝑥 = 𝐷 → 𝑥 ∈ 𝐴)) | |
14 | 3, 13 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 → 𝑥 ∈ 𝐴)) |
15 | 14 | impr 456 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) → 𝑥 ∈ 𝐴) |
16 | 7 | biimpa 478 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑥 = 𝐷) → 𝑦 = 𝐶) |
17 | 16 | exp42 437 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → (𝑥 = 𝐷 → 𝑦 = 𝐶)))) |
18 | 17 | com23 86 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝑥 = 𝐷 → 𝑦 = 𝐶)))) |
19 | 18 | com34 91 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐵 → (𝑥 = 𝐷 → (𝑥 ∈ 𝐴 → 𝑦 = 𝐶)))) |
20 | 19 | imp32 420 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) → (𝑥 ∈ 𝐴 → 𝑦 = 𝐶)) |
21 | 15, 20 | jcai 518 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) → (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)) |
22 | 12, 21 | impbida 800 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) |
23 | 1, 2, 3, 22 | f1ocnvd 7608 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ↦ cmpt 5192 ◡ccnv 5636 –1-1-onto→wf1o 6499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 |
This theorem is referenced by: f1o2d 7611 negiso 12143 iccf1o 13422 bitsf1ocnv 16332 grpinvcnv 18823 grplactcnv 18858 issrngd 20363 opncldf1 22458 txhmeo 23177 ptuncnv 23181 icopnfcnv 24328 iccpnfcnv 24330 xrge0iifcnv 32578 rfovcnvf1od 42368 |
Copyright terms: Public domain | W3C validator |