MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnv2d Structured version   Visualization version   GIF version

Theorem f1ocnv2d 7661
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
f1od.1 𝐹 = (𝑥𝐴𝐶)
f1o2d.2 ((𝜑𝑥𝐴) → 𝐶𝐵)
f1o2d.3 ((𝜑𝑦𝐵) → 𝐷𝐴)
f1o2d.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
Assertion
Ref Expression
f1ocnv2d (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem f1ocnv2d
StepHypRef Expression
1 f1od.1 . 2 𝐹 = (𝑥𝐴𝐶)
2 f1o2d.2 . 2 ((𝜑𝑥𝐴) → 𝐶𝐵)
3 f1o2d.3 . 2 ((𝜑𝑦𝐵) → 𝐷𝐴)
4 eleq1a 2826 . . . . . 6 (𝐶𝐵 → (𝑦 = 𝐶𝑦𝐵))
52, 4syl 17 . . . . 5 ((𝜑𝑥𝐴) → (𝑦 = 𝐶𝑦𝐵))
65impr 453 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → 𝑦𝐵)
7 f1o2d.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
87biimpar 476 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑦 = 𝐶) → 𝑥 = 𝐷)
98exp42 434 . . . . . 6 (𝜑 → (𝑥𝐴 → (𝑦𝐵 → (𝑦 = 𝐶𝑥 = 𝐷))))
109com34 91 . . . . 5 (𝜑 → (𝑥𝐴 → (𝑦 = 𝐶 → (𝑦𝐵𝑥 = 𝐷))))
1110imp32 417 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → (𝑦𝐵𝑥 = 𝐷))
126, 11jcai 515 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 = 𝐶)) → (𝑦𝐵𝑥 = 𝐷))
13 eleq1a 2826 . . . . . 6 (𝐷𝐴 → (𝑥 = 𝐷𝑥𝐴))
143, 13syl 17 . . . . 5 ((𝜑𝑦𝐵) → (𝑥 = 𝐷𝑥𝐴))
1514impr 453 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → 𝑥𝐴)
167biimpa 475 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐵)) ∧ 𝑥 = 𝐷) → 𝑦 = 𝐶)
1716exp42 434 . . . . . . 7 (𝜑 → (𝑥𝐴 → (𝑦𝐵 → (𝑥 = 𝐷𝑦 = 𝐶))))
1817com23 86 . . . . . 6 (𝜑 → (𝑦𝐵 → (𝑥𝐴 → (𝑥 = 𝐷𝑦 = 𝐶))))
1918com34 91 . . . . 5 (𝜑 → (𝑦𝐵 → (𝑥 = 𝐷 → (𝑥𝐴𝑦 = 𝐶))))
2019imp32 417 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → (𝑥𝐴𝑦 = 𝐶))
2115, 20jcai 515 . . 3 ((𝜑 ∧ (𝑦𝐵𝑥 = 𝐷)) → (𝑥𝐴𝑦 = 𝐶))
2212, 21impbida 797 . 2 (𝜑 → ((𝑥𝐴𝑦 = 𝐶) ↔ (𝑦𝐵𝑥 = 𝐷)))
231, 2, 3, 22f1ocnvd 7659 1 (𝜑 → (𝐹:𝐴1-1-onto𝐵𝐹 = (𝑦𝐵𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  cmpt 5230  ccnv 5674  1-1-ontowf1o 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549
This theorem is referenced by:  f1o2d  7662  negiso  12198  iccf1o  13477  bitsf1ocnv  16389  grpinvcnv  18927  grplactcnv  18962  issrngd  20612  opncldf1  22808  txhmeo  23527  ptuncnv  23531  icopnfcnv  24687  iccpnfcnv  24689  xrge0iifcnv  33211  rfovcnvf1od  43057
  Copyright terms: Public domain W3C validator