![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnv2d | Structured version Visualization version GIF version |
Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
f1od.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
f1o2d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
f1o2d.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝐴) |
f1o2d.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) |
Ref | Expression |
---|---|
f1ocnv2d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1od.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
2 | f1o2d.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) | |
3 | f1o2d.3 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝐴) | |
4 | eleq1a 2834 | . . . . . 6 ⊢ (𝐶 ∈ 𝐵 → (𝑦 = 𝐶 → 𝑦 ∈ 𝐵)) | |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 = 𝐶 → 𝑦 ∈ 𝐵)) |
6 | 5 | impr 454 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)) → 𝑦 ∈ 𝐵) |
7 | f1o2d.4 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = 𝐷 ↔ 𝑦 = 𝐶)) | |
8 | 7 | biimpar 477 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑦 = 𝐶) → 𝑥 = 𝐷) |
9 | 8 | exp42 435 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → (𝑦 = 𝐶 → 𝑥 = 𝐷)))) |
10 | 9 | com34 91 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 = 𝐶 → (𝑦 ∈ 𝐵 → 𝑥 = 𝐷)))) |
11 | 10 | imp32 418 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)) → (𝑦 ∈ 𝐵 → 𝑥 = 𝐷)) |
12 | 6, 11 | jcai 516 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)) → (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) |
13 | eleq1a 2834 | . . . . . 6 ⊢ (𝐷 ∈ 𝐴 → (𝑥 = 𝐷 → 𝑥 ∈ 𝐴)) | |
14 | 3, 13 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑥 = 𝐷 → 𝑥 ∈ 𝐴)) |
15 | 14 | impr 454 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) → 𝑥 ∈ 𝐴) |
16 | 7 | biimpa 476 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑥 = 𝐷) → 𝑦 = 𝐶) |
17 | 16 | exp42 435 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → (𝑥 = 𝐷 → 𝑦 = 𝐶)))) |
18 | 17 | com23 86 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝑥 = 𝐷 → 𝑦 = 𝐶)))) |
19 | 18 | com34 91 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐵 → (𝑥 = 𝐷 → (𝑥 ∈ 𝐴 → 𝑦 = 𝐶)))) |
20 | 19 | imp32 418 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) → (𝑥 ∈ 𝐴 → 𝑦 = 𝐶)) |
21 | 15, 20 | jcai 516 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷)) → (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)) |
22 | 12, 21 | impbida 801 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 𝐷))) |
23 | 1, 2, 3, 22 | f1ocnvd 7684 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐵 ∧ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ↦ cmpt 5231 ◡ccnv 5688 –1-1-onto→wf1o 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 |
This theorem is referenced by: f1o2d 7687 negiso 12246 iccf1o 13533 bitsf1ocnv 16478 grpinvcnv 19037 grplactcnv 19074 issrngd 20873 opncldf1 23108 txhmeo 23827 ptuncnv 23831 icopnfcnv 24987 iccpnfcnv 24989 gsumwrd2dccatlem 33052 xrge0iifcnv 33894 rfovcnvf1od 43994 |
Copyright terms: Public domain | W3C validator |