![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oelim | Structured version Visualization version GIF version |
Description: Ordinal exponentiation with a limit exponent and nonzero base. Definition 8.30 of [TakeutiZaring] p. 67. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 1-Jan-2005.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oelim | ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limelon 6449 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) | |
2 | simpr 484 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → Lim 𝐵) | |
3 | 1, 2 | jca 511 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵)) |
4 | rdglim2a 8471 | . . . 4 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) | |
5 | 4 | ad2antlr 727 | . . 3 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) |
6 | oevn0 8551 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵)) | |
7 | onelon 6410 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) | |
8 | oevn0 8551 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) | |
9 | 7, 8 | sylanl2 681 | . . . . . . . . 9 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) |
10 | 9 | exp42 435 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝐵 ∈ On → (𝑥 ∈ 𝐵 → (∅ ∈ 𝐴 → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))))) |
11 | 10 | com34 91 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝐵 ∈ On → (∅ ∈ 𝐴 → (𝑥 ∈ 𝐵 → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))))) |
12 | 11 | imp41 425 | . . . . . 6 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) |
13 | 12 | iuneq2dv 5020 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) |
14 | 6, 13 | eqeq12d 2750 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))) |
15 | 14 | adantlrr 721 | . . 3 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ((𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))) |
16 | 5, 15 | mpbird 257 | . 2 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥)) |
17 | 3, 16 | sylanl2 681 | 1 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∅c0 4338 ∪ ciun 4995 ↦ cmpt 5230 Oncon0 6385 Lim wlim 6386 ‘cfv 6562 (class class class)co 7430 reccrdg 8447 1oc1o 8497 ·o comu 8502 ↑o coe 8503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-oexp 8510 |
This theorem is referenced by: oecl 8573 oe1m 8581 oen0 8622 oeordi 8623 oewordri 8628 oeworde 8629 oelim2 8631 oeoalem 8632 oeoelem 8634 oeeulem 8637 oe0suclim 43266 nnoeomeqom 43301 |
Copyright terms: Public domain | W3C validator |