MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelim Structured version   Visualization version   GIF version

Theorem oelim 8570
Description: Ordinal exponentiation with a limit exponent and nonzero base. Definition 8.30 of [TakeutiZaring] p. 67. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 1-Jan-2005.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oelim (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑥𝐵 (𝐴o 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem oelim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limelon 6449 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
2 simpr 484 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → Lim 𝐵)
31, 2jca 511 . 2 ((𝐵𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵))
4 rdglim2a 8471 . . . 4 ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))
54ad2antlr 727 . . 3 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))
6 oevn0 8551 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵))
7 onelon 6410 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
8 oevn0 8551 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))
97, 8sylanl2 681 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))
109exp42 435 . . . . . . . 8 (𝐴 ∈ On → (𝐵 ∈ On → (𝑥𝐵 → (∅ ∈ 𝐴 → (𝐴o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)))))
1110com34 91 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (∅ ∈ 𝐴 → (𝑥𝐵 → (𝐴o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)))))
1211imp41 425 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) ∧ 𝑥𝐵) → (𝐴o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))
1312iuneq2dv 5020 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → 𝑥𝐵 (𝐴o 𝑥) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))
146, 13eqeq12d 2750 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴o 𝐵) = 𝑥𝐵 (𝐴o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)))
1514adantlrr 721 . . 3 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ((𝐴o 𝐵) = 𝑥𝐵 (𝐴o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)))
165, 15mpbird 257 . 2 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑥𝐵 (𝐴o 𝑥))
173, 16sylanl2 681 1 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑥𝐵 (𝐴o 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  Vcvv 3477  c0 4338   ciun 4995  cmpt 5230  Oncon0 6385  Lim wlim 6386  cfv 6562  (class class class)co 7430  reccrdg 8447  1oc1o 8497   ·o comu 8502  o coe 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oexp 8510
This theorem is referenced by:  oecl  8573  oe1m  8581  oen0  8622  oeordi  8623  oewordri  8628  oeworde  8629  oelim2  8631  oeoalem  8632  oeoelem  8634  oeeulem  8637  oe0suclim  43266  nnoeomeqom  43301
  Copyright terms: Public domain W3C validator