MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelim Structured version   Visualization version   GIF version

Theorem oelim 8590
Description: Ordinal exponentiation with a limit exponent and nonzero base. Definition 8.30 of [TakeutiZaring] p. 67. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 1-Jan-2005.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oelim (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑥𝐵 (𝐴o 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem oelim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limelon 6459 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
2 simpr 484 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → Lim 𝐵)
31, 2jca 511 . 2 ((𝐵𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵))
4 rdglim2a 8489 . . . 4 ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))
54ad2antlr 726 . . 3 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))
6 oevn0 8571 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵))
7 onelon 6420 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
8 oevn0 8571 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))
97, 8sylanl2 680 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))
109exp42 435 . . . . . . . 8 (𝐴 ∈ On → (𝐵 ∈ On → (𝑥𝐵 → (∅ ∈ 𝐴 → (𝐴o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)))))
1110com34 91 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (∅ ∈ 𝐴 → (𝑥𝐵 → (𝐴o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)))))
1211imp41 425 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) ∧ 𝑥𝐵) → (𝐴o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))
1312iuneq2dv 5039 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → 𝑥𝐵 (𝐴o 𝑥) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))
146, 13eqeq12d 2756 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴o 𝐵) = 𝑥𝐵 (𝐴o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)))
1514adantlrr 720 . . 3 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ((𝐴o 𝐵) = 𝑥𝐵 (𝐴o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)))
165, 15mpbird 257 . 2 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑥𝐵 (𝐴o 𝑥))
173, 16sylanl2 680 1 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) = 𝑥𝐵 (𝐴o 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352   ciun 5015  cmpt 5249  Oncon0 6395  Lim wlim 6396  cfv 6573  (class class class)co 7448  reccrdg 8465  1oc1o 8515   ·o comu 8520  o coe 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oexp 8528
This theorem is referenced by:  oecl  8593  oe1m  8601  oen0  8642  oeordi  8643  oewordri  8648  oeworde  8649  oelim2  8651  oeoalem  8652  oeoelem  8654  oeeulem  8657  oe0suclim  43239  nnoeomeqom  43274
  Copyright terms: Public domain W3C validator