Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oelim | Structured version Visualization version GIF version |
Description: Ordinal exponentiation with a limit exponent and nonzero base. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 1-Jan-2005.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oelim | ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limelon 6236 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) | |
2 | simpr 488 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → Lim 𝐵) | |
3 | 1, 2 | jca 515 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵)) |
4 | rdglim2a 8101 | . . . 4 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) | |
5 | 4 | ad2antlr 727 | . . 3 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) |
6 | oevn0 8174 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵)) | |
7 | onelon 6198 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) | |
8 | oevn0 8174 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) | |
9 | 7, 8 | sylanl2 681 | . . . . . . . . 9 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) |
10 | 9 | exp42 439 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝐵 ∈ On → (𝑥 ∈ 𝐵 → (∅ ∈ 𝐴 → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))))) |
11 | 10 | com34 91 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝐵 ∈ On → (∅ ∈ 𝐴 → (𝑥 ∈ 𝐵 → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))))) |
12 | 11 | imp41 429 | . . . . . 6 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) |
13 | 12 | iuneq2dv 4906 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) |
14 | 6, 13 | eqeq12d 2755 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))) |
15 | 14 | adantlrr 721 | . . 3 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ((𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))) |
16 | 5, 15 | mpbird 260 | . 2 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥)) |
17 | 3, 16 | sylanl2 681 | 1 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3399 ∅c0 4212 ∪ ciun 4882 ↦ cmpt 5111 Oncon0 6173 Lim wlim 6174 ‘cfv 6340 (class class class)co 7173 reccrdg 8077 1oc1o 8127 ·o comu 8132 ↑o coe 8133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pr 5297 ax-un 7482 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7176 df-oprab 7177 df-mpo 7178 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-1o 8134 df-oexp 8140 |
This theorem is referenced by: oecl 8196 oe1m 8205 oen0 8246 oeordi 8247 oewordri 8252 oeworde 8253 oelim2 8255 oeoalem 8256 oeoelem 8258 oeeulem 8261 |
Copyright terms: Public domain | W3C validator |