| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oelim | Structured version Visualization version GIF version | ||
| Description: Ordinal exponentiation with a limit exponent and nonzero base. Definition 8.30 of [TakeutiZaring] p. 67. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 1-Jan-2005.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| oelim | ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limelon 6371 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → Lim 𝐵) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵)) |
| 4 | rdglim2a 8352 | . . . 4 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) | |
| 5 | 4 | ad2antlr 727 | . . 3 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) |
| 6 | oevn0 8430 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵)) | |
| 7 | onelon 6331 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) | |
| 8 | oevn0 8430 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) | |
| 9 | 7, 8 | sylanl2 681 | . . . . . . . . 9 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) |
| 10 | 9 | exp42 435 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝐵 ∈ On → (𝑥 ∈ 𝐵 → (∅ ∈ 𝐴 → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))))) |
| 11 | 10 | com34 91 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝐵 ∈ On → (∅ ∈ 𝐴 → (𝑥 ∈ 𝐵 → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))))) |
| 12 | 11 | imp41 425 | . . . . . 6 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (𝐴 ↑o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) |
| 13 | 12 | iuneq2dv 4966 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥)) |
| 14 | 6, 13 | eqeq12d 2747 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))) |
| 15 | 14 | adantlrr 721 | . . 3 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ((𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 ·o 𝐴)), 1o)‘𝑥))) |
| 16 | 5, 15 | mpbird 257 | . 2 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥)) |
| 17 | 3, 16 | sylanl2 681 | 1 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ↑o 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ∪ ciun 4941 ↦ cmpt 5172 Oncon0 6306 Lim wlim 6307 ‘cfv 6481 (class class class)co 7346 reccrdg 8328 1oc1o 8378 ·o comu 8383 ↑o coe 8384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oexp 8391 |
| This theorem is referenced by: oecl 8452 oe1m 8460 oen0 8501 oeordi 8502 oewordri 8507 oeworde 8508 oelim2 8510 oeoalem 8511 oeoelem 8513 oeeulem 8516 oe0suclim 43309 nnoeomeqom 43344 |
| Copyright terms: Public domain | W3C validator |