MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbenlem Structured version   Visualization version   GIF version

Theorem unbenlem 16016
Description: Lemma for unben 16017. (Contributed by NM, 5-May-2005.) (Revised by Mario Carneiro, 15-Sep-2013.)
Hypothesis
Ref Expression
unbenlem.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
Assertion
Ref Expression
unbenlem ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ ω)
Distinct variable groups:   𝑚,𝑛,𝐴   𝑚,𝐺,𝑛
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem unbenlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nnex 11381 . . . . 5 ℕ ∈ V
21ssex 5039 . . . 4 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
3 1z 11759 . . . . . . . 8 1 ∈ ℤ
4 unbenlem.1 . . . . . . . 8 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
53, 4om2uzf1oi 13071 . . . . . . 7 𝐺:ω–1-1-onto→(ℤ‘1)
6 nnuz 12029 . . . . . . . 8 ℕ = (ℤ‘1)
7 f1oeq3 6382 . . . . . . . 8 (ℕ = (ℤ‘1) → (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1)))
86, 7ax-mp 5 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1))
95, 8mpbir 223 . . . . . 6 𝐺:ω–1-1-onto→ℕ
10 f1ocnv 6403 . . . . . 6 (𝐺:ω–1-1-onto→ℕ → 𝐺:ℕ–1-1-onto→ω)
11 f1of1 6390 . . . . . 6 (𝐺:ℕ–1-1-onto→ω → 𝐺:ℕ–1-1→ω)
129, 10, 11mp2b 10 . . . . 5 𝐺:ℕ–1-1→ω
13 f1ores 6405 . . . . 5 ((𝐺:ℕ–1-1→ω ∧ 𝐴 ⊆ ℕ) → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
1412, 13mpan 680 . . . 4 (𝐴 ⊆ ℕ → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
15 f1oeng 8260 . . . 4 ((𝐴 ∈ V ∧ (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴)) → 𝐴 ≈ (𝐺𝐴))
162, 14, 15syl2anc 579 . . 3 (𝐴 ⊆ ℕ → 𝐴 ≈ (𝐺𝐴))
1716adantr 474 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ (𝐺𝐴))
18 imassrn 5731 . . . 4 (𝐺𝐴) ⊆ ran 𝐺
19 dfdm4 5561 . . . . 5 dom 𝐺 = ran 𝐺
20 f1of 6391 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ → 𝐺:ω⟶ℕ)
219, 20ax-mp 5 . . . . . 6 𝐺:ω⟶ℕ
2221fdmi 6301 . . . . 5 dom 𝐺 = ω
2319, 22eqtr3i 2804 . . . 4 ran 𝐺 = ω
2418, 23sseqtri 3856 . . 3 (𝐺𝐴) ⊆ ω
253, 4om2uzuzi 13067 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ‘1))
2625, 6syl6eleqr 2870 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℕ)
27 breq1 4889 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑦) → (𝑚 < 𝑛 ↔ (𝐺𝑦) < 𝑛))
2827rexbidv 3237 . . . . . . . . . . 11 (𝑚 = (𝐺𝑦) → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
2928rspcv 3507 . . . . . . . . . 10 ((𝐺𝑦) ∈ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
3026, 29syl 17 . . . . . . . . 9 (𝑦 ∈ ω → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
3130adantr 474 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
32 f1ocnv 6403 . . . . . . . . . . . . . . . . 17 ((𝐺𝐴):𝐴1-1-onto→(𝐺𝐴) → (𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴)
3314, 32syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℕ → (𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴)
34 f1ofun 6393 . . . . . . . . . . . . . . . . . 18 (𝐺:ω–1-1-onto→ℕ → Fun 𝐺)
359, 34ax-mp 5 . . . . . . . . . . . . . . . . 17 Fun 𝐺
36 funcnvres2 6214 . . . . . . . . . . . . . . . . 17 (Fun 𝐺(𝐺𝐴) = (𝐺 ↾ (𝐺𝐴)))
37 f1oeq1 6380 . . . . . . . . . . . . . . . . 17 ((𝐺𝐴) = (𝐺 ↾ (𝐺𝐴)) → ((𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴 ↔ (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴))
3835, 36, 37mp2b 10 . . . . . . . . . . . . . . . 16 ((𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴 ↔ (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴)
3933, 38sylib 210 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℕ → (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴)
40 f1ofo 6398 . . . . . . . . . . . . . . . . . 18 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–onto𝐴)
41 forn 6369 . . . . . . . . . . . . . . . . . 18 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–onto𝐴 → ran (𝐺 ↾ (𝐺𝐴)) = 𝐴)
4240, 41syl 17 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → ran (𝐺 ↾ (𝐺𝐴)) = 𝐴)
4342eleq2d 2845 . . . . . . . . . . . . . . . 16 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ 𝑛𝐴))
44 f1ofn 6392 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝐺 ↾ (𝐺𝐴)) Fn (𝐺𝐴))
45 fvelrnb 6503 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)) Fn (𝐺𝐴) → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4644, 45syl 17 . . . . . . . . . . . . . . . 16 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4743, 46bitr3d 273 . . . . . . . . . . . . . . 15 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛𝐴 ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4839, 47syl 17 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℕ → (𝑛𝐴 ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4948biimpa 470 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℕ ∧ 𝑛𝐴) → ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛)
50 fvres 6465 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (𝐺𝐴) → ((𝐺 ↾ (𝐺𝐴))‘𝑚) = (𝐺𝑚))
5150eqeq1d 2780 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (𝐺𝐴) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛 ↔ (𝐺𝑚) = 𝑛))
5251biimpa 470 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ (𝐺𝐴) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝐺𝑚) = 𝑛)
5352adantll 704 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝐺𝑚) = 𝑛)
5424sseli 3817 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (𝐺𝐴) → 𝑚 ∈ ω)
553, 4om2uzlt2i 13069 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ω ∧ 𝑚 ∈ ω) → (𝑦𝑚 ↔ (𝐺𝑦) < (𝐺𝑚)))
5654, 55sylan2 586 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) → (𝑦𝑚 ↔ (𝐺𝑦) < (𝐺𝑚)))
57 breq2 4890 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑚) = 𝑛 → ((𝐺𝑦) < (𝐺𝑚) ↔ (𝐺𝑦) < 𝑛))
5856, 57sylan9bb 505 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ (𝐺𝑚) = 𝑛) → (𝑦𝑚 ↔ (𝐺𝑦) < 𝑛))
5953, 58syldan 585 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝑦𝑚 ↔ (𝐺𝑦) < 𝑛))
6059biimparc 473 . . . . . . . . . . . . . . . 16 (((𝐺𝑦) < 𝑛 ∧ ((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛)) → 𝑦𝑚)
6160exp44 430 . . . . . . . . . . . . . . 15 ((𝐺𝑦) < 𝑛 → (𝑦 ∈ ω → (𝑚 ∈ (𝐺𝐴) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛𝑦𝑚))))
6261imp31 410 . . . . . . . . . . . . . 14 ((((𝐺𝑦) < 𝑛𝑦 ∈ ω) ∧ 𝑚 ∈ (𝐺𝐴)) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛𝑦𝑚))
6362reximdva 3198 . . . . . . . . . . . . 13 (((𝐺𝑦) < 𝑛𝑦 ∈ ω) → (∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6449, 63syl5 34 . . . . . . . . . . . 12 (((𝐺𝑦) < 𝑛𝑦 ∈ ω) → ((𝐴 ⊆ ℕ ∧ 𝑛𝐴) → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6564exp4b 423 . . . . . . . . . . 11 ((𝐺𝑦) < 𝑛 → (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (𝑛𝐴 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))))
6665com4l 92 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (𝑛𝐴 → ((𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))))
6766imp 397 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (𝑛𝐴 → ((𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
6867rexlimdv 3212 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∃𝑛𝐴 (𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6931, 68syld 47 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
7069ex 403 . . . . . 6 (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
7170com3l 89 . . . . 5 (𝐴 ⊆ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → (𝑦 ∈ ω → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
7271imp 397 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (𝑦 ∈ ω → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
7372ralrimiv 3147 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∀𝑦 ∈ ω ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)
74 unbnn3 8853 . . 3 (((𝐺𝐴) ⊆ ω ∧ ∀𝑦 ∈ ω ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚) → (𝐺𝐴) ≈ ω)
7524, 73, 74sylancr 581 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (𝐺𝐴) ≈ ω)
76 entr 8293 . 2 ((𝐴 ≈ (𝐺𝐴) ∧ (𝐺𝐴) ≈ ω) → 𝐴 ≈ ω)
7717, 75, 76syl2anc 579 1 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wral 3090  wrex 3091  Vcvv 3398  wss 3792   class class class wbr 4886  cmpt 4965  ccnv 5354  dom cdm 5355  ran crn 5356  cres 5357  cima 5358  Fun wfun 6129   Fn wfn 6130  wf 6131  1-1wf1 6132  ontowfo 6133  1-1-ontowf1o 6134  cfv 6135  (class class class)co 6922  ωcom 7343  reccrdg 7788  cen 8238  1c1 10273   + caddc 10275   < clt 10411  cn 11374  cuz 11992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993
This theorem is referenced by:  unben  16017
  Copyright terms: Public domain W3C validator