MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbenlem Structured version   Visualization version   GIF version

Theorem unbenlem 16820
Description: Lemma for unben 16821. (Contributed by NM, 5-May-2005.) (Revised by Mario Carneiro, 15-Sep-2013.)
Hypothesis
Ref Expression
unbenlem.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
Assertion
Ref Expression
unbenlem ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ ω)
Distinct variable groups:   𝑚,𝑛,𝐴   𝑚,𝐺,𝑛
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem unbenlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nnex 12131 . . . . 5 ℕ ∈ V
21ssex 5259 . . . 4 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
3 1z 12502 . . . . . . . 8 1 ∈ ℤ
4 unbenlem.1 . . . . . . . 8 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
53, 4om2uzf1oi 13860 . . . . . . 7 𝐺:ω–1-1-onto→(ℤ‘1)
6 nnuz 12775 . . . . . . . 8 ℕ = (ℤ‘1)
7 f1oeq3 6753 . . . . . . . 8 (ℕ = (ℤ‘1) → (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1)))
86, 7ax-mp 5 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1))
95, 8mpbir 231 . . . . . 6 𝐺:ω–1-1-onto→ℕ
10 f1ocnv 6775 . . . . . 6 (𝐺:ω–1-1-onto→ℕ → 𝐺:ℕ–1-1-onto→ω)
11 f1of1 6762 . . . . . 6 (𝐺:ℕ–1-1-onto→ω → 𝐺:ℕ–1-1→ω)
129, 10, 11mp2b 10 . . . . 5 𝐺:ℕ–1-1→ω
13 f1ores 6777 . . . . 5 ((𝐺:ℕ–1-1→ω ∧ 𝐴 ⊆ ℕ) → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
1412, 13mpan 690 . . . 4 (𝐴 ⊆ ℕ → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
15 f1oeng 8893 . . . 4 ((𝐴 ∈ V ∧ (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴)) → 𝐴 ≈ (𝐺𝐴))
162, 14, 15syl2anc 584 . . 3 (𝐴 ⊆ ℕ → 𝐴 ≈ (𝐺𝐴))
1716adantr 480 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ (𝐺𝐴))
18 imassrn 6020 . . . 4 (𝐺𝐴) ⊆ ran 𝐺
19 dfdm4 5835 . . . . 5 dom 𝐺 = ran 𝐺
20 f1of 6763 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ → 𝐺:ω⟶ℕ)
219, 20ax-mp 5 . . . . . 6 𝐺:ω⟶ℕ
2221fdmi 6662 . . . . 5 dom 𝐺 = ω
2319, 22eqtr3i 2756 . . . 4 ran 𝐺 = ω
2418, 23sseqtri 3983 . . 3 (𝐺𝐴) ⊆ ω
253, 4om2uzuzi 13856 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ‘1))
2625, 6eleqtrrdi 2842 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℕ)
27 breq1 5094 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑦) → (𝑚 < 𝑛 ↔ (𝐺𝑦) < 𝑛))
2827rexbidv 3156 . . . . . . . . . . 11 (𝑚 = (𝐺𝑦) → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
2928rspcv 3573 . . . . . . . . . 10 ((𝐺𝑦) ∈ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
3026, 29syl 17 . . . . . . . . 9 (𝑦 ∈ ω → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
3130adantr 480 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
32 f1ocnv 6775 . . . . . . . . . . . . . . . . 17 ((𝐺𝐴):𝐴1-1-onto→(𝐺𝐴) → (𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴)
3314, 32syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℕ → (𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴)
34 f1ofun 6765 . . . . . . . . . . . . . . . . . 18 (𝐺:ω–1-1-onto→ℕ → Fun 𝐺)
359, 34ax-mp 5 . . . . . . . . . . . . . . . . 17 Fun 𝐺
36 funcnvres2 6561 . . . . . . . . . . . . . . . . 17 (Fun 𝐺(𝐺𝐴) = (𝐺 ↾ (𝐺𝐴)))
37 f1oeq1 6751 . . . . . . . . . . . . . . . . 17 ((𝐺𝐴) = (𝐺 ↾ (𝐺𝐴)) → ((𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴 ↔ (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴))
3835, 36, 37mp2b 10 . . . . . . . . . . . . . . . 16 ((𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴 ↔ (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴)
3933, 38sylib 218 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℕ → (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴)
40 f1ofo 6770 . . . . . . . . . . . . . . . . . 18 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–onto𝐴)
41 forn 6738 . . . . . . . . . . . . . . . . . 18 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–onto𝐴 → ran (𝐺 ↾ (𝐺𝐴)) = 𝐴)
4240, 41syl 17 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → ran (𝐺 ↾ (𝐺𝐴)) = 𝐴)
4342eleq2d 2817 . . . . . . . . . . . . . . . 16 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ 𝑛𝐴))
44 f1ofn 6764 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝐺 ↾ (𝐺𝐴)) Fn (𝐺𝐴))
45 fvelrnb 6882 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)) Fn (𝐺𝐴) → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4644, 45syl 17 . . . . . . . . . . . . . . . 16 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4743, 46bitr3d 281 . . . . . . . . . . . . . . 15 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛𝐴 ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4839, 47syl 17 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℕ → (𝑛𝐴 ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4948biimpa 476 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℕ ∧ 𝑛𝐴) → ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛)
50 fvres 6841 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (𝐺𝐴) → ((𝐺 ↾ (𝐺𝐴))‘𝑚) = (𝐺𝑚))
5150eqeq1d 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (𝐺𝐴) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛 ↔ (𝐺𝑚) = 𝑛))
5251biimpa 476 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ (𝐺𝐴) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝐺𝑚) = 𝑛)
5352adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝐺𝑚) = 𝑛)
5424sseli 3930 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (𝐺𝐴) → 𝑚 ∈ ω)
553, 4om2uzlt2i 13858 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ω ∧ 𝑚 ∈ ω) → (𝑦𝑚 ↔ (𝐺𝑦) < (𝐺𝑚)))
5654, 55sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) → (𝑦𝑚 ↔ (𝐺𝑦) < (𝐺𝑚)))
57 breq2 5095 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑚) = 𝑛 → ((𝐺𝑦) < (𝐺𝑚) ↔ (𝐺𝑦) < 𝑛))
5856, 57sylan9bb 509 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ (𝐺𝑚) = 𝑛) → (𝑦𝑚 ↔ (𝐺𝑦) < 𝑛))
5953, 58syldan 591 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝑦𝑚 ↔ (𝐺𝑦) < 𝑛))
6059biimparc 479 . . . . . . . . . . . . . . . 16 (((𝐺𝑦) < 𝑛 ∧ ((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛)) → 𝑦𝑚)
6160exp44 437 . . . . . . . . . . . . . . 15 ((𝐺𝑦) < 𝑛 → (𝑦 ∈ ω → (𝑚 ∈ (𝐺𝐴) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛𝑦𝑚))))
6261imp31 417 . . . . . . . . . . . . . 14 ((((𝐺𝑦) < 𝑛𝑦 ∈ ω) ∧ 𝑚 ∈ (𝐺𝐴)) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛𝑦𝑚))
6362reximdva 3145 . . . . . . . . . . . . 13 (((𝐺𝑦) < 𝑛𝑦 ∈ ω) → (∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6449, 63syl5 34 . . . . . . . . . . . 12 (((𝐺𝑦) < 𝑛𝑦 ∈ ω) → ((𝐴 ⊆ ℕ ∧ 𝑛𝐴) → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6564exp4b 430 . . . . . . . . . . 11 ((𝐺𝑦) < 𝑛 → (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (𝑛𝐴 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))))
6665com4l 92 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (𝑛𝐴 → ((𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))))
6766imp 406 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (𝑛𝐴 → ((𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
6867rexlimdv 3131 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∃𝑛𝐴 (𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6931, 68syld 47 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
7069ex 412 . . . . . 6 (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
7170com3l 89 . . . . 5 (𝐴 ⊆ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → (𝑦 ∈ ω → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
7271imp 406 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (𝑦 ∈ ω → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
7372ralrimiv 3123 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∀𝑦 ∈ ω ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)
74 unbnn3 9549 . . 3 (((𝐺𝐴) ⊆ ω ∧ ∀𝑦 ∈ ω ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚) → (𝐺𝐴) ≈ ω)
7524, 73, 74sylancr 587 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (𝐺𝐴) ≈ ω)
76 entr 8928 . 2 ((𝐴 ≈ (𝐺𝐴) ∧ (𝐺𝐴) ≈ ω) → 𝐴 ≈ ω)
7717, 75, 76syl2anc 584 1 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3902   class class class wbr 5091  cmpt 5172  ccnv 5615  dom cdm 5616  ran crn 5617  cres 5618  cima 5619  Fun wfun 6475   Fn wfn 6476  wf 6477  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  ωcom 7796  reccrdg 8328  cen 8866  1c1 11007   + caddc 11009   < clt 11146  cn 12125  cuz 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733
This theorem is referenced by:  unben  16821
  Copyright terms: Public domain W3C validator