MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbenlem Structured version   Visualization version   GIF version

Theorem unbenlem 16609
Description: Lemma for unben 16610. (Contributed by NM, 5-May-2005.) (Revised by Mario Carneiro, 15-Sep-2013.)
Hypothesis
Ref Expression
unbenlem.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
Assertion
Ref Expression
unbenlem ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ ω)
Distinct variable groups:   𝑚,𝑛,𝐴   𝑚,𝐺,𝑛
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem unbenlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nnex 11979 . . . . 5 ℕ ∈ V
21ssex 5245 . . . 4 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
3 1z 12350 . . . . . . . 8 1 ∈ ℤ
4 unbenlem.1 . . . . . . . 8 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
53, 4om2uzf1oi 13673 . . . . . . 7 𝐺:ω–1-1-onto→(ℤ‘1)
6 nnuz 12621 . . . . . . . 8 ℕ = (ℤ‘1)
7 f1oeq3 6706 . . . . . . . 8 (ℕ = (ℤ‘1) → (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1)))
86, 7ax-mp 5 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1))
95, 8mpbir 230 . . . . . 6 𝐺:ω–1-1-onto→ℕ
10 f1ocnv 6728 . . . . . 6 (𝐺:ω–1-1-onto→ℕ → 𝐺:ℕ–1-1-onto→ω)
11 f1of1 6715 . . . . . 6 (𝐺:ℕ–1-1-onto→ω → 𝐺:ℕ–1-1→ω)
129, 10, 11mp2b 10 . . . . 5 𝐺:ℕ–1-1→ω
13 f1ores 6730 . . . . 5 ((𝐺:ℕ–1-1→ω ∧ 𝐴 ⊆ ℕ) → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
1412, 13mpan 687 . . . 4 (𝐴 ⊆ ℕ → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
15 f1oeng 8759 . . . 4 ((𝐴 ∈ V ∧ (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴)) → 𝐴 ≈ (𝐺𝐴))
162, 14, 15syl2anc 584 . . 3 (𝐴 ⊆ ℕ → 𝐴 ≈ (𝐺𝐴))
1716adantr 481 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ (𝐺𝐴))
18 imassrn 5980 . . . 4 (𝐺𝐴) ⊆ ran 𝐺
19 dfdm4 5804 . . . . 5 dom 𝐺 = ran 𝐺
20 f1of 6716 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ → 𝐺:ω⟶ℕ)
219, 20ax-mp 5 . . . . . 6 𝐺:ω⟶ℕ
2221fdmi 6612 . . . . 5 dom 𝐺 = ω
2319, 22eqtr3i 2768 . . . 4 ran 𝐺 = ω
2418, 23sseqtri 3957 . . 3 (𝐺𝐴) ⊆ ω
253, 4om2uzuzi 13669 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ‘1))
2625, 6eleqtrrdi 2850 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℕ)
27 breq1 5077 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑦) → (𝑚 < 𝑛 ↔ (𝐺𝑦) < 𝑛))
2827rexbidv 3226 . . . . . . . . . . 11 (𝑚 = (𝐺𝑦) → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
2928rspcv 3557 . . . . . . . . . 10 ((𝐺𝑦) ∈ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
3026, 29syl 17 . . . . . . . . 9 (𝑦 ∈ ω → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
3130adantr 481 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
32 f1ocnv 6728 . . . . . . . . . . . . . . . . 17 ((𝐺𝐴):𝐴1-1-onto→(𝐺𝐴) → (𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴)
3314, 32syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℕ → (𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴)
34 f1ofun 6718 . . . . . . . . . . . . . . . . . 18 (𝐺:ω–1-1-onto→ℕ → Fun 𝐺)
359, 34ax-mp 5 . . . . . . . . . . . . . . . . 17 Fun 𝐺
36 funcnvres2 6514 . . . . . . . . . . . . . . . . 17 (Fun 𝐺(𝐺𝐴) = (𝐺 ↾ (𝐺𝐴)))
37 f1oeq1 6704 . . . . . . . . . . . . . . . . 17 ((𝐺𝐴) = (𝐺 ↾ (𝐺𝐴)) → ((𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴 ↔ (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴))
3835, 36, 37mp2b 10 . . . . . . . . . . . . . . . 16 ((𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴 ↔ (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴)
3933, 38sylib 217 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℕ → (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴)
40 f1ofo 6723 . . . . . . . . . . . . . . . . . 18 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–onto𝐴)
41 forn 6691 . . . . . . . . . . . . . . . . . 18 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–onto𝐴 → ran (𝐺 ↾ (𝐺𝐴)) = 𝐴)
4240, 41syl 17 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → ran (𝐺 ↾ (𝐺𝐴)) = 𝐴)
4342eleq2d 2824 . . . . . . . . . . . . . . . 16 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ 𝑛𝐴))
44 f1ofn 6717 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝐺 ↾ (𝐺𝐴)) Fn (𝐺𝐴))
45 fvelrnb 6830 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)) Fn (𝐺𝐴) → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4644, 45syl 17 . . . . . . . . . . . . . . . 16 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4743, 46bitr3d 280 . . . . . . . . . . . . . . 15 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛𝐴 ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4839, 47syl 17 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℕ → (𝑛𝐴 ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4948biimpa 477 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℕ ∧ 𝑛𝐴) → ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛)
50 fvres 6793 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (𝐺𝐴) → ((𝐺 ↾ (𝐺𝐴))‘𝑚) = (𝐺𝑚))
5150eqeq1d 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (𝐺𝐴) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛 ↔ (𝐺𝑚) = 𝑛))
5251biimpa 477 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ (𝐺𝐴) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝐺𝑚) = 𝑛)
5352adantll 711 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝐺𝑚) = 𝑛)
5424sseli 3917 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (𝐺𝐴) → 𝑚 ∈ ω)
553, 4om2uzlt2i 13671 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ω ∧ 𝑚 ∈ ω) → (𝑦𝑚 ↔ (𝐺𝑦) < (𝐺𝑚)))
5654, 55sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) → (𝑦𝑚 ↔ (𝐺𝑦) < (𝐺𝑚)))
57 breq2 5078 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑚) = 𝑛 → ((𝐺𝑦) < (𝐺𝑚) ↔ (𝐺𝑦) < 𝑛))
5856, 57sylan9bb 510 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ (𝐺𝑚) = 𝑛) → (𝑦𝑚 ↔ (𝐺𝑦) < 𝑛))
5953, 58syldan 591 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝑦𝑚 ↔ (𝐺𝑦) < 𝑛))
6059biimparc 480 . . . . . . . . . . . . . . . 16 (((𝐺𝑦) < 𝑛 ∧ ((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛)) → 𝑦𝑚)
6160exp44 438 . . . . . . . . . . . . . . 15 ((𝐺𝑦) < 𝑛 → (𝑦 ∈ ω → (𝑚 ∈ (𝐺𝐴) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛𝑦𝑚))))
6261imp31 418 . . . . . . . . . . . . . 14 ((((𝐺𝑦) < 𝑛𝑦 ∈ ω) ∧ 𝑚 ∈ (𝐺𝐴)) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛𝑦𝑚))
6362reximdva 3203 . . . . . . . . . . . . 13 (((𝐺𝑦) < 𝑛𝑦 ∈ ω) → (∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6449, 63syl5 34 . . . . . . . . . . . 12 (((𝐺𝑦) < 𝑛𝑦 ∈ ω) → ((𝐴 ⊆ ℕ ∧ 𝑛𝐴) → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6564exp4b 431 . . . . . . . . . . 11 ((𝐺𝑦) < 𝑛 → (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (𝑛𝐴 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))))
6665com4l 92 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (𝑛𝐴 → ((𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))))
6766imp 407 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (𝑛𝐴 → ((𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
6867rexlimdv 3212 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∃𝑛𝐴 (𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6931, 68syld 47 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
7069ex 413 . . . . . 6 (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
7170com3l 89 . . . . 5 (𝐴 ⊆ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → (𝑦 ∈ ω → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
7271imp 407 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (𝑦 ∈ ω → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
7372ralrimiv 3102 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∀𝑦 ∈ ω ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)
74 unbnn3 9417 . . 3 (((𝐺𝐴) ⊆ ω ∧ ∀𝑦 ∈ ω ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚) → (𝐺𝐴) ≈ ω)
7524, 73, 74sylancr 587 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (𝐺𝐴) ≈ ω)
76 entr 8792 . 2 ((𝐴 ≈ (𝐺𝐴) ∧ (𝐺𝐴) ≈ ω) → 𝐴 ≈ ω)
7717, 75, 76syl2anc 584 1 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Fun wfun 6427   Fn wfn 6428  wf 6429  1-1wf1 6430  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  ωcom 7712  reccrdg 8240  cen 8730  1c1 10872   + caddc 10874   < clt 11009  cn 11973  cuz 12582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583
This theorem is referenced by:  unben  16610
  Copyright terms: Public domain W3C validator