Step | Hyp | Ref
| Expression |
1 | | nnex 11979 |
. . . . 5
⊢ ℕ
∈ V |
2 | 1 | ssex 5245 |
. . . 4
⊢ (𝐴 ⊆ ℕ → 𝐴 ∈ V) |
3 | | 1z 12350 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
4 | | unbenlem.1 |
. . . . . . . 8
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) |
5 | 3, 4 | om2uzf1oi 13673 |
. . . . . . 7
⊢ 𝐺:ω–1-1-onto→(ℤ≥‘1) |
6 | | nnuz 12621 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
7 | | f1oeq3 6706 |
. . . . . . . 8
⊢ (ℕ
= (ℤ≥‘1) → (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ≥‘1))) |
8 | 6, 7 | ax-mp 5 |
. . . . . . 7
⊢ (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ≥‘1)) |
9 | 5, 8 | mpbir 230 |
. . . . . 6
⊢ 𝐺:ω–1-1-onto→ℕ |
10 | | f1ocnv 6728 |
. . . . . 6
⊢ (𝐺:ω–1-1-onto→ℕ → ◡𝐺:ℕ–1-1-onto→ω) |
11 | | f1of1 6715 |
. . . . . 6
⊢ (◡𝐺:ℕ–1-1-onto→ω → ◡𝐺:ℕ–1-1→ω) |
12 | 9, 10, 11 | mp2b 10 |
. . . . 5
⊢ ◡𝐺:ℕ–1-1→ω |
13 | | f1ores 6730 |
. . . . 5
⊢ ((◡𝐺:ℕ–1-1→ω ∧ 𝐴 ⊆ ℕ) → (◡𝐺 ↾ 𝐴):𝐴–1-1-onto→(◡𝐺 “ 𝐴)) |
14 | 12, 13 | mpan 687 |
. . . 4
⊢ (𝐴 ⊆ ℕ → (◡𝐺 ↾ 𝐴):𝐴–1-1-onto→(◡𝐺 “ 𝐴)) |
15 | | f1oeng 8759 |
. . . 4
⊢ ((𝐴 ∈ V ∧ (◡𝐺 ↾ 𝐴):𝐴–1-1-onto→(◡𝐺 “ 𝐴)) → 𝐴 ≈ (◡𝐺 “ 𝐴)) |
16 | 2, 14, 15 | syl2anc 584 |
. . 3
⊢ (𝐴 ⊆ ℕ → 𝐴 ≈ (◡𝐺 “ 𝐴)) |
17 | 16 | adantr 481 |
. 2
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → 𝐴 ≈ (◡𝐺 “ 𝐴)) |
18 | | imassrn 5980 |
. . . 4
⊢ (◡𝐺 “ 𝐴) ⊆ ran ◡𝐺 |
19 | | dfdm4 5804 |
. . . . 5
⊢ dom 𝐺 = ran ◡𝐺 |
20 | | f1of 6716 |
. . . . . . 7
⊢ (𝐺:ω–1-1-onto→ℕ → 𝐺:ω⟶ℕ) |
21 | 9, 20 | ax-mp 5 |
. . . . . 6
⊢ 𝐺:ω⟶ℕ |
22 | 21 | fdmi 6612 |
. . . . 5
⊢ dom 𝐺 = ω |
23 | 19, 22 | eqtr3i 2768 |
. . . 4
⊢ ran ◡𝐺 = ω |
24 | 18, 23 | sseqtri 3957 |
. . 3
⊢ (◡𝐺 “ 𝐴) ⊆ ω |
25 | 3, 4 | om2uzuzi 13669 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈
(ℤ≥‘1)) |
26 | 25, 6 | eleqtrrdi 2850 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℕ) |
27 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝐺‘𝑦) → (𝑚 < 𝑛 ↔ (𝐺‘𝑦) < 𝑛)) |
28 | 27 | rexbidv 3226 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝐺‘𝑦) → (∃𝑛 ∈ 𝐴 𝑚 < 𝑛 ↔ ∃𝑛 ∈ 𝐴 (𝐺‘𝑦) < 𝑛)) |
29 | 28 | rspcv 3557 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑦) ∈ ℕ → (∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃𝑛 ∈ 𝐴 (𝐺‘𝑦) < 𝑛)) |
30 | 26, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ∈ ω →
(∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃𝑛 ∈ 𝐴 (𝐺‘𝑦) < 𝑛)) |
31 | 30 | adantr 481 |
. . . . . . . 8
⊢ ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) →
(∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃𝑛 ∈ 𝐴 (𝐺‘𝑦) < 𝑛)) |
32 | | f1ocnv 6728 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝐺 ↾ 𝐴):𝐴–1-1-onto→(◡𝐺 “ 𝐴) → ◡(◡𝐺 ↾ 𝐴):(◡𝐺 “ 𝐴)–1-1-onto→𝐴) |
33 | 14, 32 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆ ℕ → ◡(◡𝐺 ↾ 𝐴):(◡𝐺 “ 𝐴)–1-1-onto→𝐴) |
34 | | f1ofun 6718 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺:ω–1-1-onto→ℕ → Fun 𝐺) |
35 | 9, 34 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ Fun 𝐺 |
36 | | funcnvres2 6514 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
𝐺 → ◡(◡𝐺 ↾ 𝐴) = (𝐺 ↾ (◡𝐺 “ 𝐴))) |
37 | | f1oeq1 6704 |
. . . . . . . . . . . . . . . . 17
⊢ (◡(◡𝐺 ↾ 𝐴) = (𝐺 ↾ (◡𝐺 “ 𝐴)) → (◡(◡𝐺 ↾ 𝐴):(◡𝐺 “ 𝐴)–1-1-onto→𝐴 ↔ (𝐺 ↾ (◡𝐺 “ 𝐴)):(◡𝐺 “ 𝐴)–1-1-onto→𝐴)) |
38 | 35, 36, 37 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢ (◡(◡𝐺 ↾ 𝐴):(◡𝐺 “ 𝐴)–1-1-onto→𝐴 ↔ (𝐺 ↾ (◡𝐺 “ 𝐴)):(◡𝐺 “ 𝐴)–1-1-onto→𝐴) |
39 | 33, 38 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ ℕ → (𝐺 ↾ (◡𝐺 “ 𝐴)):(◡𝐺 “ 𝐴)–1-1-onto→𝐴) |
40 | | f1ofo 6723 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ↾ (◡𝐺 “ 𝐴)):(◡𝐺 “ 𝐴)–1-1-onto→𝐴 → (𝐺 ↾ (◡𝐺 “ 𝐴)):(◡𝐺 “ 𝐴)–onto→𝐴) |
41 | | forn 6691 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ↾ (◡𝐺 “ 𝐴)):(◡𝐺 “ 𝐴)–onto→𝐴 → ran (𝐺 ↾ (◡𝐺 “ 𝐴)) = 𝐴) |
42 | 40, 41 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ↾ (◡𝐺 “ 𝐴)):(◡𝐺 “ 𝐴)–1-1-onto→𝐴 → ran (𝐺 ↾ (◡𝐺 “ 𝐴)) = 𝐴) |
43 | 42 | eleq2d 2824 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ↾ (◡𝐺 “ 𝐴)):(◡𝐺 “ 𝐴)–1-1-onto→𝐴 → (𝑛 ∈ ran (𝐺 ↾ (◡𝐺 “ 𝐴)) ↔ 𝑛 ∈ 𝐴)) |
44 | | f1ofn 6717 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ↾ (◡𝐺 “ 𝐴)):(◡𝐺 “ 𝐴)–1-1-onto→𝐴 → (𝐺 ↾ (◡𝐺 “ 𝐴)) Fn (◡𝐺 “ 𝐴)) |
45 | | fvelrnb 6830 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 ↾ (◡𝐺 “ 𝐴)) Fn (◡𝐺 “ 𝐴) → (𝑛 ∈ ran (𝐺 ↾ (◡𝐺 “ 𝐴)) ↔ ∃𝑚 ∈ (◡𝐺 “ 𝐴)((𝐺 ↾ (◡𝐺 “ 𝐴))‘𝑚) = 𝑛)) |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ↾ (◡𝐺 “ 𝐴)):(◡𝐺 “ 𝐴)–1-1-onto→𝐴 → (𝑛 ∈ ran (𝐺 ↾ (◡𝐺 “ 𝐴)) ↔ ∃𝑚 ∈ (◡𝐺 “ 𝐴)((𝐺 ↾ (◡𝐺 “ 𝐴))‘𝑚) = 𝑛)) |
47 | 43, 46 | bitr3d 280 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ↾ (◡𝐺 “ 𝐴)):(◡𝐺 “ 𝐴)–1-1-onto→𝐴 → (𝑛 ∈ 𝐴 ↔ ∃𝑚 ∈ (◡𝐺 “ 𝐴)((𝐺 ↾ (◡𝐺 “ 𝐴))‘𝑚) = 𝑛)) |
48 | 39, 47 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ ℕ → (𝑛 ∈ 𝐴 ↔ ∃𝑚 ∈ (◡𝐺 “ 𝐴)((𝐺 ↾ (◡𝐺 “ 𝐴))‘𝑚) = 𝑛)) |
49 | 48 | biimpa 477 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℕ ∧ 𝑛 ∈ 𝐴) → ∃𝑚 ∈ (◡𝐺 “ 𝐴)((𝐺 ↾ (◡𝐺 “ 𝐴))‘𝑚) = 𝑛) |
50 | | fvres 6793 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ (◡𝐺 “ 𝐴) → ((𝐺 ↾ (◡𝐺 “ 𝐴))‘𝑚) = (𝐺‘𝑚)) |
51 | 50 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ (◡𝐺 “ 𝐴) → (((𝐺 ↾ (◡𝐺 “ 𝐴))‘𝑚) = 𝑛 ↔ (𝐺‘𝑚) = 𝑛)) |
52 | 51 | biimpa 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ (◡𝐺 “ 𝐴) ∧ ((𝐺 ↾ (◡𝐺 “ 𝐴))‘𝑚) = 𝑛) → (𝐺‘𝑚) = 𝑛) |
53 | 52 | adantll 711 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ ω ∧ 𝑚 ∈ (◡𝐺 “ 𝐴)) ∧ ((𝐺 ↾ (◡𝐺 “ 𝐴))‘𝑚) = 𝑛) → (𝐺‘𝑚) = 𝑛) |
54 | 24 | sseli 3917 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ (◡𝐺 “ 𝐴) → 𝑚 ∈ ω) |
55 | 3, 4 | om2uzlt2i 13671 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ω ∧ 𝑚 ∈ ω) → (𝑦 ∈ 𝑚 ↔ (𝐺‘𝑦) < (𝐺‘𝑚))) |
56 | 54, 55 | sylan2 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ω ∧ 𝑚 ∈ (◡𝐺 “ 𝐴)) → (𝑦 ∈ 𝑚 ↔ (𝐺‘𝑦) < (𝐺‘𝑚))) |
57 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺‘𝑚) = 𝑛 → ((𝐺‘𝑦) < (𝐺‘𝑚) ↔ (𝐺‘𝑦) < 𝑛)) |
58 | 56, 57 | sylan9bb 510 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ ω ∧ 𝑚 ∈ (◡𝐺 “ 𝐴)) ∧ (𝐺‘𝑚) = 𝑛) → (𝑦 ∈ 𝑚 ↔ (𝐺‘𝑦) < 𝑛)) |
59 | 53, 58 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ ω ∧ 𝑚 ∈ (◡𝐺 “ 𝐴)) ∧ ((𝐺 ↾ (◡𝐺 “ 𝐴))‘𝑚) = 𝑛) → (𝑦 ∈ 𝑚 ↔ (𝐺‘𝑦) < 𝑛)) |
60 | 59 | biimparc 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺‘𝑦) < 𝑛 ∧ ((𝑦 ∈ ω ∧ 𝑚 ∈ (◡𝐺 “ 𝐴)) ∧ ((𝐺 ↾ (◡𝐺 “ 𝐴))‘𝑚) = 𝑛)) → 𝑦 ∈ 𝑚) |
61 | 60 | exp44 438 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘𝑦) < 𝑛 → (𝑦 ∈ ω → (𝑚 ∈ (◡𝐺 “ 𝐴) → (((𝐺 ↾ (◡𝐺 “ 𝐴))‘𝑚) = 𝑛 → 𝑦 ∈ 𝑚)))) |
62 | 61 | imp31 418 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺‘𝑦) < 𝑛 ∧ 𝑦 ∈ ω) ∧ 𝑚 ∈ (◡𝐺 “ 𝐴)) → (((𝐺 ↾ (◡𝐺 “ 𝐴))‘𝑚) = 𝑛 → 𝑦 ∈ 𝑚)) |
63 | 62 | reximdva 3203 |
. . . . . . . . . . . . 13
⊢ (((𝐺‘𝑦) < 𝑛 ∧ 𝑦 ∈ ω) → (∃𝑚 ∈ (◡𝐺 “ 𝐴)((𝐺 ↾ (◡𝐺 “ 𝐴))‘𝑚) = 𝑛 → ∃𝑚 ∈ (◡𝐺 “ 𝐴)𝑦 ∈ 𝑚)) |
64 | 49, 63 | syl5 34 |
. . . . . . . . . . . 12
⊢ (((𝐺‘𝑦) < 𝑛 ∧ 𝑦 ∈ ω) → ((𝐴 ⊆ ℕ ∧ 𝑛 ∈ 𝐴) → ∃𝑚 ∈ (◡𝐺 “ 𝐴)𝑦 ∈ 𝑚)) |
65 | 64 | exp4b 431 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑦) < 𝑛 → (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (𝑛 ∈ 𝐴 → ∃𝑚 ∈ (◡𝐺 “ 𝐴)𝑦 ∈ 𝑚)))) |
66 | 65 | com4l 92 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (𝑛 ∈ 𝐴 → ((𝐺‘𝑦) < 𝑛 → ∃𝑚 ∈ (◡𝐺 “ 𝐴)𝑦 ∈ 𝑚)))) |
67 | 66 | imp 407 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (𝑛 ∈ 𝐴 → ((𝐺‘𝑦) < 𝑛 → ∃𝑚 ∈ (◡𝐺 “ 𝐴)𝑦 ∈ 𝑚))) |
68 | 67 | rexlimdv 3212 |
. . . . . . . 8
⊢ ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) →
(∃𝑛 ∈ 𝐴 (𝐺‘𝑦) < 𝑛 → ∃𝑚 ∈ (◡𝐺 “ 𝐴)𝑦 ∈ 𝑚)) |
69 | 31, 68 | syld 47 |
. . . . . . 7
⊢ ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) →
(∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃𝑚 ∈ (◡𝐺 “ 𝐴)𝑦 ∈ 𝑚)) |
70 | 69 | ex 413 |
. . . . . 6
⊢ (𝑦 ∈ ω → (𝐴 ⊆ ℕ →
(∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛 → ∃𝑚 ∈ (◡𝐺 “ 𝐴)𝑦 ∈ 𝑚))) |
71 | 70 | com3l 89 |
. . . . 5
⊢ (𝐴 ⊆ ℕ →
(∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛 → (𝑦 ∈ ω → ∃𝑚 ∈ (◡𝐺 “ 𝐴)𝑦 ∈ 𝑚))) |
72 | 71 | imp 407 |
. . . 4
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → (𝑦 ∈ ω → ∃𝑚 ∈ (◡𝐺 “ 𝐴)𝑦 ∈ 𝑚)) |
73 | 72 | ralrimiv 3102 |
. . 3
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ∀𝑦 ∈ ω ∃𝑚 ∈ (◡𝐺 “ 𝐴)𝑦 ∈ 𝑚) |
74 | | unbnn3 9417 |
. . 3
⊢ (((◡𝐺 “ 𝐴) ⊆ ω ∧ ∀𝑦 ∈ ω ∃𝑚 ∈ (◡𝐺 “ 𝐴)𝑦 ∈ 𝑚) → (◡𝐺 “ 𝐴) ≈ ω) |
75 | 24, 73, 74 | sylancr 587 |
. 2
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → (◡𝐺 “ 𝐴) ≈ ω) |
76 | | entr 8792 |
. 2
⊢ ((𝐴 ≈ (◡𝐺 “ 𝐴) ∧ (◡𝐺 “ 𝐴) ≈ ω) → 𝐴 ≈ ω) |
77 | 17, 75, 76 | syl2anc 584 |
1
⊢ ((𝐴 ⊆ ℕ ∧
∀𝑚 ∈ ℕ
∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → 𝐴 ≈ ω) |