MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbenlem Structured version   Visualization version   GIF version

Theorem unbenlem 16221
Description: Lemma for unben 16222. (Contributed by NM, 5-May-2005.) (Revised by Mario Carneiro, 15-Sep-2013.)
Hypothesis
Ref Expression
unbenlem.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
Assertion
Ref Expression
unbenlem ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ ω)
Distinct variable groups:   𝑚,𝑛,𝐴   𝑚,𝐺,𝑛
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem unbenlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nnex 11621 . . . . 5 ℕ ∈ V
21ssex 5198 . . . 4 (𝐴 ⊆ ℕ → 𝐴 ∈ V)
3 1z 11990 . . . . . . . 8 1 ∈ ℤ
4 unbenlem.1 . . . . . . . 8 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
53, 4om2uzf1oi 13304 . . . . . . 7 𝐺:ω–1-1-onto→(ℤ‘1)
6 nnuz 12259 . . . . . . . 8 ℕ = (ℤ‘1)
7 f1oeq3 6579 . . . . . . . 8 (ℕ = (ℤ‘1) → (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1)))
86, 7ax-mp 5 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ ↔ 𝐺:ω–1-1-onto→(ℤ‘1))
95, 8mpbir 234 . . . . . 6 𝐺:ω–1-1-onto→ℕ
10 f1ocnv 6600 . . . . . 6 (𝐺:ω–1-1-onto→ℕ → 𝐺:ℕ–1-1-onto→ω)
11 f1of1 6587 . . . . . 6 (𝐺:ℕ–1-1-onto→ω → 𝐺:ℕ–1-1→ω)
129, 10, 11mp2b 10 . . . . 5 𝐺:ℕ–1-1→ω
13 f1ores 6602 . . . . 5 ((𝐺:ℕ–1-1→ω ∧ 𝐴 ⊆ ℕ) → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
1412, 13mpan 689 . . . 4 (𝐴 ⊆ ℕ → (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴))
15 f1oeng 8503 . . . 4 ((𝐴 ∈ V ∧ (𝐺𝐴):𝐴1-1-onto→(𝐺𝐴)) → 𝐴 ≈ (𝐺𝐴))
162, 14, 15syl2anc 587 . . 3 (𝐴 ⊆ ℕ → 𝐴 ≈ (𝐺𝐴))
1716adantr 484 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ (𝐺𝐴))
18 imassrn 5913 . . . 4 (𝐺𝐴) ⊆ ran 𝐺
19 dfdm4 5737 . . . . 5 dom 𝐺 = ran 𝐺
20 f1of 6588 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ → 𝐺:ω⟶ℕ)
219, 20ax-mp 5 . . . . . 6 𝐺:ω⟶ℕ
2221fdmi 6497 . . . . 5 dom 𝐺 = ω
2319, 22eqtr3i 2846 . . . 4 ran 𝐺 = ω
2418, 23sseqtri 3979 . . 3 (𝐺𝐴) ⊆ ω
253, 4om2uzuzi 13300 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ‘1))
2625, 6eleqtrrdi 2923 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℕ)
27 breq1 5042 . . . . . . . . . . . 12 (𝑚 = (𝐺𝑦) → (𝑚 < 𝑛 ↔ (𝐺𝑦) < 𝑛))
2827rexbidv 3283 . . . . . . . . . . 11 (𝑚 = (𝐺𝑦) → (∃𝑛𝐴 𝑚 < 𝑛 ↔ ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
2928rspcv 3595 . . . . . . . . . 10 ((𝐺𝑦) ∈ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
3026, 29syl 17 . . . . . . . . 9 (𝑦 ∈ ω → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
3130adantr 484 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑛𝐴 (𝐺𝑦) < 𝑛))
32 f1ocnv 6600 . . . . . . . . . . . . . . . . 17 ((𝐺𝐴):𝐴1-1-onto→(𝐺𝐴) → (𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴)
3314, 32syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℕ → (𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴)
34 f1ofun 6590 . . . . . . . . . . . . . . . . . 18 (𝐺:ω–1-1-onto→ℕ → Fun 𝐺)
359, 34ax-mp 5 . . . . . . . . . . . . . . . . 17 Fun 𝐺
36 funcnvres2 6407 . . . . . . . . . . . . . . . . 17 (Fun 𝐺(𝐺𝐴) = (𝐺 ↾ (𝐺𝐴)))
37 f1oeq1 6577 . . . . . . . . . . . . . . . . 17 ((𝐺𝐴) = (𝐺 ↾ (𝐺𝐴)) → ((𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴 ↔ (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴))
3835, 36, 37mp2b 10 . . . . . . . . . . . . . . . 16 ((𝐺𝐴):(𝐺𝐴)–1-1-onto𝐴 ↔ (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴)
3933, 38sylib 221 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℕ → (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴)
40 f1ofo 6595 . . . . . . . . . . . . . . . . . 18 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–onto𝐴)
41 forn 6566 . . . . . . . . . . . . . . . . . 18 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–onto𝐴 → ran (𝐺 ↾ (𝐺𝐴)) = 𝐴)
4240, 41syl 17 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → ran (𝐺 ↾ (𝐺𝐴)) = 𝐴)
4342eleq2d 2897 . . . . . . . . . . . . . . . 16 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ 𝑛𝐴))
44 f1ofn 6589 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝐺 ↾ (𝐺𝐴)) Fn (𝐺𝐴))
45 fvelrnb 6699 . . . . . . . . . . . . . . . . 17 ((𝐺 ↾ (𝐺𝐴)) Fn (𝐺𝐴) → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4644, 45syl 17 . . . . . . . . . . . . . . . 16 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛 ∈ ran (𝐺 ↾ (𝐺𝐴)) ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4743, 46bitr3d 284 . . . . . . . . . . . . . . 15 ((𝐺 ↾ (𝐺𝐴)):(𝐺𝐴)–1-1-onto𝐴 → (𝑛𝐴 ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4839, 47syl 17 . . . . . . . . . . . . . 14 (𝐴 ⊆ ℕ → (𝑛𝐴 ↔ ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛))
4948biimpa 480 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℕ ∧ 𝑛𝐴) → ∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛)
50 fvres 6662 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (𝐺𝐴) → ((𝐺 ↾ (𝐺𝐴))‘𝑚) = (𝐺𝑚))
5150eqeq1d 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (𝐺𝐴) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛 ↔ (𝐺𝑚) = 𝑛))
5251biimpa 480 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ (𝐺𝐴) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝐺𝑚) = 𝑛)
5352adantll 713 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝐺𝑚) = 𝑛)
5424sseli 3939 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (𝐺𝐴) → 𝑚 ∈ ω)
553, 4om2uzlt2i 13302 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ω ∧ 𝑚 ∈ ω) → (𝑦𝑚 ↔ (𝐺𝑦) < (𝐺𝑚)))
5654, 55sylan2 595 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) → (𝑦𝑚 ↔ (𝐺𝑦) < (𝐺𝑚)))
57 breq2 5043 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑚) = 𝑛 → ((𝐺𝑦) < (𝐺𝑚) ↔ (𝐺𝑦) < 𝑛))
5856, 57sylan9bb 513 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ (𝐺𝑚) = 𝑛) → (𝑦𝑚 ↔ (𝐺𝑦) < 𝑛))
5953, 58syldan 594 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛) → (𝑦𝑚 ↔ (𝐺𝑦) < 𝑛))
6059biimparc 483 . . . . . . . . . . . . . . . 16 (((𝐺𝑦) < 𝑛 ∧ ((𝑦 ∈ ω ∧ 𝑚 ∈ (𝐺𝐴)) ∧ ((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛)) → 𝑦𝑚)
6160exp44 441 . . . . . . . . . . . . . . 15 ((𝐺𝑦) < 𝑛 → (𝑦 ∈ ω → (𝑚 ∈ (𝐺𝐴) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛𝑦𝑚))))
6261imp31 421 . . . . . . . . . . . . . 14 ((((𝐺𝑦) < 𝑛𝑦 ∈ ω) ∧ 𝑚 ∈ (𝐺𝐴)) → (((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛𝑦𝑚))
6362reximdva 3260 . . . . . . . . . . . . 13 (((𝐺𝑦) < 𝑛𝑦 ∈ ω) → (∃𝑚 ∈ (𝐺𝐴)((𝐺 ↾ (𝐺𝐴))‘𝑚) = 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6449, 63syl5 34 . . . . . . . . . . . 12 (((𝐺𝑦) < 𝑛𝑦 ∈ ω) → ((𝐴 ⊆ ℕ ∧ 𝑛𝐴) → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6564exp4b 434 . . . . . . . . . . 11 ((𝐺𝑦) < 𝑛 → (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (𝑛𝐴 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))))
6665com4l 92 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (𝑛𝐴 → ((𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))))
6766imp 410 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (𝑛𝐴 → ((𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
6867rexlimdv 3269 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∃𝑛𝐴 (𝐺𝑦) < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
6931, 68syld 47 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐴 ⊆ ℕ) → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
7069ex 416 . . . . . 6 (𝑦 ∈ ω → (𝐴 ⊆ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
7170com3l 89 . . . . 5 (𝐴 ⊆ ℕ → (∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛 → (𝑦 ∈ ω → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)))
7271imp 410 . . . 4 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (𝑦 ∈ ω → ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚))
7372ralrimiv 3169 . . 3 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ∀𝑦 ∈ ω ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚)
74 unbnn3 9098 . . 3 (((𝐺𝐴) ⊆ ω ∧ ∀𝑦 ∈ ω ∃𝑚 ∈ (𝐺𝐴)𝑦𝑚) → (𝐺𝐴) ≈ ω)
7524, 73, 74sylancr 590 . 2 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → (𝐺𝐴) ≈ ω)
76 entr 8536 . 2 ((𝐴 ≈ (𝐺𝐴) ∧ (𝐺𝐴) ≈ ω) → 𝐴 ≈ ω)
7717, 75, 76syl2anc 587 1 ((𝐴 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3126  wrex 3127  Vcvv 3471  wss 3910   class class class wbr 5039  cmpt 5119  ccnv 5527  dom cdm 5528  ran crn 5529  cres 5530  cima 5531  Fun wfun 6322   Fn wfn 6323  wf 6324  1-1wf1 6325  ontowfo 6326  1-1-ontowf1o 6327  cfv 6328  (class class class)co 7130  ωcom 7555  reccrdg 8020  cen 8481  1c1 10515   + caddc 10517   < clt 10652  cn 11615  cuz 12221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222
This theorem is referenced by:  unben  16222
  Copyright terms: Public domain W3C validator