Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlcvr1 Structured version   Visualization version   GIF version

Theorem cvlcvr1 37353
Description: The covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 30717 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlcvr1.b 𝐵 = (Base‘𝐾)
cvlcvr1.l = (le‘𝐾)
cvlcvr1.j = (join‘𝐾)
cvlcvr1.c 𝐶 = ( ⋖ ‘𝐾)
cvlcvr1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlcvr1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))

Proof of Theorem cvlcvr1
Dummy variables 𝑧 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp13 1204 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ CvLat)
2 cvllat 37340 . . . . . . 7 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
31, 2syl 17 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Lat)
4 simp2 1136 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑋𝐵)
5 cvlcvr1.b . . . . . . . 8 𝐵 = (Base‘𝐾)
6 cvlcvr1.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
75, 6atbase 37303 . . . . . . 7 (𝑃𝐴𝑃𝐵)
873ad2ant3 1134 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐵)
9 cvlcvr1.l . . . . . . 7 = (le‘𝐾)
10 eqid 2738 . . . . . . 7 (lt‘𝐾) = (lt‘𝐾)
11 cvlcvr1.j . . . . . . 7 = (join‘𝐾)
125, 9, 10, 11latnle 18191 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
133, 4, 8, 12syl3anc 1370 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
1413biimpd 228 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
15 simpl13 1249 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ CvLat)
1615, 2syl 17 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ Lat)
17 simprll 776 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧𝐵)
18 simpl2 1191 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋𝐵)
19 simpl3 1192 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑃𝐴)
2019, 7syl 17 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑃𝐵)
215, 11latjcl 18157 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) ∈ 𝐵)
2216, 18, 20, 21syl3anc 1370 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋 𝑃) ∈ 𝐵)
23 simprrr 779 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧 (𝑋 𝑃))
24 simprrl 778 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋(lt‘𝐾)𝑧)
25 simpl11 1247 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ OML)
26 simpl12 1248 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ CLat)
27 cvlatl 37339 . . . . . . . . . . . 12 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
2815, 27syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ AtLat)
295, 9, 10, 6atlrelat1 37335 . . . . . . . . . . 11 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑧𝐵) → (𝑋(lt‘𝐾)𝑧 → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧)))
3025, 26, 28, 18, 17, 29syl311anc 1383 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋(lt‘𝐾)𝑧 → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧)))
3124, 30mpd 15 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧))
3216adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝐾 ∈ Lat)
335, 6atbase 37303 . . . . . . . . . . . . . 14 (𝑞𝐴𝑞𝐵)
3433ad2antrl 725 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞𝐵)
3517adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑧𝐵)
3622adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) ∈ 𝐵)
37 simprrr 779 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞 𝑧)
3823adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑧 (𝑋 𝑃))
395, 9, 32, 34, 35, 36, 37, 38lattrd 18164 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞 (𝑋 𝑃))
4015adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝐾 ∈ CvLat)
41 simprl 768 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞𝐴)
42 simpll3 1213 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑃𝐴)
43 simpll2 1212 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑋𝐵)
44 simprrl 778 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ¬ 𝑞 𝑋)
455, 9, 11, 6cvlexch1 37342 . . . . . . . . . . . . 13 ((𝐾 ∈ CvLat ∧ (𝑞𝐴𝑃𝐴𝑋𝐵) ∧ ¬ 𝑞 𝑋) → (𝑞 (𝑋 𝑃) → 𝑃 (𝑋 𝑞)))
4640, 41, 42, 43, 44, 45syl131anc 1382 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑞 (𝑋 𝑃) → 𝑃 (𝑋 𝑞)))
4739, 46mpd 15 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑃 (𝑋 𝑞))
48 simprlr 777 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → ¬ 𝑃 𝑋)
4948adantr 481 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ¬ 𝑃 𝑋)
505, 9, 11, 6cvlexchb1 37344 . . . . . . . . . . . 12 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑞𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑞) ↔ (𝑋 𝑃) = (𝑋 𝑞)))
5140, 42, 41, 43, 49, 50syl131anc 1382 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑃 (𝑋 𝑞) ↔ (𝑋 𝑃) = (𝑋 𝑞)))
5247, 51mpbid 231 . . . . . . . . . 10 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) = (𝑋 𝑞))
539, 10pltle 18051 . . . . . . . . . . . . . 14 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑧𝐵) → (𝑋(lt‘𝐾)𝑧𝑋 𝑧))
5425, 18, 17, 53syl3anc 1370 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋(lt‘𝐾)𝑧𝑋 𝑧))
5524, 54mpd 15 . . . . . . . . . . . 12 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋 𝑧)
5655adantr 481 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑋 𝑧)
575, 9, 11latjle12 18168 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑞𝐵𝑧𝐵)) → ((𝑋 𝑧𝑞 𝑧) ↔ (𝑋 𝑞) 𝑧))
5832, 43, 34, 35, 57syl13anc 1371 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ((𝑋 𝑧𝑞 𝑧) ↔ (𝑋 𝑞) 𝑧))
5956, 37, 58mpbi2and 709 . . . . . . . . . 10 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑞) 𝑧)
6052, 59eqbrtrd 5096 . . . . . . . . 9 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) 𝑧)
6131, 60rexlimddv 3220 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋 𝑃) 𝑧)
625, 9, 16, 17, 22, 23, 61latasymd 18163 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧 = (𝑋 𝑃))
6362exp44 438 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑧𝐵 → (¬ 𝑃 𝑋 → ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
6463imp 407 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑧𝐵) → (¬ 𝑃 𝑋 → ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃))))
6564ralrimdva 3106 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋 → ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃))))
6614, 65jcad 513 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋 → (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
673, 4, 8, 21syl3anc 1370 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃) ∈ 𝐵)
68 cvlcvr1.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
695, 9, 10, 68cvrval2 37288 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) → (𝑋𝐶(𝑋 𝑃) ↔ (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
703, 4, 67, 69syl3anc 1370 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) ↔ (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
7166, 70sylibrd 258 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
723adantr 481 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝐾 ∈ Lat)
73 simpl2 1191 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋𝐵)
7467adantr 481 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → (𝑋 𝑃) ∈ 𝐵)
75 simpr 485 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋𝐶(𝑋 𝑃))
765, 10, 68cvrlt 37284 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋(lt‘𝐾)(𝑋 𝑃))
7772, 73, 74, 75, 76syl31anc 1372 . . . 4 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋(lt‘𝐾)(𝑋 𝑃))
7877ex 413 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) → 𝑋(lt‘𝐾)(𝑋 𝑃)))
7978, 13sylibrd 258 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) → ¬ 𝑃 𝑋))
8071, 79impbid 211 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  ltcplt 18026  joincjn 18029  Latclat 18149  CLatccla 18216  OMLcoml 37189  ccvr 37276  Atomscatm 37277  AtLatcal 37278  CvLatclc 37279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336
This theorem is referenced by:  cvlcvrp  37354  cvr1  37424
  Copyright terms: Public domain W3C validator