Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlcvr1 Structured version   Visualization version   GIF version

Theorem cvlcvr1 39325
Description: The covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 32334 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlcvr1.b 𝐵 = (Base‘𝐾)
cvlcvr1.l = (le‘𝐾)
cvlcvr1.j = (join‘𝐾)
cvlcvr1.c 𝐶 = ( ⋖ ‘𝐾)
cvlcvr1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlcvr1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))

Proof of Theorem cvlcvr1
Dummy variables 𝑧 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp13 1206 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ CvLat)
2 cvllat 39312 . . . . . . 7 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
31, 2syl 17 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Lat)
4 simp2 1137 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑋𝐵)
5 cvlcvr1.b . . . . . . . 8 𝐵 = (Base‘𝐾)
6 cvlcvr1.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
75, 6atbase 39275 . . . . . . 7 (𝑃𝐴𝑃𝐵)
873ad2ant3 1135 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐵)
9 cvlcvr1.l . . . . . . 7 = (le‘𝐾)
10 eqid 2729 . . . . . . 7 (lt‘𝐾) = (lt‘𝐾)
11 cvlcvr1.j . . . . . . 7 = (join‘𝐾)
125, 9, 10, 11latnle 18414 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
133, 4, 8, 12syl3anc 1373 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
1413biimpd 229 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
15 simpl13 1251 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ CvLat)
1615, 2syl 17 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ Lat)
17 simprll 778 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧𝐵)
18 simpl2 1193 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋𝐵)
19 simpl3 1194 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑃𝐴)
2019, 7syl 17 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑃𝐵)
215, 11latjcl 18380 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) ∈ 𝐵)
2216, 18, 20, 21syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋 𝑃) ∈ 𝐵)
23 simprrr 781 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧 (𝑋 𝑃))
24 simprrl 780 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋(lt‘𝐾)𝑧)
25 simpl11 1249 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ OML)
26 simpl12 1250 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ CLat)
27 cvlatl 39311 . . . . . . . . . . . 12 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
2815, 27syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ AtLat)
295, 9, 10, 6atlrelat1 39307 . . . . . . . . . . 11 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑧𝐵) → (𝑋(lt‘𝐾)𝑧 → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧)))
3025, 26, 28, 18, 17, 29syl311anc 1386 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋(lt‘𝐾)𝑧 → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧)))
3124, 30mpd 15 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧))
3216adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝐾 ∈ Lat)
335, 6atbase 39275 . . . . . . . . . . . . . 14 (𝑞𝐴𝑞𝐵)
3433ad2antrl 728 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞𝐵)
3517adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑧𝐵)
3622adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) ∈ 𝐵)
37 simprrr 781 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞 𝑧)
3823adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑧 (𝑋 𝑃))
395, 9, 32, 34, 35, 36, 37, 38lattrd 18387 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞 (𝑋 𝑃))
4015adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝐾 ∈ CvLat)
41 simprl 770 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞𝐴)
42 simpll3 1215 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑃𝐴)
43 simpll2 1214 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑋𝐵)
44 simprrl 780 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ¬ 𝑞 𝑋)
455, 9, 11, 6cvlexch1 39314 . . . . . . . . . . . . 13 ((𝐾 ∈ CvLat ∧ (𝑞𝐴𝑃𝐴𝑋𝐵) ∧ ¬ 𝑞 𝑋) → (𝑞 (𝑋 𝑃) → 𝑃 (𝑋 𝑞)))
4640, 41, 42, 43, 44, 45syl131anc 1385 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑞 (𝑋 𝑃) → 𝑃 (𝑋 𝑞)))
4739, 46mpd 15 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑃 (𝑋 𝑞))
48 simprlr 779 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → ¬ 𝑃 𝑋)
4948adantr 480 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ¬ 𝑃 𝑋)
505, 9, 11, 6cvlexchb1 39316 . . . . . . . . . . . 12 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑞𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑞) ↔ (𝑋 𝑃) = (𝑋 𝑞)))
5140, 42, 41, 43, 49, 50syl131anc 1385 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑃 (𝑋 𝑞) ↔ (𝑋 𝑃) = (𝑋 𝑞)))
5247, 51mpbid 232 . . . . . . . . . 10 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) = (𝑋 𝑞))
539, 10pltle 18272 . . . . . . . . . . . . . 14 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑧𝐵) → (𝑋(lt‘𝐾)𝑧𝑋 𝑧))
5425, 18, 17, 53syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋(lt‘𝐾)𝑧𝑋 𝑧))
5524, 54mpd 15 . . . . . . . . . . . 12 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋 𝑧)
5655adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑋 𝑧)
575, 9, 11latjle12 18391 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑞𝐵𝑧𝐵)) → ((𝑋 𝑧𝑞 𝑧) ↔ (𝑋 𝑞) 𝑧))
5832, 43, 34, 35, 57syl13anc 1374 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ((𝑋 𝑧𝑞 𝑧) ↔ (𝑋 𝑞) 𝑧))
5956, 37, 58mpbi2and 712 . . . . . . . . . 10 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑞) 𝑧)
6052, 59eqbrtrd 5124 . . . . . . . . 9 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) 𝑧)
6131, 60rexlimddv 3140 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋 𝑃) 𝑧)
625, 9, 16, 17, 22, 23, 61latasymd 18386 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧 = (𝑋 𝑃))
6362exp44 437 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑧𝐵 → (¬ 𝑃 𝑋 → ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
6463imp 406 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑧𝐵) → (¬ 𝑃 𝑋 → ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃))))
6564ralrimdva 3133 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋 → ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃))))
6614, 65jcad 512 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋 → (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
673, 4, 8, 21syl3anc 1373 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃) ∈ 𝐵)
68 cvlcvr1.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
695, 9, 10, 68cvrval2 39260 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) → (𝑋𝐶(𝑋 𝑃) ↔ (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
703, 4, 67, 69syl3anc 1373 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) ↔ (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
7166, 70sylibrd 259 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
723adantr 480 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝐾 ∈ Lat)
73 simpl2 1193 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋𝐵)
7467adantr 480 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → (𝑋 𝑃) ∈ 𝐵)
75 simpr 484 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋𝐶(𝑋 𝑃))
765, 10, 68cvrlt 39256 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋(lt‘𝐾)(𝑋 𝑃))
7772, 73, 74, 75, 76syl31anc 1375 . . . 4 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋(lt‘𝐾)(𝑋 𝑃))
7877ex 412 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) → 𝑋(lt‘𝐾)(𝑋 𝑃)))
7978, 13sylibrd 259 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) → ¬ 𝑃 𝑋))
8071, 79impbid 212 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  ltcplt 18249  joincjn 18252  Latclat 18372  CLatccla 18439  OMLcoml 39161  ccvr 39248  Atomscatm 39249  AtLatcal 39250  CvLatclc 39251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308
This theorem is referenced by:  cvlcvrp  39326  cvr1  39397
  Copyright terms: Public domain W3C validator