Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlcvr1 Structured version   Visualization version   GIF version

Theorem cvlcvr1 39448
Description: The covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 32335 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlcvr1.b 𝐵 = (Base‘𝐾)
cvlcvr1.l = (le‘𝐾)
cvlcvr1.j = (join‘𝐾)
cvlcvr1.c 𝐶 = ( ⋖ ‘𝐾)
cvlcvr1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlcvr1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))

Proof of Theorem cvlcvr1
Dummy variables 𝑧 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp13 1206 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ CvLat)
2 cvllat 39435 . . . . . . 7 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
31, 2syl 17 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Lat)
4 simp2 1137 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑋𝐵)
5 cvlcvr1.b . . . . . . . 8 𝐵 = (Base‘𝐾)
6 cvlcvr1.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
75, 6atbase 39398 . . . . . . 7 (𝑃𝐴𝑃𝐵)
873ad2ant3 1135 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐵)
9 cvlcvr1.l . . . . . . 7 = (le‘𝐾)
10 eqid 2731 . . . . . . 7 (lt‘𝐾) = (lt‘𝐾)
11 cvlcvr1.j . . . . . . 7 = (join‘𝐾)
125, 9, 10, 11latnle 18379 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
133, 4, 8, 12syl3anc 1373 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
1413biimpd 229 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
15 simpl13 1251 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ CvLat)
1615, 2syl 17 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ Lat)
17 simprll 778 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧𝐵)
18 simpl2 1193 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋𝐵)
19 simpl3 1194 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑃𝐴)
2019, 7syl 17 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑃𝐵)
215, 11latjcl 18345 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) ∈ 𝐵)
2216, 18, 20, 21syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋 𝑃) ∈ 𝐵)
23 simprrr 781 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧 (𝑋 𝑃))
24 simprrl 780 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋(lt‘𝐾)𝑧)
25 simpl11 1249 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ OML)
26 simpl12 1250 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ CLat)
27 cvlatl 39434 . . . . . . . . . . . 12 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
2815, 27syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ AtLat)
295, 9, 10, 6atlrelat1 39430 . . . . . . . . . . 11 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑧𝐵) → (𝑋(lt‘𝐾)𝑧 → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧)))
3025, 26, 28, 18, 17, 29syl311anc 1386 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋(lt‘𝐾)𝑧 → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧)))
3124, 30mpd 15 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧))
3216adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝐾 ∈ Lat)
335, 6atbase 39398 . . . . . . . . . . . . . 14 (𝑞𝐴𝑞𝐵)
3433ad2antrl 728 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞𝐵)
3517adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑧𝐵)
3622adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) ∈ 𝐵)
37 simprrr 781 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞 𝑧)
3823adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑧 (𝑋 𝑃))
395, 9, 32, 34, 35, 36, 37, 38lattrd 18352 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞 (𝑋 𝑃))
4015adantr 480 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝐾 ∈ CvLat)
41 simprl 770 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞𝐴)
42 simpll3 1215 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑃𝐴)
43 simpll2 1214 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑋𝐵)
44 simprrl 780 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ¬ 𝑞 𝑋)
455, 9, 11, 6cvlexch1 39437 . . . . . . . . . . . . 13 ((𝐾 ∈ CvLat ∧ (𝑞𝐴𝑃𝐴𝑋𝐵) ∧ ¬ 𝑞 𝑋) → (𝑞 (𝑋 𝑃) → 𝑃 (𝑋 𝑞)))
4640, 41, 42, 43, 44, 45syl131anc 1385 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑞 (𝑋 𝑃) → 𝑃 (𝑋 𝑞)))
4739, 46mpd 15 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑃 (𝑋 𝑞))
48 simprlr 779 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → ¬ 𝑃 𝑋)
4948adantr 480 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ¬ 𝑃 𝑋)
505, 9, 11, 6cvlexchb1 39439 . . . . . . . . . . . 12 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑞𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑞) ↔ (𝑋 𝑃) = (𝑋 𝑞)))
5140, 42, 41, 43, 49, 50syl131anc 1385 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑃 (𝑋 𝑞) ↔ (𝑋 𝑃) = (𝑋 𝑞)))
5247, 51mpbid 232 . . . . . . . . . 10 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) = (𝑋 𝑞))
539, 10pltle 18237 . . . . . . . . . . . . . 14 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑧𝐵) → (𝑋(lt‘𝐾)𝑧𝑋 𝑧))
5425, 18, 17, 53syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋(lt‘𝐾)𝑧𝑋 𝑧))
5524, 54mpd 15 . . . . . . . . . . . 12 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋 𝑧)
5655adantr 480 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑋 𝑧)
575, 9, 11latjle12 18356 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑞𝐵𝑧𝐵)) → ((𝑋 𝑧𝑞 𝑧) ↔ (𝑋 𝑞) 𝑧))
5832, 43, 34, 35, 57syl13anc 1374 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ((𝑋 𝑧𝑞 𝑧) ↔ (𝑋 𝑞) 𝑧))
5956, 37, 58mpbi2and 712 . . . . . . . . . 10 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑞) 𝑧)
6052, 59eqbrtrd 5111 . . . . . . . . 9 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) 𝑧)
6131, 60rexlimddv 3139 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋 𝑃) 𝑧)
625, 9, 16, 17, 22, 23, 61latasymd 18351 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧 = (𝑋 𝑃))
6362exp44 437 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑧𝐵 → (¬ 𝑃 𝑋 → ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
6463imp 406 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑧𝐵) → (¬ 𝑃 𝑋 → ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃))))
6564ralrimdva 3132 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋 → ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃))))
6614, 65jcad 512 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋 → (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
673, 4, 8, 21syl3anc 1373 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃) ∈ 𝐵)
68 cvlcvr1.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
695, 9, 10, 68cvrval2 39383 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) → (𝑋𝐶(𝑋 𝑃) ↔ (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
703, 4, 67, 69syl3anc 1373 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) ↔ (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
7166, 70sylibrd 259 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
723adantr 480 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝐾 ∈ Lat)
73 simpl2 1193 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋𝐵)
7467adantr 480 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → (𝑋 𝑃) ∈ 𝐵)
75 simpr 484 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋𝐶(𝑋 𝑃))
765, 10, 68cvrlt 39379 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋(lt‘𝐾)(𝑋 𝑃))
7772, 73, 74, 75, 76syl31anc 1375 . . . 4 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋(lt‘𝐾)(𝑋 𝑃))
7877ex 412 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) → 𝑋(lt‘𝐾)(𝑋 𝑃)))
7978, 13sylibrd 259 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) → ¬ 𝑃 𝑋))
8071, 79impbid 212 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  ltcplt 18214  joincjn 18217  Latclat 18337  CLatccla 18404  OMLcoml 39284  ccvr 39371  Atomscatm 39372  AtLatcal 39373  CvLatclc 39374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431
This theorem is referenced by:  cvlcvrp  39449  cvr1  39519
  Copyright terms: Public domain W3C validator