Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlcvr1 Structured version   Visualization version   GIF version

Theorem cvlcvr1 36355
Description: The covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 30059 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlcvr1.b 𝐵 = (Base‘𝐾)
cvlcvr1.l = (le‘𝐾)
cvlcvr1.j = (join‘𝐾)
cvlcvr1.c 𝐶 = ( ⋖ ‘𝐾)
cvlcvr1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlcvr1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))

Proof of Theorem cvlcvr1
Dummy variables 𝑧 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp13 1197 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ CvLat)
2 cvllat 36342 . . . . . . 7 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
31, 2syl 17 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Lat)
4 simp2 1129 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑋𝐵)
5 cvlcvr1.b . . . . . . . 8 𝐵 = (Base‘𝐾)
6 cvlcvr1.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
75, 6atbase 36305 . . . . . . 7 (𝑃𝐴𝑃𝐵)
873ad2ant3 1127 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐵)
9 cvlcvr1.l . . . . . . 7 = (le‘𝐾)
10 eqid 2818 . . . . . . 7 (lt‘𝐾) = (lt‘𝐾)
11 cvlcvr1.j . . . . . . 7 = (join‘𝐾)
125, 9, 10, 11latnle 17683 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
133, 4, 8, 12syl3anc 1363 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
1413biimpd 230 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
15 simpl13 1242 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ CvLat)
1615, 2syl 17 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ Lat)
17 simprll 775 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧𝐵)
18 simpl2 1184 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋𝐵)
19 simpl3 1185 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑃𝐴)
2019, 7syl 17 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑃𝐵)
215, 11latjcl 17649 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) ∈ 𝐵)
2216, 18, 20, 21syl3anc 1363 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋 𝑃) ∈ 𝐵)
23 simprrr 778 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧 (𝑋 𝑃))
24 simprrl 777 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋(lt‘𝐾)𝑧)
25 simpl11 1240 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ OML)
26 simpl12 1241 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ CLat)
27 cvlatl 36341 . . . . . . . . . . . 12 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
2815, 27syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ AtLat)
295, 9, 10, 6atlrelat1 36337 . . . . . . . . . . 11 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑧𝐵) → (𝑋(lt‘𝐾)𝑧 → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧)))
3025, 26, 28, 18, 17, 29syl311anc 1376 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋(lt‘𝐾)𝑧 → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧)))
3124, 30mpd 15 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧))
3216adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝐾 ∈ Lat)
335, 6atbase 36305 . . . . . . . . . . . . . 14 (𝑞𝐴𝑞𝐵)
3433ad2antrl 724 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞𝐵)
3517adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑧𝐵)
3622adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) ∈ 𝐵)
37 simprrr 778 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞 𝑧)
3823adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑧 (𝑋 𝑃))
395, 9, 32, 34, 35, 36, 37, 38lattrd 17656 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞 (𝑋 𝑃))
4015adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝐾 ∈ CvLat)
41 simprl 767 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞𝐴)
42 simpll3 1206 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑃𝐴)
43 simpll2 1205 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑋𝐵)
44 simprrl 777 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ¬ 𝑞 𝑋)
455, 9, 11, 6cvlexch1 36344 . . . . . . . . . . . . 13 ((𝐾 ∈ CvLat ∧ (𝑞𝐴𝑃𝐴𝑋𝐵) ∧ ¬ 𝑞 𝑋) → (𝑞 (𝑋 𝑃) → 𝑃 (𝑋 𝑞)))
4640, 41, 42, 43, 44, 45syl131anc 1375 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑞 (𝑋 𝑃) → 𝑃 (𝑋 𝑞)))
4739, 46mpd 15 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑃 (𝑋 𝑞))
48 simprlr 776 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → ¬ 𝑃 𝑋)
4948adantr 481 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ¬ 𝑃 𝑋)
505, 9, 11, 6cvlexchb1 36346 . . . . . . . . . . . 12 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑞𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑞) ↔ (𝑋 𝑃) = (𝑋 𝑞)))
5140, 42, 41, 43, 49, 50syl131anc 1375 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑃 (𝑋 𝑞) ↔ (𝑋 𝑃) = (𝑋 𝑞)))
5247, 51mpbid 233 . . . . . . . . . 10 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) = (𝑋 𝑞))
539, 10pltle 17559 . . . . . . . . . . . . . 14 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑧𝐵) → (𝑋(lt‘𝐾)𝑧𝑋 𝑧))
5425, 18, 17, 53syl3anc 1363 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋(lt‘𝐾)𝑧𝑋 𝑧))
5524, 54mpd 15 . . . . . . . . . . . 12 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋 𝑧)
5655adantr 481 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑋 𝑧)
575, 9, 11latjle12 17660 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑞𝐵𝑧𝐵)) → ((𝑋 𝑧𝑞 𝑧) ↔ (𝑋 𝑞) 𝑧))
5832, 43, 34, 35, 57syl13anc 1364 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ((𝑋 𝑧𝑞 𝑧) ↔ (𝑋 𝑞) 𝑧))
5956, 37, 58mpbi2and 708 . . . . . . . . . 10 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑞) 𝑧)
6052, 59eqbrtrd 5079 . . . . . . . . 9 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) 𝑧)
6131, 60rexlimddv 3288 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋 𝑃) 𝑧)
625, 9, 16, 17, 22, 23, 61latasymd 17655 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧 = (𝑋 𝑃))
6362exp44 438 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑧𝐵 → (¬ 𝑃 𝑋 → ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
6463imp 407 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑧𝐵) → (¬ 𝑃 𝑋 → ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃))))
6564ralrimdva 3186 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋 → ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃))))
6614, 65jcad 513 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋 → (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
673, 4, 8, 21syl3anc 1363 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃) ∈ 𝐵)
68 cvlcvr1.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
695, 9, 10, 68cvrval2 36290 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) → (𝑋𝐶(𝑋 𝑃) ↔ (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
703, 4, 67, 69syl3anc 1363 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) ↔ (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
7166, 70sylibrd 260 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
723adantr 481 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝐾 ∈ Lat)
73 simpl2 1184 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋𝐵)
7467adantr 481 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → (𝑋 𝑃) ∈ 𝐵)
75 simpr 485 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋𝐶(𝑋 𝑃))
765, 10, 68cvrlt 36286 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋(lt‘𝐾)(𝑋 𝑃))
7772, 73, 74, 75, 76syl31anc 1365 . . . 4 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋(lt‘𝐾)(𝑋 𝑃))
7877ex 413 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) → 𝑋(lt‘𝐾)(𝑋 𝑃)))
7978, 13sylibrd 260 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) → ¬ 𝑃 𝑋))
8071, 79impbid 213 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wrex 3136   class class class wbr 5057  cfv 6348  (class class class)co 7145  Basecbs 16471  lecple 16560  ltcplt 17539  joincjn 17542  Latclat 17643  CLatccla 17705  OMLcoml 36191  ccvr 36278  Atomscatm 36279  AtLatcal 36280  CvLatclc 36281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-proset 17526  df-poset 17544  df-plt 17556  df-lub 17572  df-glb 17573  df-join 17574  df-meet 17575  df-p0 17637  df-lat 17644  df-clat 17706  df-oposet 36192  df-ol 36194  df-oml 36195  df-covers 36282  df-ats 36283  df-atl 36314  df-cvlat 36338
This theorem is referenced by:  cvlcvrp  36356  cvr1  36426
  Copyright terms: Public domain W3C validator