Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle2lem Structured version   Visualization version   GIF version

Theorem lhpexle2lem 38868
Description: Lemma for lhpexle2 38869. (Contributed by NM, 19-Jun-2013.)
Hypotheses
Ref Expression
lhpex1.l ≀ = (leβ€˜πΎ)
lhpex1.a 𝐴 = (Atomsβ€˜πΎ)
lhpex1.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
lhpexle2lem (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ))
Distinct variable groups:   ≀ ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   π‘Š,𝑝   𝑋,𝑝   π‘Œ,𝑝

Proof of Theorem lhpexle2lem
StepHypRef Expression
1 simpl1 1191 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 = π‘Œ) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 lhpex1.l . . . . 5 ≀ = (leβ€˜πΎ)
3 lhpex1.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
4 lhpex1.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
52, 3, 4lhpexle1 38867 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋))
61, 5syl 17 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 = π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋))
7 simp3l 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 = π‘Œ ∧ (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋)) β†’ 𝑝 ≀ π‘Š)
8 simp3r 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 = π‘Œ ∧ (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋)) β†’ 𝑝 β‰  𝑋)
9 simp2 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 = π‘Œ ∧ (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋)) β†’ 𝑋 = π‘Œ)
108, 9neeqtrd 3010 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 = π‘Œ ∧ (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋)) β†’ 𝑝 β‰  π‘Œ)
117, 8, 103jca 1128 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 = π‘Œ ∧ (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋)) β†’ (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ))
12113expia 1121 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 = π‘Œ) β†’ ((𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋) β†’ (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ)))
1312reximdv 3170 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 = π‘Œ) β†’ (βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ)))
146, 13mpd 15 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 = π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ))
15 simpl1l 1224 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 β‰  π‘Œ) β†’ 𝐾 ∈ HL)
16 simpl2l 1226 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 β‰  π‘Œ) β†’ 𝑋 ∈ 𝐴)
17 simpl3l 1228 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 β‰  π‘Œ) β†’ π‘Œ ∈ 𝐴)
18 simpr 485 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 β‰  π‘Œ) β†’ 𝑋 β‰  π‘Œ)
19 eqid 2732 . . . . 5 (joinβ€˜πΎ) = (joinβ€˜πΎ)
202, 19, 3hlsupr 38245 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) ∧ 𝑋 β‰  π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))
2115, 16, 17, 18, 20syl31anc 1373 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 β‰  π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))
22 eqid 2732 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
23 simpl1l 1224 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ 𝐾 ∈ HL)
2423hllatd 38222 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ 𝐾 ∈ Lat)
25 simprlr 778 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ 𝑝 ∈ 𝐴)
2622, 3atbase 38147 . . . . . . . . 9 (𝑝 ∈ 𝐴 β†’ 𝑝 ∈ (Baseβ€˜πΎ))
2725, 26syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ 𝑝 ∈ (Baseβ€˜πΎ))
28 simpl2l 1226 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ 𝑋 ∈ 𝐴)
29 simpl3l 1228 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ π‘Œ ∈ 𝐴)
3022, 19, 3hlatjcl 38225 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ (𝑋(joinβ€˜πΎ)π‘Œ) ∈ (Baseβ€˜πΎ))
3123, 28, 29, 30syl3anc 1371 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ (𝑋(joinβ€˜πΎ)π‘Œ) ∈ (Baseβ€˜πΎ))
32 simpl1r 1225 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ π‘Š ∈ 𝐻)
3322, 4lhpbase 38857 . . . . . . . . 9 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
3432, 33syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
35 simprr3 1223 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ))
36 simpl2r 1227 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ 𝑋 ≀ π‘Š)
37 simpl3r 1229 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ π‘Œ ≀ π‘Š)
3822, 3atbase 38147 . . . . . . . . . . 11 (𝑋 ∈ 𝐴 β†’ 𝑋 ∈ (Baseβ€˜πΎ))
3928, 38syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ 𝑋 ∈ (Baseβ€˜πΎ))
4022, 3atbase 38147 . . . . . . . . . . 11 (π‘Œ ∈ 𝐴 β†’ π‘Œ ∈ (Baseβ€˜πΎ))
4129, 40syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ π‘Œ ∈ (Baseβ€˜πΎ))
4222, 2, 19latjle12 18399 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Baseβ€˜πΎ) ∧ π‘Œ ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ))) β†’ ((𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š) ↔ (𝑋(joinβ€˜πΎ)π‘Œ) ≀ π‘Š))
4324, 39, 41, 34, 42syl13anc 1372 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ ((𝑋 ≀ π‘Š ∧ π‘Œ ≀ π‘Š) ↔ (𝑋(joinβ€˜πΎ)π‘Œ) ≀ π‘Š))
4436, 37, 43mpbi2and 710 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ (𝑋(joinβ€˜πΎ)π‘Œ) ≀ π‘Š)
4522, 2, 24, 27, 31, 34, 35, 44lattrd 18395 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ 𝑝 ≀ π‘Š)
46 simprr1 1221 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ 𝑝 β‰  𝑋)
47 simprr2 1222 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ 𝑝 β‰  π‘Œ)
4845, 46, 473jca 1128 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ ((𝑋 β‰  π‘Œ ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)))) β†’ (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ))
4948exp44 438 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) β†’ (𝑋 β‰  π‘Œ β†’ (𝑝 ∈ 𝐴 β†’ ((𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)) β†’ (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ)))))
5049imp31 418 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 β‰  π‘Œ) ∧ 𝑝 ∈ 𝐴) β†’ ((𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)) β†’ (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ)))
5150reximdva 3168 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 β‰  π‘Œ) β†’ (βˆƒπ‘ ∈ 𝐴 (𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ ∧ 𝑝 ≀ (𝑋(joinβ€˜πΎ)π‘Œ)) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ)))
5221, 51mpd 15 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) ∧ 𝑋 β‰  π‘Œ) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ))
5314, 52pm2.61dane 3029 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐴 ∧ π‘Œ ≀ π‘Š)) β†’ βˆƒπ‘ ∈ 𝐴 (𝑝 ≀ π‘Š ∧ 𝑝 β‰  𝑋 ∧ 𝑝 β‰  π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  Latclat 18380  Atomscatm 38121  HLchlt 38208  LHypclh 38843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-lhyp 38847
This theorem is referenced by:  lhpexle2  38869
  Copyright terms: Public domain W3C validator