Proof of Theorem lhpexle2lem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl1 1191 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 = 𝑌) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | lhpex1.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 3 |  | lhpex1.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 4 |  | lhpex1.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 5 | 2, 3, 4 | lhpexle1 40011 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋)) | 
| 6 | 1, 5 | syl 17 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋)) | 
| 7 |  | simp3l 1201 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋)) → 𝑝 ≤ 𝑊) | 
| 8 |  | simp3r 1202 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋)) → 𝑝 ≠ 𝑋) | 
| 9 |  | simp2 1137 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋)) → 𝑋 = 𝑌) | 
| 10 | 8, 9 | neeqtrd 3009 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋)) → 𝑝 ≠ 𝑌) | 
| 11 | 7, 8, 10 | 3jca 1128 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋)) → (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌)) | 
| 12 | 11 | 3expia 1121 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 = 𝑌) → ((𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋) → (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌))) | 
| 13 | 12 | reximdv 3169 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 = 𝑌) → (∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌))) | 
| 14 | 6, 13 | mpd 15 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌)) | 
| 15 |  | simpl1l 1224 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → 𝐾 ∈ HL) | 
| 16 |  | simpl2l 1226 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐴) | 
| 17 |  | simpl3l 1228 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐴) | 
| 18 |  | simpr 484 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | 
| 19 |  | eqid 2736 | . . . . 5
⊢
(join‘𝐾) =
(join‘𝐾) | 
| 20 | 2, 19, 3 | hlsupr 39389 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) ∧ 𝑋 ≠ 𝑌) → ∃𝑝 ∈ 𝐴 (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌))) | 
| 21 | 15, 16, 17, 18, 20 | syl31anc 1374 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → ∃𝑝 ∈ 𝐴 (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌))) | 
| 22 |  | eqid 2736 | . . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 23 |  | simpl1l 1224 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ HL) | 
| 24 | 23 | hllatd 39366 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ Lat) | 
| 25 |  | simprlr 779 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑝 ∈ 𝐴) | 
| 26 | 22, 3 | atbase 39291 | . . . . . . . . 9
⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ (Base‘𝐾)) | 
| 27 | 25, 26 | syl 17 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑝 ∈ (Base‘𝐾)) | 
| 28 |  | simpl2l 1226 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑋 ∈ 𝐴) | 
| 29 |  | simpl3l 1228 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑌 ∈ 𝐴) | 
| 30 | 22, 19, 3 | hlatjcl 39369 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾)) | 
| 31 | 23, 28, 29, 30 | syl3anc 1372 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾)) | 
| 32 |  | simpl1r 1225 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑊 ∈ 𝐻) | 
| 33 | 22, 4 | lhpbase 40001 | . . . . . . . . 9
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) | 
| 34 | 32, 33 | syl 17 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑊 ∈ (Base‘𝐾)) | 
| 35 |  | simprr3 1223 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑝 ≤ (𝑋(join‘𝐾)𝑌)) | 
| 36 |  | simpl2r 1227 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑋 ≤ 𝑊) | 
| 37 |  | simpl3r 1229 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑌 ≤ 𝑊) | 
| 38 | 22, 3 | atbase 39291 | . . . . . . . . . . 11
⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ (Base‘𝐾)) | 
| 39 | 28, 38 | syl 17 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑋 ∈ (Base‘𝐾)) | 
| 40 | 22, 3 | atbase 39291 | . . . . . . . . . . 11
⊢ (𝑌 ∈ 𝐴 → 𝑌 ∈ (Base‘𝐾)) | 
| 41 | 29, 40 | syl 17 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑌 ∈ (Base‘𝐾)) | 
| 42 | 22, 2, 19 | latjle12 18496 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊) ↔ (𝑋(join‘𝐾)𝑌) ≤ 𝑊)) | 
| 43 | 24, 39, 41, 34, 42 | syl13anc 1373 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → ((𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊) ↔ (𝑋(join‘𝐾)𝑌) ≤ 𝑊)) | 
| 44 | 36, 37, 43 | mpbi2and 712 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) ≤ 𝑊) | 
| 45 | 22, 2, 24, 27, 31, 34, 35, 44 | lattrd 18492 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑝 ≤ 𝑊) | 
| 46 |  | simprr1 1221 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑝 ≠ 𝑋) | 
| 47 |  | simprr2 1222 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → 𝑝 ≠ 𝑌) | 
| 48 | 45, 46, 47 | 3jca 1128 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≠ 𝑌 ∧ 𝑝 ∈ 𝐴) ∧ (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)))) → (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌)) | 
| 49 | 48 | exp44 437 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ≠ 𝑌 → (𝑝 ∈ 𝐴 → ((𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)) → (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌))))) | 
| 50 | 49 | imp31 417 | . . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) ∧ 𝑝 ∈ 𝐴) → ((𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)) → (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌))) | 
| 51 | 50 | reximdva 3167 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → (∃𝑝 ∈ 𝐴 (𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≤ (𝑋(join‘𝐾)𝑌)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌))) | 
| 52 | 21, 51 | mpd 15 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌)) | 
| 53 | 14, 52 | pm2.61dane 3028 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌)) |