Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle2lem Structured version   Visualization version   GIF version

Theorem lhpexle2lem 36084
Description: Lemma for lhpexle2 36085. (Contributed by NM, 19-Jun-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle2lem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem lhpexle2lem
StepHypRef Expression
1 simpl1 1248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 lhpex1.l . . . . 5 = (le‘𝐾)
3 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle1 36083 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
61, 5syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
7 simp3l 1264 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → 𝑝 𝑊)
8 simp3r 1265 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → 𝑝𝑋)
9 simp2 1173 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → 𝑋 = 𝑌)
108, 9neeqtrd 3068 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → 𝑝𝑌)
117, 8, 103jca 1164 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → (𝑝 𝑊𝑝𝑋𝑝𝑌))
12113expia 1156 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → ((𝑝 𝑊𝑝𝑋) → (𝑝 𝑊𝑝𝑋𝑝𝑌)))
1312reximdv 3224 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌)))
146, 13mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
15 simpl1l 1299 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → 𝐾 ∈ HL)
16 simpl2l 1303 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → 𝑋𝐴)
17 simpl3l 1307 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → 𝑌𝐴)
18 simpr 479 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → 𝑋𝑌)
19 eqid 2825 . . . . 5 (join‘𝐾) = (join‘𝐾)
202, 19, 3hlsupr 35461 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
2115, 16, 17, 18, 20syl31anc 1498 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
22 eqid 2825 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
23 simpl1l 1299 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ HL)
2423hllatd 35439 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ Lat)
25 simprlr 800 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝐴)
2622, 3atbase 35364 . . . . . . . . 9 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 ∈ (Base‘𝐾))
28 simpl2l 1303 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋𝐴)
29 simpl3l 1307 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌𝐴)
3022, 19, 3hlatjcl 35442 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
3123, 28, 29, 30syl3anc 1496 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
32 simpl1r 1301 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊𝐻)
3322, 4lhpbase 36073 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3432, 33syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊 ∈ (Base‘𝐾))
35 simprr3 1297 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 (𝑋(join‘𝐾)𝑌))
36 simpl2r 1305 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 𝑊)
37 simpl3r 1309 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 𝑊)
3822, 3atbase 35364 . . . . . . . . . . 11 (𝑋𝐴𝑋 ∈ (Base‘𝐾))
3928, 38syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 ∈ (Base‘𝐾))
4022, 3atbase 35364 . . . . . . . . . . 11 (𝑌𝐴𝑌 ∈ (Base‘𝐾))
4129, 40syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 ∈ (Base‘𝐾))
4222, 2, 19latjle12 17415 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
4324, 39, 41, 34, 42syl13anc 1497 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
4436, 37, 43mpbi2and 705 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) 𝑊)
4522, 2, 24, 27, 31, 34, 35, 44lattrd 17411 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 𝑊)
46 simprr1 1293 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑋)
47 simprr2 1295 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑌)
4845, 46, 473jca 1164 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑝 𝑊𝑝𝑋𝑝𝑌))
4948exp44 430 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → (𝑋𝑌 → (𝑝𝐴 → ((𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)) → (𝑝 𝑊𝑝𝑋𝑝𝑌)))))
5049imp31 410 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) ∧ 𝑝𝐴) → ((𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)) → (𝑝 𝑊𝑝𝑋𝑝𝑌)))
5150reximdva 3225 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → (∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌)))
5221, 51mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
5314, 52pm2.61dane 3086 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 2999  wrex 3118   class class class wbr 4873  cfv 6123  (class class class)co 6905  Basecbs 16222  lecple 16312  joincjn 17297  Latclat 17398  Atomscatm 35338  HLchlt 35425  LHypclh 36059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-proset 17281  df-poset 17299  df-plt 17311  df-lub 17327  df-glb 17328  df-join 17329  df-meet 17330  df-p0 17392  df-p1 17393  df-lat 17399  df-clat 17461  df-oposet 35251  df-ol 35253  df-oml 35254  df-covers 35341  df-ats 35342  df-atl 35373  df-cvlat 35397  df-hlat 35426  df-lhyp 36063
This theorem is referenced by:  lhpexle2  36085
  Copyright terms: Public domain W3C validator