Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle2lem Structured version   Visualization version   GIF version

Theorem lhpexle2lem 39966
Description: Lemma for lhpexle2 39967. (Contributed by NM, 19-Jun-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle2lem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem lhpexle2lem
StepHypRef Expression
1 simpl1 1191 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 lhpex1.l . . . . 5 = (le‘𝐾)
3 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle1 39965 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
61, 5syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
7 simp3l 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → 𝑝 𝑊)
8 simp3r 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → 𝑝𝑋)
9 simp2 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → 𝑋 = 𝑌)
108, 9neeqtrd 3016 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → 𝑝𝑌)
117, 8, 103jca 1128 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌 ∧ (𝑝 𝑊𝑝𝑋)) → (𝑝 𝑊𝑝𝑋𝑝𝑌))
12113expia 1121 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → ((𝑝 𝑊𝑝𝑋) → (𝑝 𝑊𝑝𝑋𝑝𝑌)))
1312reximdv 3176 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌)))
146, 13mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋 = 𝑌) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
15 simpl1l 1224 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → 𝐾 ∈ HL)
16 simpl2l 1226 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → 𝑋𝐴)
17 simpl3l 1228 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → 𝑌𝐴)
18 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → 𝑋𝑌)
19 eqid 2740 . . . . 5 (join‘𝐾) = (join‘𝐾)
202, 19, 3hlsupr 39343 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
2115, 16, 17, 18, 20syl31anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))
22 eqid 2740 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
23 simpl1l 1224 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ HL)
2423hllatd 39320 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝐾 ∈ Lat)
25 simprlr 779 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝐴)
2622, 3atbase 39245 . . . . . . . . 9 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 ∈ (Base‘𝐾))
28 simpl2l 1226 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋𝐴)
29 simpl3l 1228 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌𝐴)
3022, 19, 3hlatjcl 39323 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
3123, 28, 29, 30syl3anc 1371 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) ∈ (Base‘𝐾))
32 simpl1r 1225 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊𝐻)
3322, 4lhpbase 39955 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3432, 33syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑊 ∈ (Base‘𝐾))
35 simprr3 1223 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 (𝑋(join‘𝐾)𝑌))
36 simpl2r 1227 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 𝑊)
37 simpl3r 1229 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 𝑊)
3822, 3atbase 39245 . . . . . . . . . . 11 (𝑋𝐴𝑋 ∈ (Base‘𝐾))
3928, 38syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑋 ∈ (Base‘𝐾))
4022, 3atbase 39245 . . . . . . . . . . 11 (𝑌𝐴𝑌 ∈ (Base‘𝐾))
4129, 40syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑌 ∈ (Base‘𝐾))
4222, 2, 19latjle12 18520 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
4324, 39, 41, 34, 42syl13anc 1372 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → ((𝑋 𝑊𝑌 𝑊) ↔ (𝑋(join‘𝐾)𝑌) 𝑊))
4436, 37, 43mpbi2and 711 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑋(join‘𝐾)𝑌) 𝑊)
4522, 2, 24, 27, 31, 34, 35, 44lattrd 18516 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝 𝑊)
46 simprr1 1221 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑋)
47 simprr2 1222 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → 𝑝𝑌)
4845, 46, 473jca 1128 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ ((𝑋𝑌𝑝𝐴) ∧ (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)))) → (𝑝 𝑊𝑝𝑋𝑝𝑌))
4948exp44 437 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → (𝑋𝑌 → (𝑝𝐴 → ((𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)) → (𝑝 𝑊𝑝𝑋𝑝𝑌)))))
5049imp31 417 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) ∧ 𝑝𝐴) → ((𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)) → (𝑝 𝑊𝑝𝑋𝑝𝑌)))
5150reximdva 3174 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → (∃𝑝𝐴 (𝑝𝑋𝑝𝑌𝑝 (𝑋(join‘𝐾)𝑌)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌)))
5221, 51mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ 𝑋𝑌) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
5314, 52pm2.61dane 3035 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  Latclat 18501  Atomscatm 39219  HLchlt 39306  LHypclh 39941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-lhyp 39945
This theorem is referenced by:  lhpexle2  39967
  Copyright terms: Public domain W3C validator