Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlord Structured version   Visualization version   GIF version

Theorem trlord 40614
Description: The ordering of two Hilbert lattice elements (under the fiducial hyperplane 𝑊) is determined by the translations whose traces are under them. (Contributed by NM, 3-Mar-2014.)
Hypotheses
Ref Expression
trlord.b 𝐵 = (Base‘𝐾)
trlord.l = (le‘𝐾)
trlord.a 𝐴 = (Atoms‘𝐾)
trlord.h 𝐻 = (LHyp‘𝐾)
trlord.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlord.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlord (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
Distinct variable groups:   ,𝑓   𝐵,𝑓   𝑓,𝐻   𝑓,𝐾   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊   𝑓,𝑋   𝑓,𝑌
Allowed substitution hint:   𝐴(𝑓)

Proof of Theorem trlord
Dummy variables 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trlord.b . . . . 5 𝐵 = (Base‘𝐾)
2 trlord.l . . . . 5 = (le‘𝐾)
3 simpl1l 1225 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝐾 ∈ HL)
43hllatd 39409 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝐾 ∈ Lat)
5 simpl1 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simprlr 779 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑓𝑇)
7 trlord.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
8 trlord.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 trlord.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
101, 7, 8, 9trlcl 40209 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
115, 6, 10syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) ∈ 𝐵)
12 simpl2l 1227 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑋𝐵)
13 simpl3l 1229 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑌𝐵)
14 simprr 772 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) 𝑋)
15 simprll 778 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑋 𝑌)
161, 2, 4, 11, 12, 13, 14, 15lattrd 18352 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) 𝑌)
1716exp44 437 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 → (𝑓𝑇 → ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌))))
1817ralrimdv 3130 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 → ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
19 simp11l 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝐾 ∈ HL)
2019hllatd 39409 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝐾 ∈ Lat)
21 simp2r 1201 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢𝐴)
22 trlord.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
231, 22atbase 39334 . . . . . . . . . 10 (𝑢𝐴𝑢𝐵)
2421, 23syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢𝐵)
25 simp12l 1287 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑋𝐵)
26 simp11r 1286 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑊𝐻)
271, 7lhpbase 40043 . . . . . . . . . 10 (𝑊𝐻𝑊𝐵)
2826, 27syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑊𝐵)
29 simp3 1138 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢 𝑋)
30 simp12r 1288 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑋 𝑊)
311, 2, 20, 24, 25, 28, 29, 30lattrd 18352 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢 𝑊)
3231, 29jca 511 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → (𝑢 𝑊𝑢 𝑋))
33323expia 1121 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑋 → (𝑢 𝑊𝑢 𝑋)))
34 simp11 1204 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
35 simp2r 1201 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → 𝑢𝐴)
36 simp3 1138 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → 𝑢 𝑊)
372, 22, 7, 8, 9cdlemf 40608 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢𝐴𝑢 𝑊)) → ∃𝑔𝑇 (𝑅𝑔) = 𝑢)
3834, 35, 36, 37syl12anc 836 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → ∃𝑔𝑇 (𝑅𝑔) = 𝑢)
39 simp2l 1200 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌))
40 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑅𝑓) = (𝑅𝑔))
4140breq1d 5101 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑅𝑓) 𝑋 ↔ (𝑅𝑔) 𝑋))
4240breq1d 5101 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑅𝑓) 𝑌 ↔ (𝑅𝑔) 𝑌))
4341, 42imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ↔ ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
4443rspccv 3574 . . . . . . . . . . . 12 (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → (𝑔𝑇 → ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
4539, 44syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑔𝑇 → ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
46 breq1 5094 . . . . . . . . . . . . 13 ((𝑅𝑔) = 𝑢 → ((𝑅𝑔) 𝑋𝑢 𝑋))
47 breq1 5094 . . . . . . . . . . . . 13 ((𝑅𝑔) = 𝑢 → ((𝑅𝑔) 𝑌𝑢 𝑌))
4846, 47imbi12d 344 . . . . . . . . . . . 12 ((𝑅𝑔) = 𝑢 → (((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌) ↔ (𝑢 𝑋𝑢 𝑌)))
4948biimpcd 249 . . . . . . . . . . 11 (((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌) → ((𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌)))
5045, 49syl6 35 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑔𝑇 → ((𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌))))
5150rexlimdv 3131 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (∃𝑔𝑇 (𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌)))
5238, 51mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑢 𝑋𝑢 𝑌))
53523expia 1121 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑊 → (𝑢 𝑋𝑢 𝑌)))
5453impd 410 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → ((𝑢 𝑊𝑢 𝑋) → 𝑢 𝑌))
5533, 54syld 47 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑋𝑢 𝑌))
5655exp32 420 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → (𝑢𝐴 → (𝑢 𝑋𝑢 𝑌))))
5756ralrimdv 3130 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
58 simp1l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
59 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
60 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
611, 2, 22hlatle 39443 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
6258, 59, 60, 61syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
6357, 62sylibrd 259 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → 𝑋 𝑌))
6418, 63impbid 212 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056   class class class wbr 5091  cfv 6481  Basecbs 17120  lecple 17168  Atomscatm 39308  HLchlt 39395  LHypclh 40029  LTrncltrn 40146  trLctrl 40203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204
This theorem is referenced by:  diaord  41092  dihord2pre  41270
  Copyright terms: Public domain W3C validator