Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlord Structured version   Visualization version   GIF version

Theorem trlord 38510
Description: The ordering of two Hilbert lattice elements (under the fiducial hyperplane 𝑊) is determined by the translations whose traces are under them. (Contributed by NM, 3-Mar-2014.)
Hypotheses
Ref Expression
trlord.b 𝐵 = (Base‘𝐾)
trlord.l = (le‘𝐾)
trlord.a 𝐴 = (Atoms‘𝐾)
trlord.h 𝐻 = (LHyp‘𝐾)
trlord.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlord.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlord (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
Distinct variable groups:   ,𝑓   𝐵,𝑓   𝑓,𝐻   𝑓,𝐾   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊   𝑓,𝑋   𝑓,𝑌
Allowed substitution hint:   𝐴(𝑓)

Proof of Theorem trlord
Dummy variables 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trlord.b . . . . 5 𝐵 = (Base‘𝐾)
2 trlord.l . . . . 5 = (le‘𝐾)
3 simpl1l 1222 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝐾 ∈ HL)
43hllatd 37305 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝐾 ∈ Lat)
5 simpl1 1189 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simprlr 776 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑓𝑇)
7 trlord.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
8 trlord.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 trlord.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
101, 7, 8, 9trlcl 38105 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
115, 6, 10syl2anc 583 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) ∈ 𝐵)
12 simpl2l 1224 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑋𝐵)
13 simpl3l 1226 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑌𝐵)
14 simprr 769 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) 𝑋)
15 simprll 775 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑋 𝑌)
161, 2, 4, 11, 12, 13, 14, 15lattrd 18079 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) 𝑌)
1716exp44 437 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 → (𝑓𝑇 → ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌))))
1817ralrimdv 3111 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 → ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
19 simp11l 1282 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝐾 ∈ HL)
2019hllatd 37305 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝐾 ∈ Lat)
21 simp2r 1198 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢𝐴)
22 trlord.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
231, 22atbase 37230 . . . . . . . . . 10 (𝑢𝐴𝑢𝐵)
2421, 23syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢𝐵)
25 simp12l 1284 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑋𝐵)
26 simp11r 1283 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑊𝐻)
271, 7lhpbase 37939 . . . . . . . . . 10 (𝑊𝐻𝑊𝐵)
2826, 27syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑊𝐵)
29 simp3 1136 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢 𝑋)
30 simp12r 1285 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑋 𝑊)
311, 2, 20, 24, 25, 28, 29, 30lattrd 18079 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢 𝑊)
3231, 29jca 511 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → (𝑢 𝑊𝑢 𝑋))
33323expia 1119 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑋 → (𝑢 𝑊𝑢 𝑋)))
34 simp11 1201 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
35 simp2r 1198 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → 𝑢𝐴)
36 simp3 1136 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → 𝑢 𝑊)
372, 22, 7, 8, 9cdlemf 38504 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢𝐴𝑢 𝑊)) → ∃𝑔𝑇 (𝑅𝑔) = 𝑢)
3834, 35, 36, 37syl12anc 833 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → ∃𝑔𝑇 (𝑅𝑔) = 𝑢)
39 simp2l 1197 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌))
40 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑅𝑓) = (𝑅𝑔))
4140breq1d 5080 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑅𝑓) 𝑋 ↔ (𝑅𝑔) 𝑋))
4240breq1d 5080 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑅𝑓) 𝑌 ↔ (𝑅𝑔) 𝑌))
4341, 42imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ↔ ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
4443rspccv 3549 . . . . . . . . . . . 12 (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → (𝑔𝑇 → ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
4539, 44syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑔𝑇 → ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
46 breq1 5073 . . . . . . . . . . . . 13 ((𝑅𝑔) = 𝑢 → ((𝑅𝑔) 𝑋𝑢 𝑋))
47 breq1 5073 . . . . . . . . . . . . 13 ((𝑅𝑔) = 𝑢 → ((𝑅𝑔) 𝑌𝑢 𝑌))
4846, 47imbi12d 344 . . . . . . . . . . . 12 ((𝑅𝑔) = 𝑢 → (((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌) ↔ (𝑢 𝑋𝑢 𝑌)))
4948biimpcd 248 . . . . . . . . . . 11 (((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌) → ((𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌)))
5045, 49syl6 35 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑔𝑇 → ((𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌))))
5150rexlimdv 3211 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (∃𝑔𝑇 (𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌)))
5238, 51mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑢 𝑋𝑢 𝑌))
53523expia 1119 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑊 → (𝑢 𝑋𝑢 𝑌)))
5453impd 410 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → ((𝑢 𝑊𝑢 𝑋) → 𝑢 𝑌))
5533, 54syld 47 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑋𝑢 𝑌))
5655exp32 420 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → (𝑢𝐴 → (𝑢 𝑋𝑢 𝑌))))
5756ralrimdv 3111 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
58 simp1l 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
59 simp2l 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
60 simp3l 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
611, 2, 22hlatle 37339 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
6258, 59, 60, 61syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
6357, 62sylibrd 258 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → 𝑋 𝑌))
6418, 63impbid 211 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895  Atomscatm 37204  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  trLctrl 38099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100
This theorem is referenced by:  diaord  38988  dihord2pre  39166
  Copyright terms: Public domain W3C validator