Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlord Structured version   Visualization version   GIF version

Theorem trlord 40593
Description: The ordering of two Hilbert lattice elements (under the fiducial hyperplane 𝑊) is determined by the translations whose traces are under them. (Contributed by NM, 3-Mar-2014.)
Hypotheses
Ref Expression
trlord.b 𝐵 = (Base‘𝐾)
trlord.l = (le‘𝐾)
trlord.a 𝐴 = (Atoms‘𝐾)
trlord.h 𝐻 = (LHyp‘𝐾)
trlord.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlord.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlord (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
Distinct variable groups:   ,𝑓   𝐵,𝑓   𝑓,𝐻   𝑓,𝐾   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊   𝑓,𝑋   𝑓,𝑌
Allowed substitution hint:   𝐴(𝑓)

Proof of Theorem trlord
Dummy variables 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trlord.b . . . . 5 𝐵 = (Base‘𝐾)
2 trlord.l . . . . 5 = (le‘𝐾)
3 simpl1l 1225 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝐾 ∈ HL)
43hllatd 39387 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝐾 ∈ Lat)
5 simpl1 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simprlr 779 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑓𝑇)
7 trlord.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
8 trlord.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 trlord.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
101, 7, 8, 9trlcl 40188 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
115, 6, 10syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) ∈ 𝐵)
12 simpl2l 1227 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑋𝐵)
13 simpl3l 1229 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑌𝐵)
14 simprr 772 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) 𝑋)
15 simprll 778 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑋 𝑌)
161, 2, 4, 11, 12, 13, 14, 15lattrd 18461 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) 𝑌)
1716exp44 437 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 → (𝑓𝑇 → ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌))))
1817ralrimdv 3139 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 → ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
19 simp11l 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝐾 ∈ HL)
2019hllatd 39387 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝐾 ∈ Lat)
21 simp2r 1201 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢𝐴)
22 trlord.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
231, 22atbase 39312 . . . . . . . . . 10 (𝑢𝐴𝑢𝐵)
2421, 23syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢𝐵)
25 simp12l 1287 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑋𝐵)
26 simp11r 1286 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑊𝐻)
271, 7lhpbase 40022 . . . . . . . . . 10 (𝑊𝐻𝑊𝐵)
2826, 27syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑊𝐵)
29 simp3 1138 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢 𝑋)
30 simp12r 1288 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑋 𝑊)
311, 2, 20, 24, 25, 28, 29, 30lattrd 18461 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢 𝑊)
3231, 29jca 511 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → (𝑢 𝑊𝑢 𝑋))
33323expia 1121 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑋 → (𝑢 𝑊𝑢 𝑋)))
34 simp11 1204 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
35 simp2r 1201 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → 𝑢𝐴)
36 simp3 1138 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → 𝑢 𝑊)
372, 22, 7, 8, 9cdlemf 40587 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢𝐴𝑢 𝑊)) → ∃𝑔𝑇 (𝑅𝑔) = 𝑢)
3834, 35, 36, 37syl12anc 836 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → ∃𝑔𝑇 (𝑅𝑔) = 𝑢)
39 simp2l 1200 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌))
40 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑅𝑓) = (𝑅𝑔))
4140breq1d 5134 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑅𝑓) 𝑋 ↔ (𝑅𝑔) 𝑋))
4240breq1d 5134 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑅𝑓) 𝑌 ↔ (𝑅𝑔) 𝑌))
4341, 42imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ↔ ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
4443rspccv 3603 . . . . . . . . . . . 12 (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → (𝑔𝑇 → ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
4539, 44syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑔𝑇 → ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
46 breq1 5127 . . . . . . . . . . . . 13 ((𝑅𝑔) = 𝑢 → ((𝑅𝑔) 𝑋𝑢 𝑋))
47 breq1 5127 . . . . . . . . . . . . 13 ((𝑅𝑔) = 𝑢 → ((𝑅𝑔) 𝑌𝑢 𝑌))
4846, 47imbi12d 344 . . . . . . . . . . . 12 ((𝑅𝑔) = 𝑢 → (((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌) ↔ (𝑢 𝑋𝑢 𝑌)))
4948biimpcd 249 . . . . . . . . . . 11 (((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌) → ((𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌)))
5045, 49syl6 35 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑔𝑇 → ((𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌))))
5150rexlimdv 3140 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (∃𝑔𝑇 (𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌)))
5238, 51mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑢 𝑋𝑢 𝑌))
53523expia 1121 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑊 → (𝑢 𝑋𝑢 𝑌)))
5453impd 410 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → ((𝑢 𝑊𝑢 𝑋) → 𝑢 𝑌))
5533, 54syld 47 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑋𝑢 𝑌))
5655exp32 420 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → (𝑢𝐴 → (𝑢 𝑋𝑢 𝑌))))
5756ralrimdv 3139 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
58 simp1l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
59 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
60 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
611, 2, 22hlatle 39422 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
6258, 59, 60, 61syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
6357, 62sylibrd 259 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → 𝑋 𝑌))
6418, 63impbid 212 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061   class class class wbr 5124  cfv 6536  Basecbs 17233  lecple 17283  Atomscatm 39286  HLchlt 39373  LHypclh 40008  LTrncltrn 40125  trLctrl 40182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-riotaBAD 38976
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-undef 8277  df-map 8847  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-llines 39522  df-lplanes 39523  df-lvols 39524  df-lines 39525  df-psubsp 39527  df-pmap 39528  df-padd 39820  df-lhyp 40012  df-laut 40013  df-ldil 40128  df-ltrn 40129  df-trl 40183
This theorem is referenced by:  diaord  41071  dihord2pre  41249
  Copyright terms: Public domain W3C validator