Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlord Structured version   Visualization version   GIF version

Theorem trlord 36728
Description: The ordering of two Hilbert lattice elements (under the fiducial hyperplane 𝑊) is determined by the translations whose traces are under them. (Contributed by NM, 3-Mar-2014.)
Hypotheses
Ref Expression
trlord.b 𝐵 = (Base‘𝐾)
trlord.l = (le‘𝐾)
trlord.a 𝐴 = (Atoms‘𝐾)
trlord.h 𝐻 = (LHyp‘𝐾)
trlord.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlord.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlord (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
Distinct variable groups:   ,𝑓   𝐵,𝑓   𝑓,𝐻   𝑓,𝐾   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊   𝑓,𝑋   𝑓,𝑌
Allowed substitution hint:   𝐴(𝑓)

Proof of Theorem trlord
Dummy variables 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trlord.b . . . . 5 𝐵 = (Base‘𝐾)
2 trlord.l . . . . 5 = (le‘𝐾)
3 simpl1l 1250 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝐾 ∈ HL)
43hllatd 35523 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝐾 ∈ Lat)
5 simpl1 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simprlr 770 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑓𝑇)
7 trlord.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
8 trlord.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 trlord.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
101, 7, 8, 9trlcl 36323 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
115, 6, 10syl2anc 579 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) ∈ 𝐵)
12 simpl2l 1254 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑋𝐵)
13 simpl3l 1258 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑌𝐵)
14 simprr 763 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) 𝑋)
15 simprll 769 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑋 𝑌)
161, 2, 4, 11, 12, 13, 14, 15lattrd 17448 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) 𝑌)
1716exp44 430 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 → (𝑓𝑇 → ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌))))
1817ralrimdv 3150 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 → ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
19 simp11l 1340 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝐾 ∈ HL)
2019hllatd 35523 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝐾 ∈ Lat)
21 simp2r 1214 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢𝐴)
22 trlord.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
231, 22atbase 35448 . . . . . . . . . 10 (𝑢𝐴𝑢𝐵)
2421, 23syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢𝐵)
25 simp12l 1342 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑋𝐵)
26 simp11r 1341 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑊𝐻)
271, 7lhpbase 36157 . . . . . . . . . 10 (𝑊𝐻𝑊𝐵)
2826, 27syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑊𝐵)
29 simp3 1129 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢 𝑋)
30 simp12r 1343 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑋 𝑊)
311, 2, 20, 24, 25, 28, 29, 30lattrd 17448 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢 𝑊)
3231, 29jca 507 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → (𝑢 𝑊𝑢 𝑋))
33323expia 1111 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑋 → (𝑢 𝑊𝑢 𝑋)))
34 simp11 1217 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
35 simp2r 1214 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → 𝑢𝐴)
36 simp3 1129 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → 𝑢 𝑊)
372, 22, 7, 8, 9cdlemf 36722 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢𝐴𝑢 𝑊)) → ∃𝑔𝑇 (𝑅𝑔) = 𝑢)
3834, 35, 36, 37syl12anc 827 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → ∃𝑔𝑇 (𝑅𝑔) = 𝑢)
39 simp2l 1213 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌))
40 fveq2 6448 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑅𝑓) = (𝑅𝑔))
4140breq1d 4898 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑅𝑓) 𝑋 ↔ (𝑅𝑔) 𝑋))
4240breq1d 4898 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑅𝑓) 𝑌 ↔ (𝑅𝑔) 𝑌))
4341, 42imbi12d 336 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ↔ ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
4443rspccv 3508 . . . . . . . . . . . 12 (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → (𝑔𝑇 → ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
4539, 44syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑔𝑇 → ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
46 breq1 4891 . . . . . . . . . . . . 13 ((𝑅𝑔) = 𝑢 → ((𝑅𝑔) 𝑋𝑢 𝑋))
47 breq1 4891 . . . . . . . . . . . . 13 ((𝑅𝑔) = 𝑢 → ((𝑅𝑔) 𝑌𝑢 𝑌))
4846, 47imbi12d 336 . . . . . . . . . . . 12 ((𝑅𝑔) = 𝑢 → (((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌) ↔ (𝑢 𝑋𝑢 𝑌)))
4948biimpcd 241 . . . . . . . . . . 11 (((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌) → ((𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌)))
5045, 49syl6 35 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑔𝑇 → ((𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌))))
5150rexlimdv 3212 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (∃𝑔𝑇 (𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌)))
5238, 51mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑢 𝑋𝑢 𝑌))
53523expia 1111 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑊 → (𝑢 𝑋𝑢 𝑌)))
5453impd 400 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → ((𝑢 𝑊𝑢 𝑋) → 𝑢 𝑌))
5533, 54syld 47 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑋𝑢 𝑌))
5655exp32 413 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → (𝑢𝐴 → (𝑢 𝑋𝑢 𝑌))))
5756ralrimdv 3150 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
58 simp1l 1211 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
59 simp2l 1213 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
60 simp3l 1215 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
611, 2, 22hlatle 35557 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
6258, 59, 60, 61syl3anc 1439 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
6357, 62sylibrd 251 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → 𝑋 𝑌))
6418, 63impbid 204 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  wrex 3091   class class class wbr 4888  cfv 6137  Basecbs 16259  lecple 16349  Atomscatm 35422  HLchlt 35509  LHypclh 36143  LTrncltrn 36260  trLctrl 36317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-riotaBAD 35112
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-undef 7683  df-map 8144  df-proset 17318  df-poset 17336  df-plt 17348  df-lub 17364  df-glb 17365  df-join 17366  df-meet 17367  df-p0 17429  df-p1 17430  df-lat 17436  df-clat 17498  df-oposet 35335  df-ol 35337  df-oml 35338  df-covers 35425  df-ats 35426  df-atl 35457  df-cvlat 35481  df-hlat 35510  df-llines 35657  df-lplanes 35658  df-lvols 35659  df-lines 35660  df-psubsp 35662  df-pmap 35663  df-padd 35955  df-lhyp 36147  df-laut 36148  df-ldil 36263  df-ltrn 36264  df-trl 36318
This theorem is referenced by:  diaord  37206  dihord2pre  37384
  Copyright terms: Public domain W3C validator