Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlord Structured version   Visualization version   GIF version

Theorem trlord 36348
Description: The ordering of two Hilbert lattice elements (under the fiducial hyperplane 𝑊) is determined by the translations whose traces are under them. (Contributed by NM, 3-Mar-2014.)
Hypotheses
Ref Expression
trlord.b 𝐵 = (Base‘𝐾)
trlord.l = (le‘𝐾)
trlord.a 𝐴 = (Atoms‘𝐾)
trlord.h 𝐻 = (LHyp‘𝐾)
trlord.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlord.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlord (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
Distinct variable groups:   ,𝑓   𝐵,𝑓   𝑓,𝐻   𝑓,𝐾   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊   𝑓,𝑋   𝑓,𝑌
Allowed substitution hint:   𝐴(𝑓)

Proof of Theorem trlord
Dummy variables 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trlord.b . . . . 5 𝐵 = (Base‘𝐾)
2 trlord.l . . . . 5 = (le‘𝐾)
3 simpl1l 1286 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝐾 ∈ HL)
43hllatd 35142 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝐾 ∈ Lat)
5 simpl1 1235 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simprlr 789 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑓𝑇)
7 trlord.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
8 trlord.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 trlord.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
101, 7, 8, 9trlcl 35943 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
115, 6, 10syl2anc 575 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) ∈ 𝐵)
12 simpl2l 1290 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑋𝐵)
13 simpl3l 1294 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑌𝐵)
14 simprr 780 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) 𝑋)
15 simprll 788 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → 𝑋 𝑌)
161, 2, 4, 11, 12, 13, 14, 15lattrd 17261 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑋 𝑌𝑓𝑇) ∧ (𝑅𝑓) 𝑋)) → (𝑅𝑓) 𝑌)
1716exp44 426 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 → (𝑓𝑇 → ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌))))
1817ralrimdv 3154 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 → ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
19 simp11l 1376 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝐾 ∈ HL)
2019hllatd 35142 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝐾 ∈ Lat)
21 simp2r 1250 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢𝐴)
22 trlord.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
231, 22atbase 35067 . . . . . . . . . 10 (𝑢𝐴𝑢𝐵)
2421, 23syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢𝐵)
25 simp12l 1378 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑋𝐵)
26 simp11r 1377 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑊𝐻)
271, 7lhpbase 35776 . . . . . . . . . 10 (𝑊𝐻𝑊𝐵)
2826, 27syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑊𝐵)
29 simp3 1161 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢 𝑋)
30 simp12r 1379 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑋 𝑊)
311, 2, 20, 24, 25, 28, 29, 30lattrd 17261 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → 𝑢 𝑊)
3231, 29jca 503 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑋) → (𝑢 𝑊𝑢 𝑋))
33323expia 1143 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑋 → (𝑢 𝑊𝑢 𝑋)))
34 simp11 1253 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
35 simp2r 1250 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → 𝑢𝐴)
36 simp3 1161 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → 𝑢 𝑊)
372, 22, 7, 8, 9cdlemf 36342 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢𝐴𝑢 𝑊)) → ∃𝑔𝑇 (𝑅𝑔) = 𝑢)
3834, 35, 36, 37syl12anc 856 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → ∃𝑔𝑇 (𝑅𝑔) = 𝑢)
39 simp2l 1249 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌))
40 fveq2 6406 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑅𝑓) = (𝑅𝑔))
4140breq1d 4852 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑅𝑓) 𝑋 ↔ (𝑅𝑔) 𝑋))
4240breq1d 4852 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑅𝑓) 𝑌 ↔ (𝑅𝑔) 𝑌))
4341, 42imbi12d 335 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ↔ ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
4443rspccv 3497 . . . . . . . . . . . 12 (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → (𝑔𝑇 → ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
4539, 44syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑔𝑇 → ((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌)))
46 breq1 4845 . . . . . . . . . . . . 13 ((𝑅𝑔) = 𝑢 → ((𝑅𝑔) 𝑋𝑢 𝑋))
47 breq1 4845 . . . . . . . . . . . . 13 ((𝑅𝑔) = 𝑢 → ((𝑅𝑔) 𝑌𝑢 𝑌))
4846, 47imbi12d 335 . . . . . . . . . . . 12 ((𝑅𝑔) = 𝑢 → (((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌) ↔ (𝑢 𝑋𝑢 𝑌)))
4948biimpcd 240 . . . . . . . . . . 11 (((𝑅𝑔) 𝑋 → (𝑅𝑔) 𝑌) → ((𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌)))
5045, 49syl6 35 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑔𝑇 → ((𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌))))
5150rexlimdv 3216 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (∃𝑔𝑇 (𝑅𝑔) = 𝑢 → (𝑢 𝑋𝑢 𝑌)))
5238, 51mpd 15 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴) ∧ 𝑢 𝑊) → (𝑢 𝑋𝑢 𝑌))
53523expia 1143 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑊 → (𝑢 𝑋𝑢 𝑌)))
5453impd 398 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → ((𝑢 𝑊𝑢 𝑋) → 𝑢 𝑌))
5533, 54syld 47 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) ∧ 𝑢𝐴)) → (𝑢 𝑋𝑢 𝑌))
5655exp32 409 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → (𝑢𝐴 → (𝑢 𝑋𝑢 𝑌))))
5756ralrimdv 3154 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
58 simp1l 1247 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
59 simp2l 1249 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
60 simp3l 1251 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
611, 2, 22hlatle 35176 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
6258, 59, 60, 61syl3anc 1483 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑢𝐴 (𝑢 𝑋𝑢 𝑌)))
6357, 62sylibrd 250 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌) → 𝑋 𝑌))
6418, 63impbid 203 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌 ↔ ∀𝑓𝑇 ((𝑅𝑓) 𝑋 → (𝑅𝑓) 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wral 3094  wrex 3095   class class class wbr 4842  cfv 6099  Basecbs 16066  lecple 16158  Atomscatm 35041  HLchlt 35128  LHypclh 35762  LTrncltrn 35879  trLctrl 35937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2782  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5094  ax-un 7177  ax-riotaBAD 34730
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2791  df-cleq 2797  df-clel 2800  df-nfc 2935  df-ne 2977  df-nel 3080  df-ral 3099  df-rex 3100  df-reu 3101  df-rmo 3102  df-rab 3103  df-v 3391  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4115  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-iin 4713  df-br 4843  df-opab 4905  df-mpt 4922  df-id 5217  df-xp 5315  df-rel 5316  df-cnv 5317  df-co 5318  df-dm 5319  df-rn 5320  df-res 5321  df-ima 5322  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6833  df-ov 6875  df-oprab 6876  df-mpt2 6877  df-1st 7396  df-2nd 7397  df-undef 7632  df-map 8092  df-proset 17131  df-poset 17149  df-plt 17161  df-lub 17177  df-glb 17178  df-join 17179  df-meet 17180  df-p0 17242  df-p1 17243  df-lat 17249  df-clat 17311  df-oposet 34954  df-ol 34956  df-oml 34957  df-covers 35044  df-ats 35045  df-atl 35076  df-cvlat 35100  df-hlat 35129  df-llines 35276  df-lplanes 35277  df-lvols 35278  df-lines 35279  df-psubsp 35281  df-pmap 35282  df-padd 35574  df-lhyp 35766  df-laut 35767  df-ldil 35882  df-ltrn 35883  df-trl 35938
This theorem is referenced by:  diaord  36826  dihord2pre  37004
  Copyright terms: Public domain W3C validator