| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | trlord.b | . . . . 5
⊢ 𝐵 = (Base‘𝐾) | 
| 2 |  | trlord.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 3 |  | simpl1l 1224 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑓 ∈ 𝑇) ∧ (𝑅‘𝑓) ≤ 𝑋)) → 𝐾 ∈ HL) | 
| 4 | 3 | hllatd 39366 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑓 ∈ 𝑇) ∧ (𝑅‘𝑓) ≤ 𝑋)) → 𝐾 ∈ Lat) | 
| 5 |  | simpl1 1191 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑓 ∈ 𝑇) ∧ (𝑅‘𝑓) ≤ 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 6 |  | simprlr 779 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑓 ∈ 𝑇) ∧ (𝑅‘𝑓) ≤ 𝑋)) → 𝑓 ∈ 𝑇) | 
| 7 |  | trlord.h | . . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) | 
| 8 |  | trlord.t | . . . . . . 7
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 9 |  | trlord.r | . . . . . . 7
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 10 | 1, 7, 8, 9 | trlcl 40167 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (𝑅‘𝑓) ∈ 𝐵) | 
| 11 | 5, 6, 10 | syl2anc 584 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑓 ∈ 𝑇) ∧ (𝑅‘𝑓) ≤ 𝑋)) → (𝑅‘𝑓) ∈ 𝐵) | 
| 12 |  | simpl2l 1226 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑓 ∈ 𝑇) ∧ (𝑅‘𝑓) ≤ 𝑋)) → 𝑋 ∈ 𝐵) | 
| 13 |  | simpl3l 1228 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑓 ∈ 𝑇) ∧ (𝑅‘𝑓) ≤ 𝑋)) → 𝑌 ∈ 𝐵) | 
| 14 |  | simprr 772 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑓 ∈ 𝑇) ∧ (𝑅‘𝑓) ≤ 𝑋)) → (𝑅‘𝑓) ≤ 𝑋) | 
| 15 |  | simprll 778 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑓 ∈ 𝑇) ∧ (𝑅‘𝑓) ≤ 𝑋)) → 𝑋 ≤ 𝑌) | 
| 16 | 1, 2, 4, 11, 12, 13, 14, 15 | lattrd 18492 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑓 ∈ 𝑇) ∧ (𝑅‘𝑓) ≤ 𝑋)) → (𝑅‘𝑓) ≤ 𝑌) | 
| 17 | 16 | exp44 437 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ≤ 𝑌 → (𝑓 ∈ 𝑇 → ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌)))) | 
| 18 | 17 | ralrimdv 3151 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ≤ 𝑌 → ∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌))) | 
| 19 |  | simp11l 1284 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑋) → 𝐾 ∈ HL) | 
| 20 | 19 | hllatd 39366 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑋) → 𝐾 ∈ Lat) | 
| 21 |  | simp2r 1200 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑋) → 𝑢 ∈ 𝐴) | 
| 22 |  | trlord.a | . . . . . . . . . . 11
⊢ 𝐴 = (Atoms‘𝐾) | 
| 23 | 1, 22 | atbase 39291 | . . . . . . . . . 10
⊢ (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝐵) | 
| 24 | 21, 23 | syl 17 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑋) → 𝑢 ∈ 𝐵) | 
| 25 |  | simp12l 1286 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑋) → 𝑋 ∈ 𝐵) | 
| 26 |  | simp11r 1285 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑋) → 𝑊 ∈ 𝐻) | 
| 27 | 1, 7 | lhpbase 40001 | . . . . . . . . . 10
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) | 
| 28 | 26, 27 | syl 17 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑋) → 𝑊 ∈ 𝐵) | 
| 29 |  | simp3 1138 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑋) → 𝑢 ≤ 𝑋) | 
| 30 |  | simp12r 1287 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑋) → 𝑋 ≤ 𝑊) | 
| 31 | 1, 2, 20, 24, 25, 28, 29, 30 | lattrd 18492 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑋) → 𝑢 ≤ 𝑊) | 
| 32 | 31, 29 | jca 511 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑋) → (𝑢 ≤ 𝑊 ∧ 𝑢 ≤ 𝑋)) | 
| 33 | 32 | 3expia 1121 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴)) → (𝑢 ≤ 𝑋 → (𝑢 ≤ 𝑊 ∧ 𝑢 ≤ 𝑋))) | 
| 34 |  | simp11 1203 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑊) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 35 |  | simp2r 1200 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑊) → 𝑢 ∈ 𝐴) | 
| 36 |  | simp3 1138 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑊) → 𝑢 ≤ 𝑊) | 
| 37 | 2, 22, 7, 8, 9 | cdlemf 40566 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊)) → ∃𝑔 ∈ 𝑇 (𝑅‘𝑔) = 𝑢) | 
| 38 | 34, 35, 36, 37 | syl12anc 836 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑊) → ∃𝑔 ∈ 𝑇 (𝑅‘𝑔) = 𝑢) | 
| 39 |  | simp2l 1199 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑊) → ∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌)) | 
| 40 |  | fveq2 6905 | . . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (𝑅‘𝑓) = (𝑅‘𝑔)) | 
| 41 | 40 | breq1d 5152 | . . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → ((𝑅‘𝑓) ≤ 𝑋 ↔ (𝑅‘𝑔) ≤ 𝑋)) | 
| 42 | 40 | breq1d 5152 | . . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → ((𝑅‘𝑓) ≤ 𝑌 ↔ (𝑅‘𝑔) ≤ 𝑌)) | 
| 43 | 41, 42 | imbi12d 344 | . . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ↔ ((𝑅‘𝑔) ≤ 𝑋 → (𝑅‘𝑔) ≤ 𝑌))) | 
| 44 | 43 | rspccv 3618 | . . . . . . . . . . . 12
⊢
(∀𝑓 ∈
𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) → (𝑔 ∈ 𝑇 → ((𝑅‘𝑔) ≤ 𝑋 → (𝑅‘𝑔) ≤ 𝑌))) | 
| 45 | 39, 44 | syl 17 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑊) → (𝑔 ∈ 𝑇 → ((𝑅‘𝑔) ≤ 𝑋 → (𝑅‘𝑔) ≤ 𝑌))) | 
| 46 |  | breq1 5145 | . . . . . . . . . . . . 13
⊢ ((𝑅‘𝑔) = 𝑢 → ((𝑅‘𝑔) ≤ 𝑋 ↔ 𝑢 ≤ 𝑋)) | 
| 47 |  | breq1 5145 | . . . . . . . . . . . . 13
⊢ ((𝑅‘𝑔) = 𝑢 → ((𝑅‘𝑔) ≤ 𝑌 ↔ 𝑢 ≤ 𝑌)) | 
| 48 | 46, 47 | imbi12d 344 | . . . . . . . . . . . 12
⊢ ((𝑅‘𝑔) = 𝑢 → (((𝑅‘𝑔) ≤ 𝑋 → (𝑅‘𝑔) ≤ 𝑌) ↔ (𝑢 ≤ 𝑋 → 𝑢 ≤ 𝑌))) | 
| 49 | 48 | biimpcd 249 | . . . . . . . . . . 11
⊢ (((𝑅‘𝑔) ≤ 𝑋 → (𝑅‘𝑔) ≤ 𝑌) → ((𝑅‘𝑔) = 𝑢 → (𝑢 ≤ 𝑋 → 𝑢 ≤ 𝑌))) | 
| 50 | 45, 49 | syl6 35 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑊) → (𝑔 ∈ 𝑇 → ((𝑅‘𝑔) = 𝑢 → (𝑢 ≤ 𝑋 → 𝑢 ≤ 𝑌)))) | 
| 51 | 50 | rexlimdv 3152 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑊) → (∃𝑔 ∈ 𝑇 (𝑅‘𝑔) = 𝑢 → (𝑢 ≤ 𝑋 → 𝑢 ≤ 𝑌))) | 
| 52 | 38, 51 | mpd 15 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴) ∧ 𝑢 ≤ 𝑊) → (𝑢 ≤ 𝑋 → 𝑢 ≤ 𝑌)) | 
| 53 | 52 | 3expia 1121 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴)) → (𝑢 ≤ 𝑊 → (𝑢 ≤ 𝑋 → 𝑢 ≤ 𝑌))) | 
| 54 | 53 | impd 410 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴)) → ((𝑢 ≤ 𝑊 ∧ 𝑢 ≤ 𝑋) → 𝑢 ≤ 𝑌)) | 
| 55 | 33, 54 | syld 47 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑢 ∈ 𝐴)) → (𝑢 ≤ 𝑋 → 𝑢 ≤ 𝑌)) | 
| 56 | 55 | exp32 420 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) → (𝑢 ∈ 𝐴 → (𝑢 ≤ 𝑋 → 𝑢 ≤ 𝑌)))) | 
| 57 | 56 | ralrimdv 3151 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) → ∀𝑢 ∈ 𝐴 (𝑢 ≤ 𝑋 → 𝑢 ≤ 𝑌))) | 
| 58 |  | simp1l 1197 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ HL) | 
| 59 |  | simp2l 1199 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | 
| 60 |  | simp3l 1201 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ∈ 𝐵) | 
| 61 | 1, 2, 22 | hlatle 39401 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ∀𝑢 ∈ 𝐴 (𝑢 ≤ 𝑋 → 𝑢 ≤ 𝑌))) | 
| 62 | 58, 59, 60, 61 | syl3anc 1372 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ≤ 𝑌 ↔ ∀𝑢 ∈ 𝐴 (𝑢 ≤ 𝑋 → 𝑢 ≤ 𝑌))) | 
| 63 | 57, 62 | sylibrd 259 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌) → 𝑋 ≤ 𝑌)) | 
| 64 | 18, 63 | impbid 212 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ≤ 𝑌 ↔ ∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ 𝑋 → (𝑅‘𝑓) ≤ 𝑌))) |