MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pthon2v Structured version   Visualization version   GIF version

Theorem 1pthon2v 30125
Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
1pthon2v.v 𝑉 = (Vtx‘𝐺)
1pthon2v.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
1pthon2v ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
Distinct variable groups:   𝐴,𝑒,𝑓,𝑝   𝐵,𝑒,𝑓,𝑝   𝑒,𝐺,𝑓,𝑝   𝑒,𝑉
Allowed substitution hints:   𝐸(𝑒,𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem 1pthon2v
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
21anim2i 617 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉)) → (𝐺 ∈ UHGraph ∧ 𝐴𝑉))
323adant3 1132 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → (𝐺 ∈ UHGraph ∧ 𝐴𝑉))
43adantl 481 . . . . 5 ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → (𝐺 ∈ UHGraph ∧ 𝐴𝑉))
5 1pthon2v.v . . . . . 6 𝑉 = (Vtx‘𝐺)
650pthonv 30101 . . . . 5 (𝐴𝑉 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝)
74, 6simpl2im 503 . . . 4 ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝)
8 oveq2 7349 . . . . . . . 8 (𝐵 = 𝐴 → (𝐴(PathsOn‘𝐺)𝐵) = (𝐴(PathsOn‘𝐺)𝐴))
98eqcoms 2739 . . . . . . 7 (𝐴 = 𝐵 → (𝐴(PathsOn‘𝐺)𝐵) = (𝐴(PathsOn‘𝐺)𝐴))
109breqd 5097 . . . . . 6 (𝐴 = 𝐵 → (𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝))
11102exbidv 1925 . . . . 5 (𝐴 = 𝐵 → (∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝))
1211adantr 480 . . . 4 ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → (∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝))
137, 12mpbird 257 . . 3 ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
1413ex 412 . 2 (𝐴 = 𝐵 → ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
15 1pthon2v.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
1615eleq2i 2823 . . . . . . . . . 10 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
17 eqid 2731 . . . . . . . . . . 11 (iEdg‘𝐺) = (iEdg‘𝐺)
1817uhgredgiedgb 29099 . . . . . . . . . 10 (𝐺 ∈ UHGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖)))
1916, 18bitrid 283 . . . . . . . . 9 (𝐺 ∈ UHGraph → (𝑒𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖)))
20193ad2ant1 1133 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑒𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖)))
21 s1cli 14508 . . . . . . . . . . . 12 ⟨“𝑖”⟩ ∈ Word V
22 s2cli 14782 . . . . . . . . . . . 12 ⟨“𝐴𝐵”⟩ ∈ Word V
2321, 22pm3.2i 470 . . . . . . . . . . 11 (⟨“𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵”⟩ ∈ Word V)
24 eqid 2731 . . . . . . . . . . . 12 ⟨“𝐴𝐵”⟩ = ⟨“𝐴𝐵”⟩
25 eqid 2731 . . . . . . . . . . . 12 ⟨“𝑖”⟩ = ⟨“𝑖”⟩
26 simpl2l 1227 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → 𝐴𝑉)
27 simpl2r 1228 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → 𝐵𝑉)
28 eqneqall 2939 . . . . . . . . . . . . . . . 16 (𝐴 = 𝐵 → (𝐴𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴}))
2928com12 32 . . . . . . . . . . . . . . 15 (𝐴𝐵 → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴}))
30293ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴}))
3130adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴}))
3231imp 406 . . . . . . . . . . . 12 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) ∧ 𝐴 = 𝐵) → ((iEdg‘𝐺)‘𝑖) = {𝐴})
33 sseq2 3956 . . . . . . . . . . . . . . . 16 (𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖)))
3433adantl 481 . . . . . . . . . . . . . . 15 ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) → ({𝐴, 𝐵} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖)))
3534biimpa 476 . . . . . . . . . . . . . 14 (((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
3635adantl 481 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
3736adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) ∧ 𝐴𝐵) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
3824, 25, 26, 27, 32, 37, 5, 171pthond 30116 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → ⟨“𝑖”⟩(𝐴(PathsOn‘𝐺)𝐵)⟨“𝐴𝐵”⟩)
39 breq12 5091 . . . . . . . . . . . 12 ((𝑓 = ⟨“𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵”⟩) → (𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ ⟨“𝑖”⟩(𝐴(PathsOn‘𝐺)𝐵)⟨“𝐴𝐵”⟩))
4039spc2egv 3549 . . . . . . . . . . 11 ((⟨“𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵”⟩ ∈ Word V) → (⟨“𝑖”⟩(𝐴(PathsOn‘𝐺)𝐵)⟨“𝐴𝐵”⟩ → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
4123, 38, 40mpsyl 68 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
4241exp44 437 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑖 ∈ dom (iEdg‘𝐺) → (𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))))
4342rexlimdv 3131 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)))
4420, 43sylbid 240 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑒𝐸 → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)))
4544rexlimdv 3131 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
46453exp 1119 . . . . 5 (𝐺 ∈ UHGraph → ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 → (∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))))
4746com34 91 . . . 4 (𝐺 ∈ UHGraph → ((𝐴𝑉𝐵𝑉) → (∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒 → (𝐴𝐵 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))))
48473imp 1110 . . 3 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → (𝐴𝐵 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
4948com12 32 . 2 (𝐴𝐵 → ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
5014, 49pm2.61ine 3011 1 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  wss 3897  {csn 4571  {cpr 4573   class class class wbr 5086  dom cdm 5611  cfv 6476  (class class class)co 7341  Word cword 14415  ⟨“cs1 14498  ⟨“cs2 14743  Vtxcvtx 28969  iEdgciedg 28970  Edgcedg 29020  UHGraphcuhgr 29029  PathsOncpthson 29685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-hash 14233  df-word 14416  df-concat 14473  df-s1 14499  df-s2 14750  df-edg 29021  df-uhgr 29031  df-wlks 29573  df-wlkson 29574  df-trls 29664  df-trlson 29665  df-pths 29687  df-pthson 29689
This theorem is referenced by:  1pthon2ve  30126  cusconngr  30163
  Copyright terms: Public domain W3C validator