MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pthon2v Structured version   Visualization version   GIF version

Theorem 1pthon2v 30089
Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
1pthon2v.v 𝑉 = (Vtx‘𝐺)
1pthon2v.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
1pthon2v ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
Distinct variable groups:   𝐴,𝑒,𝑓,𝑝   𝐵,𝑒,𝑓,𝑝   𝑒,𝐺,𝑓,𝑝   𝑒,𝑉
Allowed substitution hints:   𝐸(𝑒,𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem 1pthon2v
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
21anim2i 617 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉)) → (𝐺 ∈ UHGraph ∧ 𝐴𝑉))
323adant3 1132 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → (𝐺 ∈ UHGraph ∧ 𝐴𝑉))
43adantl 481 . . . . 5 ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → (𝐺 ∈ UHGraph ∧ 𝐴𝑉))
5 1pthon2v.v . . . . . 6 𝑉 = (Vtx‘𝐺)
650pthonv 30065 . . . . 5 (𝐴𝑉 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝)
74, 6simpl2im 503 . . . 4 ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝)
8 oveq2 7398 . . . . . . . 8 (𝐵 = 𝐴 → (𝐴(PathsOn‘𝐺)𝐵) = (𝐴(PathsOn‘𝐺)𝐴))
98eqcoms 2738 . . . . . . 7 (𝐴 = 𝐵 → (𝐴(PathsOn‘𝐺)𝐵) = (𝐴(PathsOn‘𝐺)𝐴))
109breqd 5121 . . . . . 6 (𝐴 = 𝐵 → (𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝))
11102exbidv 1924 . . . . 5 (𝐴 = 𝐵 → (∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝))
1211adantr 480 . . . 4 ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → (∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝))
137, 12mpbird 257 . . 3 ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
1413ex 412 . 2 (𝐴 = 𝐵 → ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
15 1pthon2v.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
1615eleq2i 2821 . . . . . . . . . 10 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
17 eqid 2730 . . . . . . . . . . 11 (iEdg‘𝐺) = (iEdg‘𝐺)
1817uhgredgiedgb 29060 . . . . . . . . . 10 (𝐺 ∈ UHGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖)))
1916, 18bitrid 283 . . . . . . . . 9 (𝐺 ∈ UHGraph → (𝑒𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖)))
20193ad2ant1 1133 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑒𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖)))
21 s1cli 14577 . . . . . . . . . . . 12 ⟨“𝑖”⟩ ∈ Word V
22 s2cli 14853 . . . . . . . . . . . 12 ⟨“𝐴𝐵”⟩ ∈ Word V
2321, 22pm3.2i 470 . . . . . . . . . . 11 (⟨“𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵”⟩ ∈ Word V)
24 eqid 2730 . . . . . . . . . . . 12 ⟨“𝐴𝐵”⟩ = ⟨“𝐴𝐵”⟩
25 eqid 2730 . . . . . . . . . . . 12 ⟨“𝑖”⟩ = ⟨“𝑖”⟩
26 simpl2l 1227 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → 𝐴𝑉)
27 simpl2r 1228 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → 𝐵𝑉)
28 eqneqall 2937 . . . . . . . . . . . . . . . 16 (𝐴 = 𝐵 → (𝐴𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴}))
2928com12 32 . . . . . . . . . . . . . . 15 (𝐴𝐵 → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴}))
30293ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴}))
3130adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴}))
3231imp 406 . . . . . . . . . . . 12 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) ∧ 𝐴 = 𝐵) → ((iEdg‘𝐺)‘𝑖) = {𝐴})
33 sseq2 3976 . . . . . . . . . . . . . . . 16 (𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖)))
3433adantl 481 . . . . . . . . . . . . . . 15 ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) → ({𝐴, 𝐵} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖)))
3534biimpa 476 . . . . . . . . . . . . . 14 (((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
3635adantl 481 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
3736adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) ∧ 𝐴𝐵) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
3824, 25, 26, 27, 32, 37, 5, 171pthond 30080 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → ⟨“𝑖”⟩(𝐴(PathsOn‘𝐺)𝐵)⟨“𝐴𝐵”⟩)
39 breq12 5115 . . . . . . . . . . . 12 ((𝑓 = ⟨“𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵”⟩) → (𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ ⟨“𝑖”⟩(𝐴(PathsOn‘𝐺)𝐵)⟨“𝐴𝐵”⟩))
4039spc2egv 3568 . . . . . . . . . . 11 ((⟨“𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵”⟩ ∈ Word V) → (⟨“𝑖”⟩(𝐴(PathsOn‘𝐺)𝐵)⟨“𝐴𝐵”⟩ → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
4123, 38, 40mpsyl 68 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
4241exp44 437 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑖 ∈ dom (iEdg‘𝐺) → (𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))))
4342rexlimdv 3133 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)))
4420, 43sylbid 240 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑒𝐸 → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)))
4544rexlimdv 3133 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
46453exp 1119 . . . . 5 (𝐺 ∈ UHGraph → ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 → (∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))))
4746com34 91 . . . 4 (𝐺 ∈ UHGraph → ((𝐴𝑉𝐵𝑉) → (∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒 → (𝐴𝐵 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))))
48473imp 1110 . . 3 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → (𝐴𝐵 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
4948com12 32 . 2 (𝐴𝐵 → ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
5014, 49pm2.61ine 3009 1 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  wss 3917  {csn 4592  {cpr 4594   class class class wbr 5110  dom cdm 5641  cfv 6514  (class class class)co 7390  Word cword 14485  ⟨“cs1 14567  ⟨“cs2 14814  Vtxcvtx 28930  iEdgciedg 28931  Edgcedg 28981  UHGraphcuhgr 28990  PathsOncpthson 29649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-edg 28982  df-uhgr 28992  df-wlks 29534  df-wlkson 29535  df-trls 29627  df-trlson 29628  df-pths 29651  df-pthson 29653
This theorem is referenced by:  1pthon2ve  30090  cusconngr  30127
  Copyright terms: Public domain W3C validator