MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pthon2v Structured version   Visualization version   GIF version

Theorem 1pthon2v 28418
Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
1pthon2v.v 𝑉 = (Vtx‘𝐺)
1pthon2v.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
1pthon2v ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
Distinct variable groups:   𝐴,𝑒,𝑓,𝑝   𝐵,𝑒,𝑓,𝑝   𝑒,𝐺,𝑓,𝑝   𝑒,𝑉
Allowed substitution hints:   𝐸(𝑒,𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem 1pthon2v
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
21anim2i 616 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉)) → (𝐺 ∈ UHGraph ∧ 𝐴𝑉))
323adant3 1130 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → (𝐺 ∈ UHGraph ∧ 𝐴𝑉))
43adantl 481 . . . . 5 ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → (𝐺 ∈ UHGraph ∧ 𝐴𝑉))
5 1pthon2v.v . . . . . 6 𝑉 = (Vtx‘𝐺)
650pthonv 28394 . . . . 5 (𝐴𝑉 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝)
74, 6simpl2im 503 . . . 4 ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝)
8 oveq2 7263 . . . . . . . 8 (𝐵 = 𝐴 → (𝐴(PathsOn‘𝐺)𝐵) = (𝐴(PathsOn‘𝐺)𝐴))
98eqcoms 2746 . . . . . . 7 (𝐴 = 𝐵 → (𝐴(PathsOn‘𝐺)𝐵) = (𝐴(PathsOn‘𝐺)𝐴))
109breqd 5081 . . . . . 6 (𝐴 = 𝐵 → (𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝))
11102exbidv 1928 . . . . 5 (𝐴 = 𝐵 → (∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝))
1211adantr 480 . . . 4 ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → (∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝))
137, 12mpbird 256 . . 3 ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
1413ex 412 . 2 (𝐴 = 𝐵 → ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
15 1pthon2v.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
1615eleq2i 2830 . . . . . . . . . 10 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
17 eqid 2738 . . . . . . . . . . 11 (iEdg‘𝐺) = (iEdg‘𝐺)
1817uhgredgiedgb 27399 . . . . . . . . . 10 (𝐺 ∈ UHGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖)))
1916, 18syl5bb 282 . . . . . . . . 9 (𝐺 ∈ UHGraph → (𝑒𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖)))
20193ad2ant1 1131 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑒𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖)))
21 s1cli 14238 . . . . . . . . . . . 12 ⟨“𝑖”⟩ ∈ Word V
22 s2cli 14521 . . . . . . . . . . . 12 ⟨“𝐴𝐵”⟩ ∈ Word V
2321, 22pm3.2i 470 . . . . . . . . . . 11 (⟨“𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵”⟩ ∈ Word V)
24 eqid 2738 . . . . . . . . . . . 12 ⟨“𝐴𝐵”⟩ = ⟨“𝐴𝐵”⟩
25 eqid 2738 . . . . . . . . . . . 12 ⟨“𝑖”⟩ = ⟨“𝑖”⟩
26 simpl2l 1224 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → 𝐴𝑉)
27 simpl2r 1225 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → 𝐵𝑉)
28 eqneqall 2953 . . . . . . . . . . . . . . . 16 (𝐴 = 𝐵 → (𝐴𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴}))
2928com12 32 . . . . . . . . . . . . . . 15 (𝐴𝐵 → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴}))
30293ad2ant3 1133 . . . . . . . . . . . . . 14 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴}))
3130adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴}))
3231imp 406 . . . . . . . . . . . 12 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) ∧ 𝐴 = 𝐵) → ((iEdg‘𝐺)‘𝑖) = {𝐴})
33 sseq2 3943 . . . . . . . . . . . . . . . 16 (𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖)))
3433adantl 481 . . . . . . . . . . . . . . 15 ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) → ({𝐴, 𝐵} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖)))
3534biimpa 476 . . . . . . . . . . . . . 14 (((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
3635adantl 481 . . . . . . . . . . . . 13 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
3736adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) ∧ 𝐴𝐵) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
3824, 25, 26, 27, 32, 37, 5, 171pthond 28409 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → ⟨“𝑖”⟩(𝐴(PathsOn‘𝐺)𝐵)⟨“𝐴𝐵”⟩)
39 breq12 5075 . . . . . . . . . . . 12 ((𝑓 = ⟨“𝑖”⟩ ∧ 𝑝 = ⟨“𝐴𝐵”⟩) → (𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ ⟨“𝑖”⟩(𝐴(PathsOn‘𝐺)𝐵)⟨“𝐴𝐵”⟩))
4039spc2egv 3528 . . . . . . . . . . 11 ((⟨“𝑖”⟩ ∈ Word V ∧ ⟨“𝐴𝐵”⟩ ∈ Word V) → (⟨“𝑖”⟩(𝐴(PathsOn‘𝐺)𝐵)⟨“𝐴𝐵”⟩ → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
4123, 38, 40mpsyl 68 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
4241exp44 437 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑖 ∈ dom (iEdg‘𝐺) → (𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))))
4342rexlimdv 3211 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)))
4420, 43sylbid 239 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝑒𝐸 → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)))
4544rexlimdv 3211 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
46453exp 1117 . . . . 5 (𝐺 ∈ UHGraph → ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 → (∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))))
4746com34 91 . . . 4 (𝐺 ∈ UHGraph → ((𝐴𝑉𝐵𝑉) → (∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒 → (𝐴𝐵 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))))
48473imp 1109 . . 3 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → (𝐴𝐵 → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
4948com12 32 . 2 (𝐴𝐵 → ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))
5014, 49pm2.61ine 3027 1 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉) ∧ ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  wss 3883  {csn 4558  {cpr 4560   class class class wbr 5070  dom cdm 5580  cfv 6418  (class class class)co 7255  Word cword 14145  ⟨“cs1 14228  ⟨“cs2 14482  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  UHGraphcuhgr 27329  PathsOncpthson 27983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-edg 27321  df-uhgr 27331  df-wlks 27869  df-wlkson 27870  df-trls 27962  df-trlson 27963  df-pths 27985  df-pthson 27987
This theorem is referenced by:  1pthon2ve  28419  cusconngr  28456
  Copyright terms: Public domain W3C validator