Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
2 | 1 | anim2i 617 |
. . . . . . 7
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐺 ∈ UHGraph ∧ 𝐴 ∈ 𝑉)) |
3 | 2 | 3adant3 1131 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) → (𝐺 ∈ UHGraph ∧ 𝐴 ∈ 𝑉)) |
4 | 3 | adantl 482 |
. . . . 5
⊢ ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → (𝐺 ∈ UHGraph ∧ 𝐴 ∈ 𝑉)) |
5 | | 1pthon2v.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
6 | 5 | 0pthonv 28493 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝) |
7 | 4, 6 | simpl2im 504 |
. . . 4
⊢ ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝) |
8 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝐵 = 𝐴 → (𝐴(PathsOn‘𝐺)𝐵) = (𝐴(PathsOn‘𝐺)𝐴)) |
9 | 8 | eqcoms 2746 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → (𝐴(PathsOn‘𝐺)𝐵) = (𝐴(PathsOn‘𝐺)𝐴)) |
10 | 9 | breqd 5085 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝)) |
11 | 10 | 2exbidv 1927 |
. . . . 5
⊢ (𝐴 = 𝐵 → (∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝)) |
12 | 11 | adantr 481 |
. . . 4
⊢ ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → (∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝)) |
13 | 7, 12 | mpbird 256 |
. . 3
⊢ ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝) |
14 | 13 | ex 413 |
. 2
⊢ (𝐴 = 𝐵 → ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)) |
15 | | 1pthon2v.e |
. . . . . . . . . . 11
⊢ 𝐸 = (Edg‘𝐺) |
16 | 15 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) |
17 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
18 | 17 | uhgredgiedgb 27496 |
. . . . . . . . . 10
⊢ (𝐺 ∈ UHGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖))) |
19 | 16, 18 | syl5bb 283 |
. . . . . . . . 9
⊢ (𝐺 ∈ UHGraph → (𝑒 ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖))) |
20 | 19 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝑒 ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖))) |
21 | | s1cli 14310 |
. . . . . . . . . . . 12
⊢
〈“𝑖”〉 ∈ Word V |
22 | | s2cli 14593 |
. . . . . . . . . . . 12
⊢
〈“𝐴𝐵”〉 ∈ Word
V |
23 | 21, 22 | pm3.2i 471 |
. . . . . . . . . . 11
⊢
(〈“𝑖”〉 ∈ Word V ∧
〈“𝐴𝐵”〉 ∈ Word
V) |
24 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
〈“𝐴𝐵”〉 =
〈“𝐴𝐵”〉 |
25 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
〈“𝑖”〉 = 〈“𝑖”〉 |
26 | | simpl2l 1225 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → 𝐴 ∈ 𝑉) |
27 | | simpl2r 1226 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → 𝐵 ∈ 𝑉) |
28 | | eqneqall 2954 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴})) |
29 | 28 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ≠ 𝐵 → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴})) |
30 | 29 | 3ad2ant3 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴})) |
31 | 30 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴})) |
32 | 31 | imp 407 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) ∧ 𝐴 = 𝐵) → ((iEdg‘𝐺)‘𝑖) = {𝐴}) |
33 | | sseq2 3947 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))) |
34 | 33 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) → ({𝐴, 𝐵} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))) |
35 | 34 | biimpa 477 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖)) |
36 | 35 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖)) |
37 | 36 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖)) |
38 | 24, 25, 26, 27, 32, 37, 5, 17 | 1pthond 28508 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → 〈“𝑖”〉(𝐴(PathsOn‘𝐺)𝐵)〈“𝐴𝐵”〉) |
39 | | breq12 5079 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 〈“𝑖”〉 ∧ 𝑝 = 〈“𝐴𝐵”〉) → (𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ 〈“𝑖”〉(𝐴(PathsOn‘𝐺)𝐵)〈“𝐴𝐵”〉)) |
40 | 39 | spc2egv 3538 |
. . . . . . . . . . 11
⊢
((〈“𝑖”〉 ∈ Word V ∧
〈“𝐴𝐵”〉 ∈ Word V)
→ (〈“𝑖”〉(𝐴(PathsOn‘𝐺)𝐵)〈“𝐴𝐵”〉 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)) |
41 | 23, 38, 40 | mpsyl 68 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝) |
42 | 41 | exp44 438 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝑖 ∈ dom (iEdg‘𝐺) → (𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)))) |
43 | 42 | rexlimdv 3212 |
. . . . . . . 8
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))) |
44 | 20, 43 | sylbid 239 |
. . . . . . 7
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝑒 ∈ 𝐸 → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))) |
45 | 44 | rexlimdv 3212 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)) |
46 | 45 | 3exp 1118 |
. . . . 5
⊢ (𝐺 ∈ UHGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 ≠ 𝐵 → (∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)))) |
47 | 46 | com34 91 |
. . . 4
⊢ (𝐺 ∈ UHGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒 → (𝐴 ≠ 𝐵 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)))) |
48 | 47 | 3imp 1110 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) → (𝐴 ≠ 𝐵 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)) |
49 | 48 | com12 32 |
. 2
⊢ (𝐴 ≠ 𝐵 → ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)) |
50 | 14, 49 | pm2.61ine 3028 |
1
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝) |