| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) | 
| 2 | 1 | anim2i 617 | . . . . . . 7
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → (𝐺 ∈ UHGraph ∧ 𝐴 ∈ 𝑉)) | 
| 3 | 2 | 3adant3 1133 | . . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) → (𝐺 ∈ UHGraph ∧ 𝐴 ∈ 𝑉)) | 
| 4 | 3 | adantl 481 | . . . . 5
⊢ ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → (𝐺 ∈ UHGraph ∧ 𝐴 ∈ 𝑉)) | 
| 5 |  | 1pthon2v.v | . . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) | 
| 6 | 5 | 0pthonv 30148 | . . . . 5
⊢ (𝐴 ∈ 𝑉 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝) | 
| 7 | 4, 6 | simpl2im 503 | . . . 4
⊢ ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝) | 
| 8 |  | oveq2 7439 | . . . . . . . 8
⊢ (𝐵 = 𝐴 → (𝐴(PathsOn‘𝐺)𝐵) = (𝐴(PathsOn‘𝐺)𝐴)) | 
| 9 | 8 | eqcoms 2745 | . . . . . . 7
⊢ (𝐴 = 𝐵 → (𝐴(PathsOn‘𝐺)𝐵) = (𝐴(PathsOn‘𝐺)𝐴)) | 
| 10 | 9 | breqd 5154 | . . . . . 6
⊢ (𝐴 = 𝐵 → (𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝)) | 
| 11 | 10 | 2exbidv 1924 | . . . . 5
⊢ (𝐴 = 𝐵 → (∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝)) | 
| 12 | 11 | adantr 480 | . . . 4
⊢ ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → (∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐴)𝑝)) | 
| 13 | 7, 12 | mpbird 257 | . . 3
⊢ ((𝐴 = 𝐵 ∧ (𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝) | 
| 14 | 13 | ex 412 | . 2
⊢ (𝐴 = 𝐵 → ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)) | 
| 15 |  | 1pthon2v.e | . . . . . . . . . . 11
⊢ 𝐸 = (Edg‘𝐺) | 
| 16 | 15 | eleq2i 2833 | . . . . . . . . . 10
⊢ (𝑒 ∈ 𝐸 ↔ 𝑒 ∈ (Edg‘𝐺)) | 
| 17 |  | eqid 2737 | . . . . . . . . . . 11
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) | 
| 18 | 17 | uhgredgiedgb 29143 | . . . . . . . . . 10
⊢ (𝐺 ∈ UHGraph → (𝑒 ∈ (Edg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖))) | 
| 19 | 16, 18 | bitrid 283 | . . . . . . . . 9
⊢ (𝐺 ∈ UHGraph → (𝑒 ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖))) | 
| 20 | 19 | 3ad2ant1 1134 | . . . . . . . 8
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝑒 ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖))) | 
| 21 |  | s1cli 14643 | . . . . . . . . . . . 12
⊢
〈“𝑖”〉 ∈ Word V | 
| 22 |  | s2cli 14919 | . . . . . . . . . . . 12
⊢
〈“𝐴𝐵”〉 ∈ Word
V | 
| 23 | 21, 22 | pm3.2i 470 | . . . . . . . . . . 11
⊢
(〈“𝑖”〉 ∈ Word V ∧
〈“𝐴𝐵”〉 ∈ Word
V) | 
| 24 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
〈“𝐴𝐵”〉 =
〈“𝐴𝐵”〉 | 
| 25 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
〈“𝑖”〉 = 〈“𝑖”〉 | 
| 26 |  | simpl2l 1227 | . . . . . . . . . . . 12
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → 𝐴 ∈ 𝑉) | 
| 27 |  | simpl2r 1228 | . . . . . . . . . . . 12
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → 𝐵 ∈ 𝑉) | 
| 28 |  | eqneqall 2951 | . . . . . . . . . . . . . . . 16
⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴})) | 
| 29 | 28 | com12 32 | . . . . . . . . . . . . . . 15
⊢ (𝐴 ≠ 𝐵 → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴})) | 
| 30 | 29 | 3ad2ant3 1136 | . . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴})) | 
| 31 | 30 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → (𝐴 = 𝐵 → ((iEdg‘𝐺)‘𝑖) = {𝐴})) | 
| 32 | 31 | imp 406 | . . . . . . . . . . . 12
⊢ ((((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) ∧ 𝐴 = 𝐵) → ((iEdg‘𝐺)‘𝑖) = {𝐴}) | 
| 33 |  | sseq2 4010 | . . . . . . . . . . . . . . . 16
⊢ (𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))) | 
| 34 | 33 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) → ({𝐴, 𝐵} ⊆ 𝑒 ↔ {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))) | 
| 35 | 34 | biimpa 476 | . . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖)) | 
| 36 | 35 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖)) | 
| 37 | 36 | adantr 480 | . . . . . . . . . . . 12
⊢ ((((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖)) | 
| 38 | 24, 25, 26, 27, 32, 37, 5, 17 | 1pthond 30163 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → 〈“𝑖”〉(𝐴(PathsOn‘𝐺)𝐵)〈“𝐴𝐵”〉) | 
| 39 |  | breq12 5148 | . . . . . . . . . . . 12
⊢ ((𝑓 = 〈“𝑖”〉 ∧ 𝑝 = 〈“𝐴𝐵”〉) → (𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝 ↔ 〈“𝑖”〉(𝐴(PathsOn‘𝐺)𝐵)〈“𝐴𝐵”〉)) | 
| 40 | 39 | spc2egv 3599 | . . . . . . . . . . 11
⊢
((〈“𝑖”〉 ∈ Word V ∧
〈“𝐴𝐵”〉 ∈ Word V)
→ (〈“𝑖”〉(𝐴(PathsOn‘𝐺)𝐵)〈“𝐴𝐵”〉 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)) | 
| 41 | 23, 38, 40 | mpsyl 68 | . . . . . . . . . 10
⊢ (((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) ∧ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑒 = ((iEdg‘𝐺)‘𝑖)) ∧ {𝐴, 𝐵} ⊆ 𝑒)) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝) | 
| 42 | 41 | exp44 437 | . . . . . . . . 9
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝑖 ∈ dom (iEdg‘𝐺) → (𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)))) | 
| 43 | 42 | rexlimdv 3153 | . . . . . . . 8
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (∃𝑖 ∈ dom (iEdg‘𝐺)𝑒 = ((iEdg‘𝐺)‘𝑖) → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))) | 
| 44 | 20, 43 | sylbid 240 | . . . . . . 7
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝑒 ∈ 𝐸 → ({𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝))) | 
| 45 | 44 | rexlimdv 3153 | . . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)) | 
| 46 | 45 | 3exp 1120 | . . . . 5
⊢ (𝐺 ∈ UHGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 ≠ 𝐵 → (∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)))) | 
| 47 | 46 | com34 91 | . . . 4
⊢ (𝐺 ∈ UHGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒 → (𝐴 ≠ 𝐵 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)))) | 
| 48 | 47 | 3imp 1111 | . . 3
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) → (𝐴 ≠ 𝐵 → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)) | 
| 49 | 48 | com12 32 | . 2
⊢ (𝐴 ≠ 𝐵 → ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝)) | 
| 50 | 14, 49 | pm2.61ine 3025 | 1
⊢ ((𝐺 ∈ UHGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑓∃𝑝 𝑓(𝐴(PathsOn‘𝐺)𝐵)𝑝) |