| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ssltss1 27833 | . . . . 5
⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆  No
) | 
| 2 |  | ssltex1 27831 | . . . . 5
⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) | 
| 3 |  | ssltss2 27834 | . . . . 5
⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆  No
) | 
| 4 |  | ssltex2 27832 | . . . . 5
⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) | 
| 5 |  | ssltsep 27835 | . . . . 5
⊢ (𝐴 <<s 𝐵 → ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐵 𝑝 <s 𝑞) | 
| 6 |  | noeta2 27829 | . . . . 5
⊢ (((𝐴 ⊆ 
No  ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆  No  ∧ 𝐵 ∈ V) ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐵 𝑝 <s 𝑞) → ∃𝑦 ∈  No 
(∀𝑝 ∈ 𝐴 𝑝 <s 𝑦 ∧ ∀𝑞 ∈ 𝐵 𝑦 <s 𝑞 ∧ ( bday
‘𝑦) ⊆
suc ∪ ( bday  “
(𝐴 ∪ 𝐵)))) | 
| 7 | 1, 2, 3, 4, 5, 6 | syl221anc 1383 | . . . 4
⊢ (𝐴 <<s 𝐵 → ∃𝑦 ∈  No 
(∀𝑝 ∈ 𝐴 𝑝 <s 𝑦 ∧ ∀𝑞 ∈ 𝐵 𝑦 <s 𝑞 ∧ ( bday
‘𝑦) ⊆
suc ∪ ( bday  “
(𝐴 ∪ 𝐵)))) | 
| 8 |  | 3simpa 1149 | . . . . . 6
⊢
((∀𝑝 ∈
𝐴 𝑝 <s 𝑦 ∧ ∀𝑞 ∈ 𝐵 𝑦 <s 𝑞 ∧ ( bday
‘𝑦) ⊆
suc ∪ ( bday  “
(𝐴 ∪ 𝐵))) → (∀𝑝 ∈ 𝐴 𝑝 <s 𝑦 ∧ ∀𝑞 ∈ 𝐵 𝑦 <s 𝑞)) | 
| 9 | 2 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
∧ ∀𝑝 ∈
𝐴 𝑝 <s 𝑦) → 𝐴 ∈ V) | 
| 10 |  | vsnex 5434 | . . . . . . . . . 10
⊢ {𝑦} ∈ V | 
| 11 | 9, 10 | jctir 520 | . . . . . . . . 9
⊢ (((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
∧ ∀𝑝 ∈
𝐴 𝑝 <s 𝑦) → (𝐴 ∈ V ∧ {𝑦} ∈ V)) | 
| 12 | 1 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
∧ ∀𝑝 ∈
𝐴 𝑝 <s 𝑦) → 𝐴 ⊆  No
) | 
| 13 |  | snssi 4808 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ 
No  → {𝑦}
⊆  No ) | 
| 14 | 13 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
→ {𝑦} ⊆  No ) | 
| 15 | 14 | adantr 480 | . . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
∧ ∀𝑝 ∈
𝐴 𝑝 <s 𝑦) → {𝑦} ⊆  No
) | 
| 16 |  | vex 3484 | . . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V | 
| 17 |  | breq2 5147 | . . . . . . . . . . . . . 14
⊢ (𝑞 = 𝑦 → (𝑝 <s 𝑞 ↔ 𝑝 <s 𝑦)) | 
| 18 | 16, 17 | ralsn 4681 | . . . . . . . . . . . . 13
⊢
(∀𝑞 ∈
{𝑦}𝑝 <s 𝑞 ↔ 𝑝 <s 𝑦) | 
| 19 | 18 | ralbii 3093 | . . . . . . . . . . . 12
⊢
(∀𝑝 ∈
𝐴 ∀𝑞 ∈ {𝑦}𝑝 <s 𝑞 ↔ ∀𝑝 ∈ 𝐴 𝑝 <s 𝑦) | 
| 20 | 19 | biimpri 228 | . . . . . . . . . . 11
⊢
(∀𝑝 ∈
𝐴 𝑝 <s 𝑦 → ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ {𝑦}𝑝 <s 𝑞) | 
| 21 | 20 | adantl 481 | . . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
∧ ∀𝑝 ∈
𝐴 𝑝 <s 𝑦) → ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ {𝑦}𝑝 <s 𝑞) | 
| 22 | 12, 15, 21 | 3jca 1129 | . . . . . . . . 9
⊢ (((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
∧ ∀𝑝 ∈
𝐴 𝑝 <s 𝑦) → (𝐴 ⊆  No 
∧ {𝑦} ⊆  No  ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ {𝑦}𝑝 <s 𝑞)) | 
| 23 |  | brsslt 27830 | . . . . . . . . 9
⊢ (𝐴 <<s {𝑦} ↔ ((𝐴 ∈ V ∧ {𝑦} ∈ V) ∧ (𝐴 ⊆  No 
∧ {𝑦} ⊆  No  ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ {𝑦}𝑝 <s 𝑞))) | 
| 24 | 11, 22, 23 | sylanbrc 583 | . . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
∧ ∀𝑝 ∈
𝐴 𝑝 <s 𝑦) → 𝐴 <<s {𝑦}) | 
| 25 | 24 | ex 412 | . . . . . . 7
⊢ ((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
→ (∀𝑝 ∈
𝐴 𝑝 <s 𝑦 → 𝐴 <<s {𝑦})) | 
| 26 | 4 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
∧ ∀𝑞 ∈
𝐵 𝑦 <s 𝑞) → 𝐵 ∈ V) | 
| 27 | 26, 10 | jctil 519 | . . . . . . . . 9
⊢ (((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
∧ ∀𝑞 ∈
𝐵 𝑦 <s 𝑞) → ({𝑦} ∈ V ∧ 𝐵 ∈ V)) | 
| 28 | 14 | adantr 480 | . . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
∧ ∀𝑞 ∈
𝐵 𝑦 <s 𝑞) → {𝑦} ⊆  No
) | 
| 29 | 3 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
∧ ∀𝑞 ∈
𝐵 𝑦 <s 𝑞) → 𝐵 ⊆  No
) | 
| 30 |  | ralcom 3289 | . . . . . . . . . . . 12
⊢
(∀𝑝 ∈
{𝑦}∀𝑞 ∈ 𝐵 𝑝 <s 𝑞 ↔ ∀𝑞 ∈ 𝐵 ∀𝑝 ∈ {𝑦}𝑝 <s 𝑞) | 
| 31 |  | breq1 5146 | . . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑦 → (𝑝 <s 𝑞 ↔ 𝑦 <s 𝑞)) | 
| 32 | 16, 31 | ralsn 4681 | . . . . . . . . . . . . 13
⊢
(∀𝑝 ∈
{𝑦}𝑝 <s 𝑞 ↔ 𝑦 <s 𝑞) | 
| 33 | 32 | ralbii 3093 | . . . . . . . . . . . 12
⊢
(∀𝑞 ∈
𝐵 ∀𝑝 ∈ {𝑦}𝑝 <s 𝑞 ↔ ∀𝑞 ∈ 𝐵 𝑦 <s 𝑞) | 
| 34 | 30, 33 | sylbbr 236 | . . . . . . . . . . 11
⊢
(∀𝑞 ∈
𝐵 𝑦 <s 𝑞 → ∀𝑝 ∈ {𝑦}∀𝑞 ∈ 𝐵 𝑝 <s 𝑞) | 
| 35 | 34 | adantl 481 | . . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
∧ ∀𝑞 ∈
𝐵 𝑦 <s 𝑞) → ∀𝑝 ∈ {𝑦}∀𝑞 ∈ 𝐵 𝑝 <s 𝑞) | 
| 36 | 28, 29, 35 | 3jca 1129 | . . . . . . . . 9
⊢ (((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
∧ ∀𝑞 ∈
𝐵 𝑦 <s 𝑞) → ({𝑦} ⊆  No 
∧ 𝐵 ⊆  No  ∧ ∀𝑝 ∈ {𝑦}∀𝑞 ∈ 𝐵 𝑝 <s 𝑞)) | 
| 37 |  | brsslt 27830 | . . . . . . . . 9
⊢ ({𝑦} <<s 𝐵 ↔ (({𝑦} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑦} ⊆  No 
∧ 𝐵 ⊆  No  ∧ ∀𝑝 ∈ {𝑦}∀𝑞 ∈ 𝐵 𝑝 <s 𝑞))) | 
| 38 | 27, 36, 37 | sylanbrc 583 | . . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
∧ ∀𝑞 ∈
𝐵 𝑦 <s 𝑞) → {𝑦} <<s 𝐵) | 
| 39 | 38 | ex 412 | . . . . . . 7
⊢ ((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
→ (∀𝑞 ∈
𝐵 𝑦 <s 𝑞 → {𝑦} <<s 𝐵)) | 
| 40 | 25, 39 | anim12d 609 | . . . . . 6
⊢ ((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
→ ((∀𝑝 ∈
𝐴 𝑝 <s 𝑦 ∧ ∀𝑞 ∈ 𝐵 𝑦 <s 𝑞) → (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵))) | 
| 41 | 8, 40 | syl5 34 | . . . . 5
⊢ ((𝐴 <<s 𝐵 ∧ 𝑦 ∈  No )
→ ((∀𝑝 ∈
𝐴 𝑝 <s 𝑦 ∧ ∀𝑞 ∈ 𝐵 𝑦 <s 𝑞 ∧ ( bday
‘𝑦) ⊆
suc ∪ ( bday  “
(𝐴 ∪ 𝐵))) → (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵))) | 
| 42 | 41 | reximdva 3168 | . . . 4
⊢ (𝐴 <<s 𝐵 → (∃𝑦 ∈  No 
(∀𝑝 ∈ 𝐴 𝑝 <s 𝑦 ∧ ∀𝑞 ∈ 𝐵 𝑦 <s 𝑞 ∧ ( bday
‘𝑦) ⊆
suc ∪ ( bday  “
(𝐴 ∪ 𝐵))) → ∃𝑦 ∈  No 
(𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵))) | 
| 43 | 7, 42 | mpd 15 | . . 3
⊢ (𝐴 <<s 𝐵 → ∃𝑦 ∈  No 
(𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)) | 
| 44 |  | rabn0 4389 | . . 3
⊢ ({𝑦 ∈ 
No  ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)} ≠ ∅ ↔ ∃𝑦 ∈ 
No  (𝐴 <<s
{𝑦} ∧ {𝑦} <<s 𝐵)) | 
| 45 | 43, 44 | sylibr 234 | . 2
⊢ (𝐴 <<s 𝐵 → {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ≠ ∅) | 
| 46 |  | ssrab2 4080 | . . 3
⊢ {𝑦 ∈ 
No  ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆  No | 
| 47 | 46 | a1i 11 | . 2
⊢ (𝐴 <<s 𝐵 → {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆  No
) | 
| 48 |  | simplr3 1218 | . . . . . 6
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → 𝑟 ∈  No
) | 
| 49 | 2 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → 𝐴 ∈ V) | 
| 50 |  | vsnex 5434 | . . . . . . . 8
⊢ {𝑟} ∈ V | 
| 51 | 49, 50 | jctir 520 | . . . . . . 7
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → (𝐴 ∈ V ∧ {𝑟} ∈ V)) | 
| 52 | 1 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → 𝐴 ⊆  No
) | 
| 53 |  | snssi 4808 | . . . . . . . . 9
⊢ (𝑟 ∈ 
No  → {𝑟}
⊆  No ) | 
| 54 | 48, 53 | syl 17 | . . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → {𝑟} ⊆  No
) | 
| 55 | 52 | sselda 3983 | . . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈  No
) | 
| 56 |  | simplr1 1216 | . . . . . . . . . . . 12
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → 𝑝 ∈  No
) | 
| 57 | 56 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) ∧ 𝑥 ∈ 𝐴) → 𝑝 ∈  No
) | 
| 58 | 48 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) ∧ 𝑥 ∈ 𝐴) → 𝑟 ∈  No
) | 
| 59 |  | simplll 775 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞)) → 𝐴 <<s {𝑝}) | 
| 60 | 59 | adantl 481 | . . . . . . . . . . . . . 14
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → 𝐴 <<s {𝑝}) | 
| 61 |  | ssltsep 27835 | . . . . . . . . . . . . . 14
⊢ (𝐴 <<s {𝑝} → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ {𝑝}𝑥 <s 𝑦) | 
| 62 | 60, 61 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ {𝑝}𝑥 <s 𝑦) | 
| 63 | 62 | r19.21bi 3251 | . . . . . . . . . . . 12
⊢ ((((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ {𝑝}𝑥 <s 𝑦) | 
| 64 |  | vex 3484 | . . . . . . . . . . . . 13
⊢ 𝑝 ∈ V | 
| 65 |  | breq2 5147 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑝 → (𝑥 <s 𝑦 ↔ 𝑥 <s 𝑝)) | 
| 66 | 64, 65 | ralsn 4681 | . . . . . . . . . . . 12
⊢
(∀𝑦 ∈
{𝑝}𝑥 <s 𝑦 ↔ 𝑥 <s 𝑝) | 
| 67 | 63, 66 | sylib 218 | . . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) ∧ 𝑥 ∈ 𝐴) → 𝑥 <s 𝑝) | 
| 68 |  | simprrl 781 | . . . . . . . . . . . 12
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → 𝑝 <s 𝑟) | 
| 69 | 68 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) ∧ 𝑥 ∈ 𝐴) → 𝑝 <s 𝑟) | 
| 70 | 55, 57, 58, 67, 69 | slttrd 27804 | . . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) ∧ 𝑥 ∈ 𝐴) → 𝑥 <s 𝑟) | 
| 71 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑟 ∈ V | 
| 72 |  | breq2 5147 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑟 → (𝑥 <s 𝑦 ↔ 𝑥 <s 𝑟)) | 
| 73 | 71, 72 | ralsn 4681 | . . . . . . . . . 10
⊢
(∀𝑦 ∈
{𝑟}𝑥 <s 𝑦 ↔ 𝑥 <s 𝑟) | 
| 74 | 70, 73 | sylibr 234 | . . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ {𝑟}𝑥 <s 𝑦) | 
| 75 | 74 | ralrimiva 3146 | . . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ {𝑟}𝑥 <s 𝑦) | 
| 76 | 52, 54, 75 | 3jca 1129 | . . . . . . 7
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → (𝐴 ⊆  No 
∧ {𝑟} ⊆  No  ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ {𝑟}𝑥 <s 𝑦)) | 
| 77 |  | brsslt 27830 | . . . . . . 7
⊢ (𝐴 <<s {𝑟} ↔ ((𝐴 ∈ V ∧ {𝑟} ∈ V) ∧ (𝐴 ⊆  No 
∧ {𝑟} ⊆  No  ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ {𝑟}𝑥 <s 𝑦))) | 
| 78 | 51, 76, 77 | sylanbrc 583 | . . . . . 6
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → 𝐴 <<s {𝑟}) | 
| 79 | 4 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → 𝐵 ∈ V) | 
| 80 | 79, 50 | jctil 519 | . . . . . . 7
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → ({𝑟} ∈ V ∧ 𝐵 ∈ V)) | 
| 81 | 3 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → 𝐵 ⊆  No
) | 
| 82 | 48 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) ∧ 𝑦 ∈ 𝐵) → 𝑟 ∈  No
) | 
| 83 |  | simplr2 1217 | . . . . . . . . . . . 12
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → 𝑞 ∈  No
) | 
| 84 | 83 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) ∧ 𝑦 ∈ 𝐵) → 𝑞 ∈  No
) | 
| 85 | 81 | sselda 3983 | . . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈  No
) | 
| 86 |  | simprrr 782 | . . . . . . . . . . . 12
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → 𝑟 <s 𝑞) | 
| 87 | 86 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) ∧ 𝑦 ∈ 𝐵) → 𝑟 <s 𝑞) | 
| 88 |  | simplrr 778 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞)) → {𝑞} <<s 𝐵) | 
| 89 | 88 | adantl 481 | . . . . . . . . . . . . . 14
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → {𝑞} <<s 𝐵) | 
| 90 |  | ssltsep 27835 | . . . . . . . . . . . . . 14
⊢ ({𝑞} <<s 𝐵 → ∀𝑥 ∈ {𝑞}∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | 
| 91 | 89, 90 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → ∀𝑥 ∈ {𝑞}∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | 
| 92 |  | vex 3484 | . . . . . . . . . . . . . 14
⊢ 𝑞 ∈ V | 
| 93 |  | breq1 5146 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑞 → (𝑥 <s 𝑦 ↔ 𝑞 <s 𝑦)) | 
| 94 | 93 | ralbidv 3178 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑞 → (∀𝑦 ∈ 𝐵 𝑥 <s 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑞 <s 𝑦)) | 
| 95 | 92, 94 | ralsn 4681 | . . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
{𝑞}∀𝑦 ∈ 𝐵 𝑥 <s 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑞 <s 𝑦) | 
| 96 | 91, 95 | sylib 218 | . . . . . . . . . . . 12
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → ∀𝑦 ∈ 𝐵 𝑞 <s 𝑦) | 
| 97 | 96 | r19.21bi 3251 | . . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) ∧ 𝑦 ∈ 𝐵) → 𝑞 <s 𝑦) | 
| 98 | 82, 84, 85, 87, 97 | slttrd 27804 | . . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) ∧ 𝑦 ∈ 𝐵) → 𝑟 <s 𝑦) | 
| 99 | 98 | ralrimiva 3146 | . . . . . . . . 9
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → ∀𝑦 ∈ 𝐵 𝑟 <s 𝑦) | 
| 100 |  | breq1 5146 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑟 → (𝑥 <s 𝑦 ↔ 𝑟 <s 𝑦)) | 
| 101 | 100 | ralbidv 3178 | . . . . . . . . . 10
⊢ (𝑥 = 𝑟 → (∀𝑦 ∈ 𝐵 𝑥 <s 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑟 <s 𝑦)) | 
| 102 | 71, 101 | ralsn 4681 | . . . . . . . . 9
⊢
(∀𝑥 ∈
{𝑟}∀𝑦 ∈ 𝐵 𝑥 <s 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑟 <s 𝑦) | 
| 103 | 99, 102 | sylibr 234 | . . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → ∀𝑥 ∈ {𝑟}∀𝑦 ∈ 𝐵 𝑥 <s 𝑦) | 
| 104 | 54, 81, 103 | 3jca 1129 | . . . . . . 7
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → ({𝑟} ⊆  No 
∧ 𝐵 ⊆  No  ∧ ∀𝑥 ∈ {𝑟}∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) | 
| 105 |  | brsslt 27830 | . . . . . . 7
⊢ ({𝑟} <<s 𝐵 ↔ (({𝑟} ∈ V ∧ 𝐵 ∈ V) ∧ ({𝑟} ⊆  No 
∧ 𝐵 ⊆  No  ∧ ∀𝑥 ∈ {𝑟}∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) | 
| 106 | 80, 104, 105 | sylanbrc 583 | . . . . . 6
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → {𝑟} <<s 𝐵) | 
| 107 | 48, 78, 106 | jca32 515 | . . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
∧ (((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) ∧ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵)) ∧ (𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞))) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵))) | 
| 108 | 107 | exp44 437 | . . . 4
⊢ ((𝐴 <<s 𝐵 ∧ (𝑝 ∈  No 
∧ 𝑞 ∈  No  ∧ 𝑟 ∈  No ))
→ ((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) → ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))))) | 
| 109 | 108 | ralrimivvva 3205 | . . 3
⊢ (𝐴 <<s 𝐵 → ∀𝑝 ∈  No 
∀𝑞 ∈  No  ∀𝑟 ∈  No 
((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) → ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))))) | 
| 110 |  | sneq 4636 | . . . . . . 7
⊢ (𝑦 = 𝑝 → {𝑦} = {𝑝}) | 
| 111 | 110 | breq2d 5155 | . . . . . 6
⊢ (𝑦 = 𝑝 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑝})) | 
| 112 | 110 | breq1d 5153 | . . . . . 6
⊢ (𝑦 = 𝑝 → ({𝑦} <<s 𝐵 ↔ {𝑝} <<s 𝐵)) | 
| 113 | 111, 112 | anbi12d 632 | . . . . 5
⊢ (𝑦 = 𝑝 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵))) | 
| 114 | 113 | ralrab 3699 | . . . 4
⊢
(∀𝑝 ∈
{𝑦 ∈  No  ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}∀𝑞 ∈  No 
∀𝑟 ∈  No  ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))) ↔ ∀𝑝 ∈  No 
((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) → ∀𝑞 ∈  No 
∀𝑟 ∈  No  ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))))) | 
| 115 |  | sneq 4636 | . . . . . . . . 9
⊢ (𝑦 = 𝑞 → {𝑦} = {𝑞}) | 
| 116 | 115 | breq2d 5155 | . . . . . . . 8
⊢ (𝑦 = 𝑞 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑞})) | 
| 117 | 115 | breq1d 5153 | . . . . . . . 8
⊢ (𝑦 = 𝑞 → ({𝑦} <<s 𝐵 ↔ {𝑞} <<s 𝐵)) | 
| 118 | 116, 117 | anbi12d 632 | . . . . . . 7
⊢ (𝑦 = 𝑞 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵))) | 
| 119 | 118 | ralrab 3699 | . . . . . 6
⊢
(∀𝑞 ∈
{𝑦 ∈  No  ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}∀𝑟 ∈  No 
((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵))) ↔ ∀𝑞 ∈  No 
((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ∀𝑟 ∈  No 
((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵))))) | 
| 120 |  | sneq 4636 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑟 → {𝑦} = {𝑟}) | 
| 121 | 120 | breq2d 5155 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑟 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑟})) | 
| 122 | 120 | breq1d 5153 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑟 → ({𝑦} <<s 𝐵 ↔ {𝑟} <<s 𝐵)) | 
| 123 | 121, 122 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑦 = 𝑟 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵))) | 
| 124 | 123 | elrab 3692 | . . . . . . . . 9
⊢ (𝑟 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵))) | 
| 125 | 124 | imbi2i 336 | . . . . . . . 8
⊢ (((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → 𝑟 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))) | 
| 126 | 125 | ralbii 3093 | . . . . . . 7
⊢
(∀𝑟 ∈
 No  ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → 𝑟 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ ∀𝑟 ∈  No 
((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))) | 
| 127 | 126 | ralbii 3093 | . . . . . 6
⊢
(∀𝑞 ∈
{𝑦 ∈  No  ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}∀𝑟 ∈  No 
((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → 𝑟 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ ∀𝑞 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}∀𝑟 ∈  No 
((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))) | 
| 128 |  | r19.21v 3180 | . . . . . . 7
⊢
(∀𝑟 ∈
 No  ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))) ↔ ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ∀𝑟 ∈  No 
((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵))))) | 
| 129 | 128 | ralbii 3093 | . . . . . 6
⊢
(∀𝑞 ∈
 No  ∀𝑟 ∈  No 
((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))) ↔ ∀𝑞 ∈  No 
((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ∀𝑟 ∈  No 
((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵))))) | 
| 130 | 119, 127,
129 | 3bitr4i 303 | . . . . 5
⊢
(∀𝑞 ∈
{𝑦 ∈  No  ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}∀𝑟 ∈  No 
((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → 𝑟 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ ∀𝑞 ∈  No 
∀𝑟 ∈  No  ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵))))) | 
| 131 | 130 | ralbii 3093 | . . . 4
⊢
(∀𝑝 ∈
{𝑦 ∈  No  ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}∀𝑞 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}∀𝑟 ∈  No 
((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → 𝑟 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ ∀𝑝 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}∀𝑞 ∈  No 
∀𝑟 ∈  No  ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵))))) | 
| 132 |  | r19.21v 3180 | . . . . . . 7
⊢
(∀𝑟 ∈
 No  ((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) → ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵))))) ↔ ((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) → ∀𝑟 ∈  No 
((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))))) | 
| 133 | 132 | ralbii 3093 | . . . . . 6
⊢
(∀𝑞 ∈
 No  ∀𝑟 ∈  No 
((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) → ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵))))) ↔ ∀𝑞 ∈  No 
((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) → ∀𝑟 ∈  No 
((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))))) | 
| 134 |  | r19.21v 3180 | . . . . . 6
⊢
(∀𝑞 ∈
 No  ((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) → ∀𝑟 ∈  No 
((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵))))) ↔ ((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) → ∀𝑞 ∈  No 
∀𝑟 ∈  No  ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))))) | 
| 135 | 133, 134 | bitri 275 | . . . . 5
⊢
(∀𝑞 ∈
 No  ∀𝑟 ∈  No 
((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) → ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵))))) ↔ ((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) → ∀𝑞 ∈  No 
∀𝑟 ∈  No  ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))))) | 
| 136 | 135 | ralbii 3093 | . . . 4
⊢
(∀𝑝 ∈
 No  ∀𝑞 ∈  No 
∀𝑟 ∈  No  ((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) → ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵))))) ↔ ∀𝑝 ∈  No 
((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) → ∀𝑞 ∈  No 
∀𝑟 ∈  No  ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))))) | 
| 137 | 114, 131,
136 | 3bitr4i 303 | . . 3
⊢
(∀𝑝 ∈
{𝑦 ∈  No  ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}∀𝑞 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}∀𝑟 ∈  No 
((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → 𝑟 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ↔ ∀𝑝 ∈  No 
∀𝑞 ∈  No  ∀𝑟 ∈  No 
((𝐴 <<s {𝑝} ∧ {𝑝} <<s 𝐵) → ((𝐴 <<s {𝑞} ∧ {𝑞} <<s 𝐵) → ((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → (𝑟 ∈  No 
∧ (𝐴 <<s {𝑟} ∧ {𝑟} <<s 𝐵)))))) | 
| 138 | 109, 137 | sylibr 234 | . 2
⊢ (𝐴 <<s 𝐵 → ∀𝑝 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}∀𝑞 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}∀𝑟 ∈  No 
((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → 𝑟 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) | 
| 139 |  | nocvxmin 27823 | . 2
⊢ (({𝑦 ∈ 
No  ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)} ≠ ∅ ∧ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆  No 
∧ ∀𝑝 ∈
{𝑦 ∈  No  ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}∀𝑞 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}∀𝑟 ∈  No 
((𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞) → 𝑟 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) → ∃!𝑥 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday
‘𝑥) = ∩ ( bday  “ {𝑦 ∈ 
No  ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)})) | 
| 140 | 45, 47, 138, 139 | syl3anc 1373 | 1
⊢ (𝐴 <<s 𝐵 → ∃!𝑥 ∈ {𝑦 ∈  No 
∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday
‘𝑥) = ∩ ( bday  “ {𝑦 ∈ 
No  ∣ (𝐴
<<s {𝑦} ∧ {𝑦} <<s 𝐵)})) |