Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihord6apre Structured version   Visualization version   GIF version

Theorem dihord6apre 38379
Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.)
Hypotheses
Ref Expression
dihord6apre.b 𝐵 = (Base‘𝐾)
dihord6apre.l = (le‘𝐾)
dihord6apre.a 𝐴 = (Atoms‘𝐾)
dihord6apre.h 𝐻 = (LHyp‘𝐾)
dihord6apre.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihord6apre.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dihord6apre.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihord6apre.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihord6apre.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihord6apre.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihord6apre.s = (LSSum‘𝑈)
dihord6apre.g 𝐺 = (𝑇 (𝑃) = 𝑞)
Assertion
Ref Expression
dihord6apre ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝐼𝑋) ⊆ (𝐼𝑌)) → 𝑋 𝑌)
Distinct variable groups:   ,𝑞   𝐴,𝑞   ,𝑞,𝐵   𝐻,𝑞   𝐼,𝑞   ,𝐾,𝑞   𝑂,𝑞   𝑇,,𝑞   ,𝑊,𝑞   𝑋,𝑞   𝑌,𝑞
Allowed substitution hints:   𝐴()   𝑃(,𝑞)   (,𝑞)   𝑈(,𝑞)   𝐸(,𝑞)   𝐺(,𝑞)   𝐻()   𝐼()   ()   𝑂()   𝑋()   𝑌()

Proof of Theorem dihord6apre
StepHypRef Expression
1 dihord6apre.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 dihord6apre.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
3 dihord6apre.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 dihord6apre.e . . . . . . 7 𝐸 = ((TEndo‘𝐾)‘𝑊)
5 dihord6apre.o . . . . . . 7 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
61, 2, 3, 4, 5tendo1ne0 37951 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ 𝑂)
763ad2ant1 1127 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ( I ↾ 𝑇) ≠ 𝑂)
87neneqd 3019 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ¬ ( I ↾ 𝑇) = 𝑂)
9 dihord6apre.l . . . . . . 7 = (le‘𝐾)
10 eqid 2819 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
11 eqid 2819 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
12 dihord6apre.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
131, 9, 10, 11, 12, 2lhpmcvr2 37147 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋))
14133adant3 1126 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋))
15 simpl1 1185 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simpl2 1186 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
17 simpr 487 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋))
18 dihord6apre.i . . . . . . . . . . . 12 𝐼 = ((DIsoH‘𝐾)‘𝑊)
19 eqid 2819 . . . . . . . . . . . 12 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
20 eqid 2819 . . . . . . . . . . . 12 ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊)
21 dihord6apre.u . . . . . . . . . . . 12 𝑈 = ((DVecH‘𝐾)‘𝑊)
22 dihord6apre.s . . . . . . . . . . . 12 = (LSSum‘𝑈)
231, 9, 10, 11, 12, 2, 18, 19, 20, 21, 22dihvalcq 38359 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐼𝑋) = ((((DIsoC‘𝐾)‘𝑊)‘𝑞) (((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))))
2415, 16, 17, 23syl3anc 1365 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐼𝑋) = ((((DIsoC‘𝐾)‘𝑊)‘𝑞) (((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))))
25 simpl3 1187 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑌𝐵𝑌 𝑊))
261, 9, 2, 18, 19dihvalb 38360 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼𝑌) = (((DIsoB‘𝐾)‘𝑊)‘𝑌))
2715, 25, 26syl2anc 586 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝐼𝑌) = (((DIsoB‘𝐾)‘𝑊)‘𝑌))
2824, 27sseq12d 3998 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ ((((DIsoC‘𝐾)‘𝑊)‘𝑞) (((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ (((DIsoB‘𝐾)‘𝑊)‘𝑌)))
292, 21, 15dvhlmod 38233 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝑈 ∈ LMod)
30 eqid 2819 . . . . . . . . . . . . . 14 (LSubSp‘𝑈) = (LSubSp‘𝑈)
3130lsssssubg 19722 . . . . . . . . . . . . 13 (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
3229, 31syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
33 simprl 769 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
349, 12, 2, 21, 20, 30diclss 38316 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (((DIsoC‘𝐾)‘𝑊)‘𝑞) ∈ (LSubSp‘𝑈))
3515, 33, 34syl2anc 586 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (((DIsoC‘𝐾)‘𝑊)‘𝑞) ∈ (LSubSp‘𝑈))
3632, 35sseldd 3966 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (((DIsoC‘𝐾)‘𝑊)‘𝑞) ∈ (SubGrp‘𝑈))
37 simpl1l 1218 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝐾 ∈ HL)
3837hllatd 36487 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝐾 ∈ Lat)
39 simpl2l 1220 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝑋𝐵)
40 simpl1r 1219 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝑊𝐻)
411, 2lhpbase 37121 . . . . . . . . . . . . . . 15 (𝑊𝐻𝑊𝐵)
4240, 41syl 17 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → 𝑊𝐵)
431, 11latmcl 17654 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋(meet‘𝐾)𝑊) ∈ 𝐵)
4438, 39, 42, 43syl3anc 1365 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑋(meet‘𝐾)𝑊) ∈ 𝐵)
451, 9, 11latmle2 17679 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋(meet‘𝐾)𝑊) 𝑊)
4638, 39, 42, 45syl3anc 1365 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (𝑋(meet‘𝐾)𝑊) 𝑊)
471, 9, 2, 21, 19, 30diblss 38293 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋(meet‘𝐾)𝑊) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑊) 𝑊)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊)) ∈ (LSubSp‘𝑈))
4815, 44, 46, 47syl12anc 834 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊)) ∈ (LSubSp‘𝑈))
4932, 48sseldd 3966 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊)) ∈ (SubGrp‘𝑈))
5022lsmub1 18774 . . . . . . . . . . 11 (((((DIsoC‘𝐾)‘𝑊)‘𝑞) ∈ (SubGrp‘𝑈) ∧ (((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊)) ∈ (SubGrp‘𝑈)) → (((DIsoC‘𝐾)‘𝑊)‘𝑞) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑞) (((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))))
5136, 49, 50syl2anc 586 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (((DIsoC‘𝐾)‘𝑊)‘𝑞) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑞) (((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))))
52 sstr 3973 . . . . . . . . . . 11 (((((DIsoC‘𝐾)‘𝑊)‘𝑞) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑞) (((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞) (((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ (((DIsoB‘𝐾)‘𝑊)‘𝑌)) → (((DIsoC‘𝐾)‘𝑊)‘𝑞) ⊆ (((DIsoB‘𝐾)‘𝑊)‘𝑌))
53 eqidd 2820 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (( I ↾ 𝑇)‘𝐺) = (( I ↾ 𝑇)‘𝐺))
542, 3, 4tendoidcl 37892 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
5515, 54syl 17 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ( I ↾ 𝑇) ∈ 𝐸)
56 dihord6apre.p . . . . . . . . . . . . . . 15 𝑃 = ((oc‘𝐾)‘𝑊)
57 dihord6apre.g . . . . . . . . . . . . . . 15 𝐺 = (𝑇 (𝑃) = 𝑞)
58 fvex 6676 . . . . . . . . . . . . . . 15 (( I ↾ 𝑇)‘𝐺) ∈ V
593fvexi 6677 . . . . . . . . . . . . . . . 16 𝑇 ∈ V
60 resiexg 7611 . . . . . . . . . . . . . . . 16 (𝑇 ∈ V → ( I ↾ 𝑇) ∈ V)
6159, 60ax-mp 5 . . . . . . . . . . . . . . 15 ( I ↾ 𝑇) ∈ V
629, 12, 2, 56, 3, 4, 20, 57, 58, 61dicopelval2 38304 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (⟨(( I ↾ 𝑇)‘𝐺), ( I ↾ 𝑇)⟩ ∈ (((DIsoC‘𝐾)‘𝑊)‘𝑞) ↔ ((( I ↾ 𝑇)‘𝐺) = (( I ↾ 𝑇)‘𝐺) ∧ ( I ↾ 𝑇) ∈ 𝐸)))
6315, 33, 62syl2anc 586 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (⟨(( I ↾ 𝑇)‘𝐺), ( I ↾ 𝑇)⟩ ∈ (((DIsoC‘𝐾)‘𝑊)‘𝑞) ↔ ((( I ↾ 𝑇)‘𝐺) = (( I ↾ 𝑇)‘𝐺) ∧ ( I ↾ 𝑇) ∈ 𝐸)))
6453, 55, 63mpbir2and 711 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ⟨(( I ↾ 𝑇)‘𝐺), ( I ↾ 𝑇)⟩ ∈ (((DIsoC‘𝐾)‘𝑊)‘𝑞))
65 ssel2 3960 . . . . . . . . . . . . 13 (((((DIsoC‘𝐾)‘𝑊)‘𝑞) ⊆ (((DIsoB‘𝐾)‘𝑊)‘𝑌) ∧ ⟨(( I ↾ 𝑇)‘𝐺), ( I ↾ 𝑇)⟩ ∈ (((DIsoC‘𝐾)‘𝑊)‘𝑞)) → ⟨(( I ↾ 𝑇)‘𝐺), ( I ↾ 𝑇)⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑌))
66 eqid 2819 . . . . . . . . . . . . . . . 16 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
671, 9, 2, 3, 5, 66, 19dibopelval2 38268 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨(( I ↾ 𝑇)‘𝐺), ( I ↾ 𝑇)⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑌) ↔ ((( I ↾ 𝑇)‘𝐺) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ∧ ( I ↾ 𝑇) = 𝑂)))
6815, 25, 67syl2anc 586 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (⟨(( I ↾ 𝑇)‘𝐺), ( I ↾ 𝑇)⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑌) ↔ ((( I ↾ 𝑇)‘𝐺) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ∧ ( I ↾ 𝑇) = 𝑂)))
69 simpr 487 . . . . . . . . . . . . . 14 (((( I ↾ 𝑇)‘𝐺) ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ∧ ( I ↾ 𝑇) = 𝑂) → ( I ↾ 𝑇) = 𝑂)
7068, 69syl6bi 255 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (⟨(( I ↾ 𝑇)‘𝐺), ( I ↾ 𝑇)⟩ ∈ (((DIsoB‘𝐾)‘𝑊)‘𝑌) → ( I ↾ 𝑇) = 𝑂))
7165, 70syl5 34 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (((((DIsoC‘𝐾)‘𝑊)‘𝑞) ⊆ (((DIsoB‘𝐾)‘𝑊)‘𝑌) ∧ ⟨(( I ↾ 𝑇)‘𝐺), ( I ↾ 𝑇)⟩ ∈ (((DIsoC‘𝐾)‘𝑊)‘𝑞)) → ( I ↾ 𝑇) = 𝑂))
7264, 71mpan2d 692 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ((((DIsoC‘𝐾)‘𝑊)‘𝑞) ⊆ (((DIsoB‘𝐾)‘𝑊)‘𝑌) → ( I ↾ 𝑇) = 𝑂))
7352, 72syl5 34 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (((((DIsoC‘𝐾)‘𝑊)‘𝑞) ⊆ ((((DIsoC‘𝐾)‘𝑊)‘𝑞) (((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ∧ ((((DIsoC‘𝐾)‘𝑊)‘𝑞) (((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ (((DIsoB‘𝐾)‘𝑊)‘𝑌)) → ( I ↾ 𝑇) = 𝑂))
7451, 73mpand 693 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → (((((DIsoC‘𝐾)‘𝑊)‘𝑞) (((DIsoB‘𝐾)‘𝑊)‘(𝑋(meet‘𝐾)𝑊))) ⊆ (((DIsoB‘𝐾)‘𝑊)‘𝑌) → ( I ↾ 𝑇) = 𝑂))
7528, 74sylbid 242 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋)) → ((𝐼𝑋) ⊆ (𝐼𝑌) → ( I ↾ 𝑇) = 𝑂))
7675exp44 440 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑞𝐴 → (¬ 𝑞 𝑊 → ((𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋 → ((𝐼𝑋) ⊆ (𝐼𝑌) → ( I ↾ 𝑇) = 𝑂)))))
7776imp4a 425 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑞𝐴 → ((¬ 𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → ((𝐼𝑋) ⊆ (𝐼𝑌) → ( I ↾ 𝑇) = 𝑂))))
7877rexlimdv 3281 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (∃𝑞𝐴𝑞 𝑊 ∧ (𝑞(join‘𝐾)(𝑋(meet‘𝐾)𝑊)) = 𝑋) → ((𝐼𝑋) ⊆ (𝐼𝑌) → ( I ↾ 𝑇) = 𝑂)))
7914, 78mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼𝑋) ⊆ (𝐼𝑌) → ( I ↾ 𝑇) = 𝑂))
808, 79mtod 200 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ¬ (𝐼𝑋) ⊆ (𝐼𝑌))
8180pm2.21d 121 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼𝑋) ⊆ (𝐼𝑌) → 𝑋 𝑌))
8281imp 409 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝐼𝑋) ⊆ (𝐼𝑌)) → 𝑋 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1081   = wceq 1530  wcel 2107  wne 3014  wrex 3137  Vcvv 3493  wss 3934  cop 4565   class class class wbr 5057  cmpt 5137   I cid 5452  cres 5550  cfv 6348  crio 7105  (class class class)co 7148  Basecbs 16475  lecple 16564  occoc 16565  joincjn 17546  meetcmee 17547  Latclat 17647  SubGrpcsubg 18265  LSSumclsm 18751  LModclmod 19626  LSubSpclss 19695  Atomscatm 36386  HLchlt 36473  LHypclh 37107  LTrncltrn 37224  TEndoctendo 37875  DIsoAcdia 38151  DVecHcdvh 38201  DIsoBcdib 38261  DIsoCcdic 38295  DIsoHcdih 38351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-riotaBAD 36076
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-undef 7931  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-invr 19414  df-dvr 19425  df-drng 19496  df-lmod 19628  df-lss 19696  df-lsp 19736  df-lvec 19867  df-oposet 36299  df-ol 36301  df-oml 36302  df-covers 36389  df-ats 36390  df-atl 36421  df-cvlat 36445  df-hlat 36474  df-llines 36621  df-lplanes 36622  df-lvols 36623  df-lines 36624  df-psubsp 36626  df-pmap 36627  df-padd 36919  df-lhyp 37111  df-laut 37112  df-ldil 37227  df-ltrn 37228  df-trl 37282  df-tendo 37878  df-edring 37880  df-disoa 38152  df-dvech 38202  df-dib 38262  df-dic 38296  df-dih 38352
This theorem is referenced by:  dihord6a  38384
  Copyright terms: Public domain W3C validator