MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgr2wlkeqi Structured version   Visualization version   GIF version

Theorem uspgr2wlkeqi 29172
Description: Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 6-May-2021.)
Assertion
Ref Expression
uspgr2wlkeqi ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ 𝐴 = 𝐡)

Proof of Theorem uspgr2wlkeqi
StepHypRef Expression
1 wlkcpr 29153 . . . . 5 (𝐴 ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄))
2 wlkcpr 29153 . . . . . 6 (𝐡 ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅))
3 wlkcl 29139 . . . . . . 7 ((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) β†’ (β™―β€˜(1st β€˜π΄)) ∈ β„•0)
4 fveq2 6890 . . . . . . . . . . . . 13 ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ (β™―β€˜(2nd β€˜π΄)) = (β™―β€˜(2nd β€˜π΅)))
54oveq1d 7426 . . . . . . . . . . . 12 ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1))
65eqcomd 2736 . . . . . . . . . . 11 ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1))
76adantl 480 . . . . . . . . . 10 ((((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) ∧ (1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1))
8 wlklenvm1 29146 . . . . . . . . . . . 12 ((1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅) β†’ (β™―β€˜(1st β€˜π΅)) = ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1))
9 wlklenvm1 29146 . . . . . . . . . . . 12 ((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) β†’ (β™―β€˜(1st β€˜π΄)) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1))
108, 9eqeqan12rd 2745 . . . . . . . . . . 11 (((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) ∧ (1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅)) β†’ ((β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)) ↔ ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1)))
1110adantr 479 . . . . . . . . . 10 ((((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) ∧ (1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ ((β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)) ↔ ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1)))
127, 11mpbird 256 . . . . . . . . 9 ((((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) ∧ (1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))
1312anim2i 615 . . . . . . . 8 (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) ∧ (1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅))) β†’ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))))
1413exp44 436 . . . . . . 7 ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 β†’ ((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) β†’ ((1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))))))
153, 14mpcom 38 . . . . . 6 ((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) β†’ ((1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))))))
162, 15biimtrid 241 . . . . 5 ((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) β†’ (𝐡 ∈ (Walksβ€˜πΊ) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))))))
171, 16sylbi 216 . . . 4 (𝐴 ∈ (Walksβ€˜πΊ) β†’ (𝐡 ∈ (Walksβ€˜πΊ) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))))))
1817imp31 416 . . 3 (((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))))
19183adant1 1128 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))))
20 simpl 481 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) β†’ 𝐺 ∈ USPGraph)
21 simpl 481 . . . . . . 7 (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))) β†’ (β™―β€˜(1st β€˜π΄)) ∈ β„•0)
2220, 21anim12i 611 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) ∧ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))) β†’ (𝐺 ∈ USPGraph ∧ (β™―β€˜(1st β€˜π΄)) ∈ β„•0))
23 simpl 481 . . . . . . . 8 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) β†’ 𝐴 ∈ (Walksβ€˜πΊ))
2423adantl 480 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) β†’ 𝐴 ∈ (Walksβ€˜πΊ))
25 eqidd 2731 . . . . . . 7 (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))) β†’ (β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΄)))
2624, 25anim12i 611 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) ∧ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))) β†’ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΄))))
27 simpr 483 . . . . . . . 8 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) β†’ 𝐡 ∈ (Walksβ€˜πΊ))
2827adantl 480 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) β†’ 𝐡 ∈ (Walksβ€˜πΊ))
29 simpr 483 . . . . . . 7 (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))) β†’ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))
3028, 29anim12i 611 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) ∧ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))) β†’ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))))
31 uspgr2wlkeq2 29171 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (β™―β€˜(1st β€˜π΄)) ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΄))) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ 𝐴 = 𝐡))
3222, 26, 30, 31syl3anc 1369 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) ∧ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ 𝐴 = 𝐡))
3332ex 411 . . . 4 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) β†’ (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ 𝐴 = 𝐡)))
3433com23 86 . . 3 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))) β†’ 𝐴 = 𝐡)))
35343impia 1115 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))) β†’ 𝐴 = 𝐡))
3619, 35mpd 15 1 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ 𝐴 = 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  1c1 11113   βˆ’ cmin 11448  β„•0cn0 12476  β™―chash 14294  USPGraphcuspgr 28675  Walkscwlks 29120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-hash 14295  df-word 14469  df-edg 28575  df-uhgr 28585  df-upgr 28609  df-uspgr 28677  df-wlks 29123
This theorem is referenced by:  wlkswwlksf1o  29400
  Copyright terms: Public domain W3C validator