MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgr2wlkeqi Structured version   Visualization version   GIF version

Theorem uspgr2wlkeqi 29173
Description: Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 6-May-2021.)
Assertion
Ref Expression
uspgr2wlkeqi ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ 𝐴 = 𝐡)

Proof of Theorem uspgr2wlkeqi
StepHypRef Expression
1 wlkcpr 29154 . . . . 5 (𝐴 ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄))
2 wlkcpr 29154 . . . . . 6 (𝐡 ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅))
3 wlkcl 29140 . . . . . . 7 ((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) β†’ (β™―β€˜(1st β€˜π΄)) ∈ β„•0)
4 fveq2 6891 . . . . . . . . . . . . 13 ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ (β™―β€˜(2nd β€˜π΄)) = (β™―β€˜(2nd β€˜π΅)))
54oveq1d 7427 . . . . . . . . . . . 12 ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1))
65eqcomd 2737 . . . . . . . . . . 11 ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1))
76adantl 481 . . . . . . . . . 10 ((((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) ∧ (1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1))
8 wlklenvm1 29147 . . . . . . . . . . . 12 ((1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅) β†’ (β™―β€˜(1st β€˜π΅)) = ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1))
9 wlklenvm1 29147 . . . . . . . . . . . 12 ((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) β†’ (β™―β€˜(1st β€˜π΄)) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1))
108, 9eqeqan12rd 2746 . . . . . . . . . . 11 (((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) ∧ (1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅)) β†’ ((β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)) ↔ ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1)))
1110adantr 480 . . . . . . . . . 10 ((((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) ∧ (1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ ((β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)) ↔ ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1)))
127, 11mpbird 257 . . . . . . . . 9 ((((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) ∧ (1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))
1312anim2i 616 . . . . . . . 8 (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) ∧ (1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅))) β†’ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))))
1413exp44 437 . . . . . . 7 ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 β†’ ((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) β†’ ((1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))))))
153, 14mpcom 38 . . . . . 6 ((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) β†’ ((1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))))))
162, 15biimtrid 241 . . . . 5 ((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) β†’ (𝐡 ∈ (Walksβ€˜πΊ) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))))))
171, 16sylbi 216 . . . 4 (𝐴 ∈ (Walksβ€˜πΊ) β†’ (𝐡 ∈ (Walksβ€˜πΊ) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))))))
1817imp31 417 . . 3 (((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))))
19183adant1 1129 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))))
20 simpl 482 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) β†’ 𝐺 ∈ USPGraph)
21 simpl 482 . . . . . . 7 (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))) β†’ (β™―β€˜(1st β€˜π΄)) ∈ β„•0)
2220, 21anim12i 612 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) ∧ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))) β†’ (𝐺 ∈ USPGraph ∧ (β™―β€˜(1st β€˜π΄)) ∈ β„•0))
23 simpl 482 . . . . . . . 8 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) β†’ 𝐴 ∈ (Walksβ€˜πΊ))
2423adantl 481 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) β†’ 𝐴 ∈ (Walksβ€˜πΊ))
25 eqidd 2732 . . . . . . 7 (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))) β†’ (β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΄)))
2624, 25anim12i 612 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) ∧ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))) β†’ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΄))))
27 simpr 484 . . . . . . . 8 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) β†’ 𝐡 ∈ (Walksβ€˜πΊ))
2827adantl 481 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) β†’ 𝐡 ∈ (Walksβ€˜πΊ))
29 simpr 484 . . . . . . 7 (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))) β†’ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))
3028, 29anim12i 612 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) ∧ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))) β†’ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))))
31 uspgr2wlkeq2 29172 . . . . . 6 (((𝐺 ∈ USPGraph ∧ (β™―β€˜(1st β€˜π΄)) ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΄))) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ 𝐴 = 𝐡))
3222, 26, 30, 31syl3anc 1370 . . . . 5 (((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) ∧ ((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄)))) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ 𝐴 = 𝐡))
3332ex 412 . . . 4 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) β†’ (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ 𝐴 = 𝐡)))
3433com23 86 . . 3 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ))) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))) β†’ 𝐴 = 𝐡)))
35343impia 1116 . 2 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (β™―β€˜(1st β€˜π΅)) = (β™―β€˜(1st β€˜π΄))) β†’ 𝐴 = 𝐡))
3619, 35mpd 15 1 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ 𝐴 = 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  1st c1st 7977  2nd c2nd 7978  1c1 11115   βˆ’ cmin 11449  β„•0cn0 12477  β™―chash 14295  USPGraphcuspgr 28676  Walkscwlks 29121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-oadd 8474  df-er 8707  df-map 8826  df-pm 8827  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-dju 9900  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-n0 12478  df-xnn0 12550  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-hash 14296  df-word 14470  df-edg 28576  df-uhgr 28586  df-upgr 28610  df-uspgr 28678  df-wlks 29124
This theorem is referenced by:  wlkswwlksf1o  29401
  Copyright terms: Public domain W3C validator