Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem3 Structured version   Visualization version   GIF version

Theorem heiborlem3 35251
Description: Lemma for heibor 35259. Using countable choice ax-cc 9846, we have fixed in advance a collection of finite 2↑-𝑛 nets (𝐹𝑛) for 𝑋 (note that an 𝑟-net is a set of points in 𝑋 whose 𝑟 -balls cover 𝑋). The set 𝐺 is the subset of these points whose corresponding balls have no finite subcover (i.e. in the set 𝐾). If the theorem was false, then 𝑋 would be in 𝐾, and so some ball at each level would also be in 𝐾. But we can say more than this; given a ball (𝑦𝐵𝑛) on level 𝑛, since level 𝑛 + 1 covers the space and thus also (𝑦𝐵𝑛), using heiborlem1 35249 there is a ball on the next level whose intersection with (𝑦𝐵𝑛) also has no finite subcover. Now since the set 𝐺 is a countable union of finite sets, it is countable (which needs ax-cc 9846 via iunctb 9985), and so we can apply ax-cc 9846 to 𝐺 directly to get a function from 𝐺 to itself, which points from each ball in 𝐾 to a ball on the next level in 𝐾, and such that the intersection between these balls is also in 𝐾. (Contributed by Jeff Madsen, 18-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
Assertion
Ref Expression
heiborlem3 (𝜑 → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝑔,𝐺   𝜑,𝑔,𝑥   𝑔,𝑚,𝑛,𝑢,𝑣,𝑦,𝑧,𝐷,𝑥   𝐵,𝑔,𝑛,𝑢,𝑣,𝑦   𝑔,𝐽,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑔,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑔,𝑋,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑔,𝐾,𝑛,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑔,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)

Proof of Theorem heiborlem3
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 nn0ex 11891 . . . . . 6 0 ∈ V
2 fvex 6658 . . . . . . 7 (𝐹𝑡) ∈ V
3 snex 5297 . . . . . . 7 {𝑡} ∈ V
42, 3xpex 7456 . . . . . 6 ((𝐹𝑡) × {𝑡}) ∈ V
51, 4iunex 7651 . . . . 5 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∈ V
6 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
76relopabi 5658 . . . . . . . 8 Rel 𝐺
8 1st2nd 7720 . . . . . . . 8 ((Rel 𝐺𝑥𝐺) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
97, 8mpan 689 . . . . . . 7 (𝑥𝐺𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
109eleq1d 2874 . . . . . . . . . . 11 (𝑥𝐺 → (𝑥𝐺 ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐺))
11 df-br 5031 . . . . . . . . . . 11 ((1st𝑥)𝐺(2nd𝑥) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐺)
1210, 11syl6bbr 292 . . . . . . . . . 10 (𝑥𝐺 → (𝑥𝐺 ↔ (1st𝑥)𝐺(2nd𝑥)))
13 heibor.1 . . . . . . . . . . 11 𝐽 = (MetOpen‘𝐷)
14 heibor.3 . . . . . . . . . . 11 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
15 fvex 6658 . . . . . . . . . . 11 (1st𝑥) ∈ V
16 fvex 6658 . . . . . . . . . . 11 (2nd𝑥) ∈ V
1713, 14, 6, 15, 16heiborlem2 35250 . . . . . . . . . 10 ((1st𝑥)𝐺(2nd𝑥) ↔ ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾))
1812, 17syl6bb 290 . . . . . . . . 9 (𝑥𝐺 → (𝑥𝐺 ↔ ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾)))
1918ibi 270 . . . . . . . 8 (𝑥𝐺 → ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾))
2016snid 4561 . . . . . . . . . . . 12 (2nd𝑥) ∈ {(2nd𝑥)}
21 opelxp 5555 . . . . . . . . . . . 12 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}) ↔ ((1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ (2nd𝑥) ∈ {(2nd𝑥)}))
2220, 21mpbiran2 709 . . . . . . . . . . 11 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}) ↔ (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
23 fveq2 6645 . . . . . . . . . . . . . 14 (𝑡 = (2nd𝑥) → (𝐹𝑡) = (𝐹‘(2nd𝑥)))
24 sneq 4535 . . . . . . . . . . . . . 14 (𝑡 = (2nd𝑥) → {𝑡} = {(2nd𝑥)})
2523, 24xpeq12d 5550 . . . . . . . . . . . . 13 (𝑡 = (2nd𝑥) → ((𝐹𝑡) × {𝑡}) = ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}))
2625eleq2d 2875 . . . . . . . . . . . 12 (𝑡 = (2nd𝑥) → (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)})))
2726rspcev 3571 . . . . . . . . . . 11 (((2nd𝑥) ∈ ℕ0 ∧ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)})) → ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
2822, 27sylan2br 597 . . . . . . . . . 10 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥))) → ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
29 eliun 4885 . . . . . . . . . 10 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ↔ ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
3028, 29sylibr 237 . . . . . . . . 9 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥))) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
31303adant3 1129 . . . . . . . 8 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
3219, 31syl 17 . . . . . . 7 (𝑥𝐺 → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
339, 32eqeltrd 2890 . . . . . 6 (𝑥𝐺𝑥 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
3433ssriv 3919 . . . . 5 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})
35 ssdomg 8538 . . . . 5 ( 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∈ V → (𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) → 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})))
365, 34, 35mp2 9 . . . 4 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})
37 nn0ennn 13342 . . . . . . 7 0 ≈ ℕ
38 nnenom 13343 . . . . . . 7 ℕ ≈ ω
3937, 38entri 8546 . . . . . 6 0 ≈ ω
40 endom 8519 . . . . . 6 (ℕ0 ≈ ω → ℕ0 ≼ ω)
4139, 40ax-mp 5 . . . . 5 0 ≼ ω
42 vex 3444 . . . . . . . 8 𝑡 ∈ V
432, 42xpsnen 8584 . . . . . . 7 ((𝐹𝑡) × {𝑡}) ≈ (𝐹𝑡)
44 inss2 4156 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ Fin
45 heibor.7 . . . . . . . . . 10 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
4645ffvelrnda 6828 . . . . . . . . 9 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ∈ (𝒫 𝑋 ∩ Fin))
4744, 46sseldi 3913 . . . . . . . 8 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ∈ Fin)
48 isfinite 9099 . . . . . . . . 9 ((𝐹𝑡) ∈ Fin ↔ (𝐹𝑡) ≺ ω)
49 sdomdom 8520 . . . . . . . . 9 ((𝐹𝑡) ≺ ω → (𝐹𝑡) ≼ ω)
5048, 49sylbi 220 . . . . . . . 8 ((𝐹𝑡) ∈ Fin → (𝐹𝑡) ≼ ω)
5147, 50syl 17 . . . . . . 7 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ≼ ω)
52 endomtr 8550 . . . . . . 7 ((((𝐹𝑡) × {𝑡}) ≈ (𝐹𝑡) ∧ (𝐹𝑡) ≼ ω) → ((𝐹𝑡) × {𝑡}) ≼ ω)
5343, 51, 52sylancr 590 . . . . . 6 ((𝜑𝑡 ∈ ℕ0) → ((𝐹𝑡) × {𝑡}) ≼ ω)
5453ralrimiva 3149 . . . . 5 (𝜑 → ∀𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
55 iunctb 9985 . . . . 5 ((ℕ0 ≼ ω ∧ ∀𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω) → 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
5641, 54, 55sylancr 590 . . . 4 (𝜑 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
57 domtr 8545 . . . 4 ((𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∧ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω) → 𝐺 ≼ ω)
5836, 56, 57sylancr 590 . . 3 (𝜑𝐺 ≼ ω)
5919simp1d 1139 . . . . . . . . 9 (𝑥𝐺 → (2nd𝑥) ∈ ℕ0)
60 peano2nn0 11925 . . . . . . . . 9 ((2nd𝑥) ∈ ℕ0 → ((2nd𝑥) + 1) ∈ ℕ0)
6159, 60syl 17 . . . . . . . 8 (𝑥𝐺 → ((2nd𝑥) + 1) ∈ ℕ0)
62 ffvelrn 6826 . . . . . . . 8 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ ((2nd𝑥) + 1) ∈ ℕ0) → (𝐹‘((2nd𝑥) + 1)) ∈ (𝒫 𝑋 ∩ Fin))
6345, 61, 62syl2an 598 . . . . . . 7 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ (𝒫 𝑋 ∩ Fin))
6444, 63sseldi 3913 . . . . . 6 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ Fin)
65 iunin2 4956 . . . . . . . 8 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
66 heibor.8 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
67 oveq1 7142 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑡 → (𝑦𝐵𝑛) = (𝑡𝐵𝑛))
6867cbviunv 4927 . . . . . . . . . . . . . . 15 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹𝑛)(𝑡𝐵𝑛)
69 fveq2 6645 . . . . . . . . . . . . . . . 16 (𝑛 = ((2nd𝑥) + 1) → (𝐹𝑛) = (𝐹‘((2nd𝑥) + 1)))
7069iuneq1d 4908 . . . . . . . . . . . . . . 15 (𝑛 = ((2nd𝑥) + 1) → 𝑡 ∈ (𝐹𝑛)(𝑡𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛))
7168, 70syl5eq 2845 . . . . . . . . . . . . . 14 (𝑛 = ((2nd𝑥) + 1) → 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛))
72 oveq2 7143 . . . . . . . . . . . . . . 15 (𝑛 = ((2nd𝑥) + 1) → (𝑡𝐵𝑛) = (𝑡𝐵((2nd𝑥) + 1)))
7372iuneq2d 4910 . . . . . . . . . . . . . 14 (𝑛 = ((2nd𝑥) + 1) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7471, 73eqtrd 2833 . . . . . . . . . . . . 13 (𝑛 = ((2nd𝑥) + 1) → 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7574eqeq2d 2809 . . . . . . . . . . . 12 (𝑛 = ((2nd𝑥) + 1) → (𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ↔ 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))))
7675rspccva 3570 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ∧ ((2nd𝑥) + 1) ∈ ℕ0) → 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7766, 61, 76syl2an 598 . . . . . . . . . 10 ((𝜑𝑥𝐺) → 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7877ineq2d 4139 . . . . . . . . 9 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑋) = ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))))
799fveq2d 6649 . . . . . . . . . . . . . 14 (𝑥𝐺 → (𝐵𝑥) = (𝐵‘⟨(1st𝑥), (2nd𝑥)⟩))
80 df-ov 7138 . . . . . . . . . . . . . 14 ((1st𝑥)𝐵(2nd𝑥)) = (𝐵‘⟨(1st𝑥), (2nd𝑥)⟩)
8179, 80eqtr4di 2851 . . . . . . . . . . . . 13 (𝑥𝐺 → (𝐵𝑥) = ((1st𝑥)𝐵(2nd𝑥)))
8281adantl 485 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (𝐵𝑥) = ((1st𝑥)𝐵(2nd𝑥)))
83 inss1 4155 . . . . . . . . . . . . . . . 16 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
84 ffvelrn 6826 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ (2nd𝑥) ∈ ℕ0) → (𝐹‘(2nd𝑥)) ∈ (𝒫 𝑋 ∩ Fin))
8545, 59, 84syl2an 598 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ∈ (𝒫 𝑋 ∩ Fin))
8683, 85sseldi 3913 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ∈ 𝒫 𝑋)
8786elpwid 4508 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ⊆ 𝑋)
8819simp2d 1140 . . . . . . . . . . . . . . 15 (𝑥𝐺 → (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
8988adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
9087, 89sseldd 3916 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (1st𝑥) ∈ 𝑋)
9159adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (2nd𝑥) ∈ ℕ0)
92 oveq1 7142 . . . . . . . . . . . . . 14 (𝑧 = (1st𝑥) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((1st𝑥)(ball‘𝐷)(1 / (2↑𝑚))))
93 oveq2 7143 . . . . . . . . . . . . . . . 16 (𝑚 = (2nd𝑥) → (2↑𝑚) = (2↑(2nd𝑥)))
9493oveq2d 7151 . . . . . . . . . . . . . . 15 (𝑚 = (2nd𝑥) → (1 / (2↑𝑚)) = (1 / (2↑(2nd𝑥))))
9594oveq2d 7151 . . . . . . . . . . . . . 14 (𝑚 = (2nd𝑥) → ((1st𝑥)(ball‘𝐷)(1 / (2↑𝑚))) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
96 heibor.5 . . . . . . . . . . . . . 14 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
97 ovex 7168 . . . . . . . . . . . . . 14 ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ∈ V
9892, 95, 96, 97ovmpo 7289 . . . . . . . . . . . . 13 (((1st𝑥) ∈ 𝑋 ∧ (2nd𝑥) ∈ ℕ0) → ((1st𝑥)𝐵(2nd𝑥)) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
9990, 91, 98syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → ((1st𝑥)𝐵(2nd𝑥)) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
10082, 99eqtrd 2833 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → (𝐵𝑥) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
101 heibor.6 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (CMet‘𝑋))
102 cmetmet 23890 . . . . . . . . . . . . . . 15 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
103101, 102syl 17 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ (Met‘𝑋))
104 metxmet 22941 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
105103, 104syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (∞Met‘𝑋))
106105adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → 𝐷 ∈ (∞Met‘𝑋))
107 2nn 11698 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
108 nnexpcl 13438 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ (2nd𝑥) ∈ ℕ0) → (2↑(2nd𝑥)) ∈ ℕ)
109107, 91, 108sylancr 590 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐺) → (2↑(2nd𝑥)) ∈ ℕ)
110109nnrpd 12417 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (2↑(2nd𝑥)) ∈ ℝ+)
111110rpreccld 12429 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (1 / (2↑(2nd𝑥))) ∈ ℝ+)
112111rpxrd 12420 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (1 / (2↑(2nd𝑥))) ∈ ℝ*)
113 blssm 23025 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st𝑥) ∈ 𝑋 ∧ (1 / (2↑(2nd𝑥))) ∈ ℝ*) → ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ⊆ 𝑋)
114106, 90, 112, 113syl3anc 1368 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ⊆ 𝑋)
115100, 114eqsstrd 3953 . . . . . . . . . 10 ((𝜑𝑥𝐺) → (𝐵𝑥) ⊆ 𝑋)
116 df-ss 3898 . . . . . . . . . 10 ((𝐵𝑥) ⊆ 𝑋 ↔ ((𝐵𝑥) ∩ 𝑋) = (𝐵𝑥))
117115, 116sylib 221 . . . . . . . . 9 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑋) = (𝐵𝑥))
11878, 117eqtr3d 2835 . . . . . . . 8 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥))
11965, 118syl5eq 2845 . . . . . . 7 ((𝜑𝑥𝐺) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥))
120 eqimss2 3972 . . . . . . 7 ( 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥) → (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))))
121119, 120syl 17 . . . . . 6 ((𝜑𝑥𝐺) → (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))))
12219simp3d 1141 . . . . . . . 8 (𝑥𝐺 → ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾)
12381, 122eqeltrd 2890 . . . . . . 7 (𝑥𝐺 → (𝐵𝑥) ∈ 𝐾)
124123adantl 485 . . . . . 6 ((𝜑𝑥𝐺) → (𝐵𝑥) ∈ 𝐾)
125 fvex 6658 . . . . . . . 8 (𝐵𝑥) ∈ V
126125inex1 5185 . . . . . . 7 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ V
12713, 14, 126heiborlem1 35249 . . . . . 6 (((𝐹‘((2nd𝑥) + 1)) ∈ Fin ∧ (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∧ (𝐵𝑥) ∈ 𝐾) → ∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
12864, 121, 124, 127syl3anc 1368 . . . . 5 ((𝜑𝑥𝐺) → ∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
12983, 63sseldi 3913 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ 𝒫 𝑋)
130129elpwid 4508 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ⊆ 𝑋)
13113mopnuni 23048 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
132105, 131syl 17 . . . . . . . . . . . 12 (𝜑𝑋 = 𝐽)
133132adantr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → 𝑋 = 𝐽)
134130, 133sseqtrd 3955 . . . . . . . . . 10 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ⊆ 𝐽)
135134sselda 3915 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))) → 𝑡 𝐽)
136135adantrr 716 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → 𝑡 𝐽)
13761adantl 485 . . . . . . . . . 10 ((𝜑𝑥𝐺) → ((2nd𝑥) + 1) ∈ ℕ0)
138 id 22 . . . . . . . . . 10 (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1)))
139 snfi 8577 . . . . . . . . . . . 12 {(𝑡𝐵((2nd𝑥) + 1))} ∈ Fin
140 inss2 4156 . . . . . . . . . . . . 13 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ (𝑡𝐵((2nd𝑥) + 1))
141 ovex 7168 . . . . . . . . . . . . . . 15 (𝑡𝐵((2nd𝑥) + 1)) ∈ V
142141unisn 4820 . . . . . . . . . . . . . 14 {(𝑡𝐵((2nd𝑥) + 1))} = (𝑡𝐵((2nd𝑥) + 1))
143 uniiun 4945 . . . . . . . . . . . . . 14 {(𝑡𝐵((2nd𝑥) + 1))} = 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
144142, 143eqtr3i 2823 . . . . . . . . . . . . 13 (𝑡𝐵((2nd𝑥) + 1)) = 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
145140, 144sseqtri 3951 . . . . . . . . . . . 12 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
146 vex 3444 . . . . . . . . . . . . 13 𝑔 ∈ V
14713, 14, 146heiborlem1 35249 . . . . . . . . . . . 12 (({(𝑡𝐵((2nd𝑥) + 1))} ∈ Fin ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔 ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → ∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾)
148139, 145, 147mp3an12 1448 . . . . . . . . . . 11 (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → ∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾)
149 eleq1 2877 . . . . . . . . . . . 12 (𝑔 = (𝑡𝐵((2nd𝑥) + 1)) → (𝑔𝐾 ↔ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾))
150141, 149rexsn 4580 . . . . . . . . . . 11 (∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾 ↔ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾)
151148, 150sylib 221 . . . . . . . . . 10 (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾)
152 ovex 7168 . . . . . . . . . . . 12 ((2nd𝑥) + 1) ∈ V
15313, 14, 6, 42, 152heiborlem2 35250 . . . . . . . . . . 11 (𝑡𝐺((2nd𝑥) + 1) ↔ (((2nd𝑥) + 1) ∈ ℕ0𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾))
154153biimpri 231 . . . . . . . . . 10 ((((2nd𝑥) + 1) ∈ ℕ0𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾) → 𝑡𝐺((2nd𝑥) + 1))
155137, 138, 151, 154syl3an 1157 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → 𝑡𝐺((2nd𝑥) + 1))
1561553expb 1117 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → 𝑡𝐺((2nd𝑥) + 1))
157 simprr 772 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
158136, 156, 157jca32 519 . . . . . . 7 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → (𝑡 𝐽 ∧ (𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
159158ex 416 . . . . . 6 ((𝜑𝑥𝐺) → ((𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → (𝑡 𝐽 ∧ (𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))))
160159reximdv2 3230 . . . . 5 ((𝜑𝑥𝐺) → (∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → ∃𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
161128, 160mpd 15 . . . 4 ((𝜑𝑥𝐺) → ∃𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))
162161ralrimiva 3149 . . 3 (𝜑 → ∀𝑥𝐺𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))
16313fvexi 6659 . . . . 5 𝐽 ∈ V
164163uniex 7447 . . . 4 𝐽 ∈ V
165 breq1 5033 . . . . 5 (𝑡 = (𝑔𝑥) → (𝑡𝐺((2nd𝑥) + 1) ↔ (𝑔𝑥)𝐺((2nd𝑥) + 1)))
166 oveq1 7142 . . . . . . 7 (𝑡 = (𝑔𝑥) → (𝑡𝐵((2nd𝑥) + 1)) = ((𝑔𝑥)𝐵((2nd𝑥) + 1)))
167166ineq2d 4139 . . . . . 6 (𝑡 = (𝑔𝑥) → ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))))
168167eleq1d 2874 . . . . 5 (𝑡 = (𝑔𝑥) → (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
169165, 168anbi12d 633 . . . 4 (𝑡 = (𝑔𝑥) → ((𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
170164, 169axcc4dom 9852 . . 3 ((𝐺 ≼ ω ∧ ∀𝑥𝐺𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
17158, 162, 170syl2anc 587 . 2 (𝜑 → ∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
172 exsimpr 1870 . 2 (∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
173171, 172syl 17 1 (𝜑 → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  {cab 2776  wral 3106  wrex 3107  Vcvv 3441  cin 3880  wss 3881  𝒫 cpw 4497  {csn 4525  cop 4531   cuni 4800   ciun 4881   class class class wbr 5030  {copab 5092   × cxp 5517  Rel wrel 5524  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  ωcom 7560  1st c1st 7669  2nd c2nd 7670  cen 8489  cdom 8490  csdm 8491  Fincfn 8492  1c1 10527   + caddc 10529  *cxr 10663   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cexp 13425  ∞Metcxmet 20076  Metcmet 20077  ballcbl 20078  MetOpencmopn 20081  CMetccmet 23858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-seq 13365  df-exp 13426  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cmet 23861
This theorem is referenced by:  heiborlem10  35258
  Copyright terms: Public domain W3C validator