Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem3 Structured version   Visualization version   GIF version

Theorem heiborlem3 37842
Description: Lemma for heibor 37850. Using countable choice ax-cc 10454, we have fixed in advance a collection of finite 2↑-𝑛 nets (𝐹𝑛) for 𝑋 (note that an 𝑟-net is a set of points in 𝑋 whose 𝑟 -balls cover 𝑋). The set 𝐺 is the subset of these points whose corresponding balls have no finite subcover (i.e. in the set 𝐾). If the theorem was false, then 𝑋 would be in 𝐾, and so some ball at each level would also be in 𝐾. But we can say more than this; given a ball (𝑦𝐵𝑛) on level 𝑛, since level 𝑛 + 1 covers the space and thus also (𝑦𝐵𝑛), using heiborlem1 37840 there is a ball on the next level whose intersection with (𝑦𝐵𝑛) also has no finite subcover. Now since the set 𝐺 is a countable union of finite sets, it is countable (which needs ax-cc 10454 via iunctb 10593), and so we can apply ax-cc 10454 to 𝐺 directly to get a function from 𝐺 to itself, which points from each ball in 𝐾 to a ball on the next level in 𝐾, and such that the intersection between these balls is also in 𝐾. (Contributed by Jeff Madsen, 18-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
Assertion
Ref Expression
heiborlem3 (𝜑 → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝑔,𝐺   𝜑,𝑔,𝑥   𝑔,𝑚,𝑛,𝑢,𝑣,𝑦,𝑧,𝐷,𝑥   𝐵,𝑔,𝑛,𝑢,𝑣,𝑦   𝑔,𝐽,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑔,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑔,𝑋,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑔,𝐾,𝑛,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑔,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)

Proof of Theorem heiborlem3
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 nn0ex 12512 . . . . . 6 0 ∈ V
2 fvex 6894 . . . . . . 7 (𝐹𝑡) ∈ V
3 vsnex 5409 . . . . . . 7 {𝑡} ∈ V
42, 3xpex 7752 . . . . . 6 ((𝐹𝑡) × {𝑡}) ∈ V
51, 4iunex 7972 . . . . 5 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∈ V
6 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
76relopabiv 5804 . . . . . . . 8 Rel 𝐺
8 1st2nd 8043 . . . . . . . 8 ((Rel 𝐺𝑥𝐺) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
97, 8mpan 690 . . . . . . 7 (𝑥𝐺𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
109eleq1d 2820 . . . . . . . . . . 11 (𝑥𝐺 → (𝑥𝐺 ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐺))
11 df-br 5125 . . . . . . . . . . 11 ((1st𝑥)𝐺(2nd𝑥) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐺)
1210, 11bitr4di 289 . . . . . . . . . 10 (𝑥𝐺 → (𝑥𝐺 ↔ (1st𝑥)𝐺(2nd𝑥)))
13 heibor.1 . . . . . . . . . . 11 𝐽 = (MetOpen‘𝐷)
14 heibor.3 . . . . . . . . . . 11 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
15 fvex 6894 . . . . . . . . . . 11 (1st𝑥) ∈ V
16 fvex 6894 . . . . . . . . . . 11 (2nd𝑥) ∈ V
1713, 14, 6, 15, 16heiborlem2 37841 . . . . . . . . . 10 ((1st𝑥)𝐺(2nd𝑥) ↔ ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾))
1812, 17bitrdi 287 . . . . . . . . 9 (𝑥𝐺 → (𝑥𝐺 ↔ ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾)))
1918ibi 267 . . . . . . . 8 (𝑥𝐺 → ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾))
2016snid 4643 . . . . . . . . . . . 12 (2nd𝑥) ∈ {(2nd𝑥)}
21 opelxp 5695 . . . . . . . . . . . 12 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}) ↔ ((1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ (2nd𝑥) ∈ {(2nd𝑥)}))
2220, 21mpbiran2 710 . . . . . . . . . . 11 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}) ↔ (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
23 fveq2 6881 . . . . . . . . . . . . . 14 (𝑡 = (2nd𝑥) → (𝐹𝑡) = (𝐹‘(2nd𝑥)))
24 sneq 4616 . . . . . . . . . . . . . 14 (𝑡 = (2nd𝑥) → {𝑡} = {(2nd𝑥)})
2523, 24xpeq12d 5690 . . . . . . . . . . . . 13 (𝑡 = (2nd𝑥) → ((𝐹𝑡) × {𝑡}) = ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}))
2625eleq2d 2821 . . . . . . . . . . . 12 (𝑡 = (2nd𝑥) → (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)})))
2726rspcev 3606 . . . . . . . . . . 11 (((2nd𝑥) ∈ ℕ0 ∧ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)})) → ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
2822, 27sylan2br 595 . . . . . . . . . 10 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥))) → ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
29 eliun 4976 . . . . . . . . . 10 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ↔ ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
3028, 29sylibr 234 . . . . . . . . 9 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥))) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
31303adant3 1132 . . . . . . . 8 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
3219, 31syl 17 . . . . . . 7 (𝑥𝐺 → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
339, 32eqeltrd 2835 . . . . . 6 (𝑥𝐺𝑥 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
3433ssriv 3967 . . . . 5 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})
35 ssdomg 9019 . . . . 5 ( 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∈ V → (𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) → 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})))
365, 34, 35mp2 9 . . . 4 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})
37 nn0ennn 14002 . . . . . . 7 0 ≈ ℕ
38 nnenom 14003 . . . . . . 7 ℕ ≈ ω
3937, 38entri 9027 . . . . . 6 0 ≈ ω
40 endom 8998 . . . . . 6 (ℕ0 ≈ ω → ℕ0 ≼ ω)
4139, 40ax-mp 5 . . . . 5 0 ≼ ω
42 vex 3468 . . . . . . . 8 𝑡 ∈ V
432, 42xpsnen 9074 . . . . . . 7 ((𝐹𝑡) × {𝑡}) ≈ (𝐹𝑡)
44 inss2 4218 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ Fin
45 heibor.7 . . . . . . . . . 10 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
4645ffvelcdmda 7079 . . . . . . . . 9 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ∈ (𝒫 𝑋 ∩ Fin))
4744, 46sselid 3961 . . . . . . . 8 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ∈ Fin)
48 isfinite 9671 . . . . . . . . 9 ((𝐹𝑡) ∈ Fin ↔ (𝐹𝑡) ≺ ω)
49 sdomdom 8999 . . . . . . . . 9 ((𝐹𝑡) ≺ ω → (𝐹𝑡) ≼ ω)
5048, 49sylbi 217 . . . . . . . 8 ((𝐹𝑡) ∈ Fin → (𝐹𝑡) ≼ ω)
5147, 50syl 17 . . . . . . 7 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ≼ ω)
52 endomtr 9031 . . . . . . 7 ((((𝐹𝑡) × {𝑡}) ≈ (𝐹𝑡) ∧ (𝐹𝑡) ≼ ω) → ((𝐹𝑡) × {𝑡}) ≼ ω)
5343, 51, 52sylancr 587 . . . . . 6 ((𝜑𝑡 ∈ ℕ0) → ((𝐹𝑡) × {𝑡}) ≼ ω)
5453ralrimiva 3133 . . . . 5 (𝜑 → ∀𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
55 iunctb 10593 . . . . 5 ((ℕ0 ≼ ω ∧ ∀𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω) → 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
5641, 54, 55sylancr 587 . . . 4 (𝜑 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
57 domtr 9026 . . . 4 ((𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∧ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω) → 𝐺 ≼ ω)
5836, 56, 57sylancr 587 . . 3 (𝜑𝐺 ≼ ω)
5919simp1d 1142 . . . . . . . . 9 (𝑥𝐺 → (2nd𝑥) ∈ ℕ0)
60 peano2nn0 12546 . . . . . . . . 9 ((2nd𝑥) ∈ ℕ0 → ((2nd𝑥) + 1) ∈ ℕ0)
6159, 60syl 17 . . . . . . . 8 (𝑥𝐺 → ((2nd𝑥) + 1) ∈ ℕ0)
62 ffvelcdm 7076 . . . . . . . 8 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ ((2nd𝑥) + 1) ∈ ℕ0) → (𝐹‘((2nd𝑥) + 1)) ∈ (𝒫 𝑋 ∩ Fin))
6345, 61, 62syl2an 596 . . . . . . 7 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ (𝒫 𝑋 ∩ Fin))
6444, 63sselid 3961 . . . . . 6 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ Fin)
65 iunin2 5052 . . . . . . . 8 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
66 heibor.8 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
67 oveq1 7417 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑡 → (𝑦𝐵𝑛) = (𝑡𝐵𝑛))
6867cbviunv 5021 . . . . . . . . . . . . . . 15 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹𝑛)(𝑡𝐵𝑛)
69 fveq2 6881 . . . . . . . . . . . . . . . 16 (𝑛 = ((2nd𝑥) + 1) → (𝐹𝑛) = (𝐹‘((2nd𝑥) + 1)))
7069iuneq1d 5000 . . . . . . . . . . . . . . 15 (𝑛 = ((2nd𝑥) + 1) → 𝑡 ∈ (𝐹𝑛)(𝑡𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛))
7168, 70eqtrid 2783 . . . . . . . . . . . . . 14 (𝑛 = ((2nd𝑥) + 1) → 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛))
72 oveq2 7418 . . . . . . . . . . . . . . 15 (𝑛 = ((2nd𝑥) + 1) → (𝑡𝐵𝑛) = (𝑡𝐵((2nd𝑥) + 1)))
7372iuneq2d 5003 . . . . . . . . . . . . . 14 (𝑛 = ((2nd𝑥) + 1) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7471, 73eqtrd 2771 . . . . . . . . . . . . 13 (𝑛 = ((2nd𝑥) + 1) → 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7574eqeq2d 2747 . . . . . . . . . . . 12 (𝑛 = ((2nd𝑥) + 1) → (𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ↔ 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))))
7675rspccva 3605 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ∧ ((2nd𝑥) + 1) ∈ ℕ0) → 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7766, 61, 76syl2an 596 . . . . . . . . . 10 ((𝜑𝑥𝐺) → 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7877ineq2d 4200 . . . . . . . . 9 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑋) = ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))))
799fveq2d 6885 . . . . . . . . . . . . . 14 (𝑥𝐺 → (𝐵𝑥) = (𝐵‘⟨(1st𝑥), (2nd𝑥)⟩))
80 df-ov 7413 . . . . . . . . . . . . . 14 ((1st𝑥)𝐵(2nd𝑥)) = (𝐵‘⟨(1st𝑥), (2nd𝑥)⟩)
8179, 80eqtr4di 2789 . . . . . . . . . . . . 13 (𝑥𝐺 → (𝐵𝑥) = ((1st𝑥)𝐵(2nd𝑥)))
8281adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (𝐵𝑥) = ((1st𝑥)𝐵(2nd𝑥)))
83 inss1 4217 . . . . . . . . . . . . . . . 16 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
84 ffvelcdm 7076 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ (2nd𝑥) ∈ ℕ0) → (𝐹‘(2nd𝑥)) ∈ (𝒫 𝑋 ∩ Fin))
8545, 59, 84syl2an 596 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ∈ (𝒫 𝑋 ∩ Fin))
8683, 85sselid 3961 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ∈ 𝒫 𝑋)
8786elpwid 4589 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ⊆ 𝑋)
8819simp2d 1143 . . . . . . . . . . . . . . 15 (𝑥𝐺 → (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
8988adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
9087, 89sseldd 3964 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (1st𝑥) ∈ 𝑋)
9159adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (2nd𝑥) ∈ ℕ0)
92 oveq1 7417 . . . . . . . . . . . . . 14 (𝑧 = (1st𝑥) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((1st𝑥)(ball‘𝐷)(1 / (2↑𝑚))))
93 oveq2 7418 . . . . . . . . . . . . . . . 16 (𝑚 = (2nd𝑥) → (2↑𝑚) = (2↑(2nd𝑥)))
9493oveq2d 7426 . . . . . . . . . . . . . . 15 (𝑚 = (2nd𝑥) → (1 / (2↑𝑚)) = (1 / (2↑(2nd𝑥))))
9594oveq2d 7426 . . . . . . . . . . . . . 14 (𝑚 = (2nd𝑥) → ((1st𝑥)(ball‘𝐷)(1 / (2↑𝑚))) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
96 heibor.5 . . . . . . . . . . . . . 14 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
97 ovex 7443 . . . . . . . . . . . . . 14 ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ∈ V
9892, 95, 96, 97ovmpo 7572 . . . . . . . . . . . . 13 (((1st𝑥) ∈ 𝑋 ∧ (2nd𝑥) ∈ ℕ0) → ((1st𝑥)𝐵(2nd𝑥)) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
9990, 91, 98syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → ((1st𝑥)𝐵(2nd𝑥)) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
10082, 99eqtrd 2771 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → (𝐵𝑥) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
101 heibor.6 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (CMet‘𝑋))
102 cmetmet 25243 . . . . . . . . . . . . . . 15 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
103101, 102syl 17 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ (Met‘𝑋))
104 metxmet 24278 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
105103, 104syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (∞Met‘𝑋))
106105adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → 𝐷 ∈ (∞Met‘𝑋))
107 2nn 12318 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
108 nnexpcl 14097 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ (2nd𝑥) ∈ ℕ0) → (2↑(2nd𝑥)) ∈ ℕ)
109107, 91, 108sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐺) → (2↑(2nd𝑥)) ∈ ℕ)
110109nnrpd 13054 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (2↑(2nd𝑥)) ∈ ℝ+)
111110rpreccld 13066 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (1 / (2↑(2nd𝑥))) ∈ ℝ+)
112111rpxrd 13057 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (1 / (2↑(2nd𝑥))) ∈ ℝ*)
113 blssm 24362 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st𝑥) ∈ 𝑋 ∧ (1 / (2↑(2nd𝑥))) ∈ ℝ*) → ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ⊆ 𝑋)
114106, 90, 112, 113syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ⊆ 𝑋)
115100, 114eqsstrd 3998 . . . . . . . . . 10 ((𝜑𝑥𝐺) → (𝐵𝑥) ⊆ 𝑋)
116 dfss2 3949 . . . . . . . . . 10 ((𝐵𝑥) ⊆ 𝑋 ↔ ((𝐵𝑥) ∩ 𝑋) = (𝐵𝑥))
117115, 116sylib 218 . . . . . . . . 9 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑋) = (𝐵𝑥))
11878, 117eqtr3d 2773 . . . . . . . 8 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥))
11965, 118eqtrid 2783 . . . . . . 7 ((𝜑𝑥𝐺) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥))
120 eqimss2 4023 . . . . . . 7 ( 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥) → (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))))
121119, 120syl 17 . . . . . 6 ((𝜑𝑥𝐺) → (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))))
12219simp3d 1144 . . . . . . . 8 (𝑥𝐺 → ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾)
12381, 122eqeltrd 2835 . . . . . . 7 (𝑥𝐺 → (𝐵𝑥) ∈ 𝐾)
124123adantl 481 . . . . . 6 ((𝜑𝑥𝐺) → (𝐵𝑥) ∈ 𝐾)
125 fvex 6894 . . . . . . . 8 (𝐵𝑥) ∈ V
126125inex1 5292 . . . . . . 7 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ V
12713, 14, 126heiborlem1 37840 . . . . . 6 (((𝐹‘((2nd𝑥) + 1)) ∈ Fin ∧ (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∧ (𝐵𝑥) ∈ 𝐾) → ∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
12864, 121, 124, 127syl3anc 1373 . . . . 5 ((𝜑𝑥𝐺) → ∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
12983, 63sselid 3961 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ 𝒫 𝑋)
130129elpwid 4589 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ⊆ 𝑋)
13113mopnuni 24385 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
132105, 131syl 17 . . . . . . . . . . . 12 (𝜑𝑋 = 𝐽)
133132adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → 𝑋 = 𝐽)
134130, 133sseqtrd 4000 . . . . . . . . . 10 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ⊆ 𝐽)
135134sselda 3963 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))) → 𝑡 𝐽)
136135adantrr 717 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → 𝑡 𝐽)
13761adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐺) → ((2nd𝑥) + 1) ∈ ℕ0)
138 id 22 . . . . . . . . . 10 (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1)))
139 snfi 9062 . . . . . . . . . . . 12 {(𝑡𝐵((2nd𝑥) + 1))} ∈ Fin
140 inss2 4218 . . . . . . . . . . . . 13 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ (𝑡𝐵((2nd𝑥) + 1))
141 ovex 7443 . . . . . . . . . . . . . . 15 (𝑡𝐵((2nd𝑥) + 1)) ∈ V
142141unisn 4907 . . . . . . . . . . . . . 14 {(𝑡𝐵((2nd𝑥) + 1))} = (𝑡𝐵((2nd𝑥) + 1))
143 uniiun 5039 . . . . . . . . . . . . . 14 {(𝑡𝐵((2nd𝑥) + 1))} = 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
144142, 143eqtr3i 2761 . . . . . . . . . . . . 13 (𝑡𝐵((2nd𝑥) + 1)) = 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
145140, 144sseqtri 4012 . . . . . . . . . . . 12 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
146 vex 3468 . . . . . . . . . . . . 13 𝑔 ∈ V
14713, 14, 146heiborlem1 37840 . . . . . . . . . . . 12 (({(𝑡𝐵((2nd𝑥) + 1))} ∈ Fin ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔 ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → ∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾)
148139, 145, 147mp3an12 1453 . . . . . . . . . . 11 (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → ∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾)
149 eleq1 2823 . . . . . . . . . . . 12 (𝑔 = (𝑡𝐵((2nd𝑥) + 1)) → (𝑔𝐾 ↔ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾))
150141, 149rexsn 4663 . . . . . . . . . . 11 (∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾 ↔ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾)
151148, 150sylib 218 . . . . . . . . . 10 (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾)
152 ovex 7443 . . . . . . . . . . . 12 ((2nd𝑥) + 1) ∈ V
15313, 14, 6, 42, 152heiborlem2 37841 . . . . . . . . . . 11 (𝑡𝐺((2nd𝑥) + 1) ↔ (((2nd𝑥) + 1) ∈ ℕ0𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾))
154153biimpri 228 . . . . . . . . . 10 ((((2nd𝑥) + 1) ∈ ℕ0𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾) → 𝑡𝐺((2nd𝑥) + 1))
155137, 138, 151, 154syl3an 1160 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → 𝑡𝐺((2nd𝑥) + 1))
1561553expb 1120 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → 𝑡𝐺((2nd𝑥) + 1))
157 simprr 772 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
158136, 156, 157jca32 515 . . . . . . 7 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → (𝑡 𝐽 ∧ (𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
159158ex 412 . . . . . 6 ((𝜑𝑥𝐺) → ((𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → (𝑡 𝐽 ∧ (𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))))
160159reximdv2 3151 . . . . 5 ((𝜑𝑥𝐺) → (∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → ∃𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
161128, 160mpd 15 . . . 4 ((𝜑𝑥𝐺) → ∃𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))
162161ralrimiva 3133 . . 3 (𝜑 → ∀𝑥𝐺𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))
16313fvexi 6895 . . . . 5 𝐽 ∈ V
164163uniex 7740 . . . 4 𝐽 ∈ V
165 breq1 5127 . . . . 5 (𝑡 = (𝑔𝑥) → (𝑡𝐺((2nd𝑥) + 1) ↔ (𝑔𝑥)𝐺((2nd𝑥) + 1)))
166 oveq1 7417 . . . . . . 7 (𝑡 = (𝑔𝑥) → (𝑡𝐵((2nd𝑥) + 1)) = ((𝑔𝑥)𝐵((2nd𝑥) + 1)))
167166ineq2d 4200 . . . . . 6 (𝑡 = (𝑔𝑥) → ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))))
168167eleq1d 2820 . . . . 5 (𝑡 = (𝑔𝑥) → (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
169165, 168anbi12d 632 . . . 4 (𝑡 = (𝑔𝑥) → ((𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
170164, 169axcc4dom 10460 . . 3 ((𝐺 ≼ ω ∧ ∀𝑥𝐺𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
17158, 162, 170syl2anc 584 . 2 (𝜑 → ∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
172 exsimpr 1869 . 2 (∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
173171, 172syl 17 1 (𝜑 → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wral 3052  wrex 3061  Vcvv 3464  cin 3930  wss 3931  𝒫 cpw 4580  {csn 4606  cop 4612   cuni 4888   ciun 4972   class class class wbr 5124  {copab 5186   × cxp 5657  Rel wrel 5664  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  ωcom 7866  1st c1st 7991  2nd c2nd 7992  cen 8961  cdom 8962  csdm 8963  Fincfn 8964  1c1 11135   + caddc 11137  *cxr 11273   / cdiv 11899  cn 12245  2c2 12300  0cn0 12506  cexp 14084  ∞Metcxmet 21305  Metcmet 21306  ballcbl 21307  MetOpencmopn 21310  CMetccmet 25211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-seq 14025  df-exp 14085  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889  df-cmet 25214
This theorem is referenced by:  heiborlem10  37849
  Copyright terms: Public domain W3C validator