Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem3 Structured version   Visualization version   GIF version

Theorem heiborlem3 35968
Description: Lemma for heibor 35976. Using countable choice ax-cc 10189, we have fixed in advance a collection of finite 2↑-𝑛 nets (𝐹𝑛) for 𝑋 (note that an 𝑟-net is a set of points in 𝑋 whose 𝑟 -balls cover 𝑋). The set 𝐺 is the subset of these points whose corresponding balls have no finite subcover (i.e. in the set 𝐾). If the theorem was false, then 𝑋 would be in 𝐾, and so some ball at each level would also be in 𝐾. But we can say more than this; given a ball (𝑦𝐵𝑛) on level 𝑛, since level 𝑛 + 1 covers the space and thus also (𝑦𝐵𝑛), using heiborlem1 35966 there is a ball on the next level whose intersection with (𝑦𝐵𝑛) also has no finite subcover. Now since the set 𝐺 is a countable union of finite sets, it is countable (which needs ax-cc 10189 via iunctb 10328), and so we can apply ax-cc 10189 to 𝐺 directly to get a function from 𝐺 to itself, which points from each ball in 𝐾 to a ball on the next level in 𝐾, and such that the intersection between these balls is also in 𝐾. (Contributed by Jeff Madsen, 18-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
Assertion
Ref Expression
heiborlem3 (𝜑 → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝑔,𝐺   𝜑,𝑔,𝑥   𝑔,𝑚,𝑛,𝑢,𝑣,𝑦,𝑧,𝐷,𝑥   𝐵,𝑔,𝑛,𝑢,𝑣,𝑦   𝑔,𝐽,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑔,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑔,𝑋,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑔,𝐾,𝑛,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑔,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)

Proof of Theorem heiborlem3
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 nn0ex 12237 . . . . . 6 0 ∈ V
2 fvex 6789 . . . . . . 7 (𝐹𝑡) ∈ V
3 snex 5356 . . . . . . 7 {𝑡} ∈ V
42, 3xpex 7603 . . . . . 6 ((𝐹𝑡) × {𝑡}) ∈ V
51, 4iunex 7811 . . . . 5 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∈ V
6 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
76relopabiv 5732 . . . . . . . 8 Rel 𝐺
8 1st2nd 7880 . . . . . . . 8 ((Rel 𝐺𝑥𝐺) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
97, 8mpan 687 . . . . . . 7 (𝑥𝐺𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
109eleq1d 2823 . . . . . . . . . . 11 (𝑥𝐺 → (𝑥𝐺 ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐺))
11 df-br 5077 . . . . . . . . . . 11 ((1st𝑥)𝐺(2nd𝑥) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐺)
1210, 11bitr4di 289 . . . . . . . . . 10 (𝑥𝐺 → (𝑥𝐺 ↔ (1st𝑥)𝐺(2nd𝑥)))
13 heibor.1 . . . . . . . . . . 11 𝐽 = (MetOpen‘𝐷)
14 heibor.3 . . . . . . . . . . 11 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
15 fvex 6789 . . . . . . . . . . 11 (1st𝑥) ∈ V
16 fvex 6789 . . . . . . . . . . 11 (2nd𝑥) ∈ V
1713, 14, 6, 15, 16heiborlem2 35967 . . . . . . . . . 10 ((1st𝑥)𝐺(2nd𝑥) ↔ ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾))
1812, 17bitrdi 287 . . . . . . . . 9 (𝑥𝐺 → (𝑥𝐺 ↔ ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾)))
1918ibi 266 . . . . . . . 8 (𝑥𝐺 → ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾))
2016snid 4599 . . . . . . . . . . . 12 (2nd𝑥) ∈ {(2nd𝑥)}
21 opelxp 5627 . . . . . . . . . . . 12 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}) ↔ ((1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ (2nd𝑥) ∈ {(2nd𝑥)}))
2220, 21mpbiran2 707 . . . . . . . . . . 11 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}) ↔ (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
23 fveq2 6776 . . . . . . . . . . . . . 14 (𝑡 = (2nd𝑥) → (𝐹𝑡) = (𝐹‘(2nd𝑥)))
24 sneq 4573 . . . . . . . . . . . . . 14 (𝑡 = (2nd𝑥) → {𝑡} = {(2nd𝑥)})
2523, 24xpeq12d 5622 . . . . . . . . . . . . 13 (𝑡 = (2nd𝑥) → ((𝐹𝑡) × {𝑡}) = ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}))
2625eleq2d 2824 . . . . . . . . . . . 12 (𝑡 = (2nd𝑥) → (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)})))
2726rspcev 3561 . . . . . . . . . . 11 (((2nd𝑥) ∈ ℕ0 ∧ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)})) → ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
2822, 27sylan2br 595 . . . . . . . . . 10 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥))) → ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
29 eliun 4930 . . . . . . . . . 10 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ↔ ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
3028, 29sylibr 233 . . . . . . . . 9 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥))) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
31303adant3 1131 . . . . . . . 8 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
3219, 31syl 17 . . . . . . 7 (𝑥𝐺 → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
339, 32eqeltrd 2839 . . . . . 6 (𝑥𝐺𝑥 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
3433ssriv 3926 . . . . 5 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})
35 ssdomg 8784 . . . . 5 ( 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∈ V → (𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) → 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})))
365, 34, 35mp2 9 . . . 4 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})
37 nn0ennn 13697 . . . . . . 7 0 ≈ ℕ
38 nnenom 13698 . . . . . . 7 ℕ ≈ ω
3937, 38entri 8792 . . . . . 6 0 ≈ ω
40 endom 8765 . . . . . 6 (ℕ0 ≈ ω → ℕ0 ≼ ω)
4139, 40ax-mp 5 . . . . 5 0 ≼ ω
42 vex 3435 . . . . . . . 8 𝑡 ∈ V
432, 42xpsnen 8840 . . . . . . 7 ((𝐹𝑡) × {𝑡}) ≈ (𝐹𝑡)
44 inss2 4165 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ Fin
45 heibor.7 . . . . . . . . . 10 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
4645ffvelrnda 6963 . . . . . . . . 9 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ∈ (𝒫 𝑋 ∩ Fin))
4744, 46sselid 3920 . . . . . . . 8 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ∈ Fin)
48 isfinite 9408 . . . . . . . . 9 ((𝐹𝑡) ∈ Fin ↔ (𝐹𝑡) ≺ ω)
49 sdomdom 8766 . . . . . . . . 9 ((𝐹𝑡) ≺ ω → (𝐹𝑡) ≼ ω)
5048, 49sylbi 216 . . . . . . . 8 ((𝐹𝑡) ∈ Fin → (𝐹𝑡) ≼ ω)
5147, 50syl 17 . . . . . . 7 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ≼ ω)
52 endomtr 8796 . . . . . . 7 ((((𝐹𝑡) × {𝑡}) ≈ (𝐹𝑡) ∧ (𝐹𝑡) ≼ ω) → ((𝐹𝑡) × {𝑡}) ≼ ω)
5343, 51, 52sylancr 587 . . . . . 6 ((𝜑𝑡 ∈ ℕ0) → ((𝐹𝑡) × {𝑡}) ≼ ω)
5453ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
55 iunctb 10328 . . . . 5 ((ℕ0 ≼ ω ∧ ∀𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω) → 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
5641, 54, 55sylancr 587 . . . 4 (𝜑 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
57 domtr 8791 . . . 4 ((𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∧ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω) → 𝐺 ≼ ω)
5836, 56, 57sylancr 587 . . 3 (𝜑𝐺 ≼ ω)
5919simp1d 1141 . . . . . . . . 9 (𝑥𝐺 → (2nd𝑥) ∈ ℕ0)
60 peano2nn0 12271 . . . . . . . . 9 ((2nd𝑥) ∈ ℕ0 → ((2nd𝑥) + 1) ∈ ℕ0)
6159, 60syl 17 . . . . . . . 8 (𝑥𝐺 → ((2nd𝑥) + 1) ∈ ℕ0)
62 ffvelrn 6961 . . . . . . . 8 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ ((2nd𝑥) + 1) ∈ ℕ0) → (𝐹‘((2nd𝑥) + 1)) ∈ (𝒫 𝑋 ∩ Fin))
6345, 61, 62syl2an 596 . . . . . . 7 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ (𝒫 𝑋 ∩ Fin))
6444, 63sselid 3920 . . . . . 6 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ Fin)
65 iunin2 5002 . . . . . . . 8 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
66 heibor.8 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
67 oveq1 7284 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑡 → (𝑦𝐵𝑛) = (𝑡𝐵𝑛))
6867cbviunv 4972 . . . . . . . . . . . . . . 15 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹𝑛)(𝑡𝐵𝑛)
69 fveq2 6776 . . . . . . . . . . . . . . . 16 (𝑛 = ((2nd𝑥) + 1) → (𝐹𝑛) = (𝐹‘((2nd𝑥) + 1)))
7069iuneq1d 4953 . . . . . . . . . . . . . . 15 (𝑛 = ((2nd𝑥) + 1) → 𝑡 ∈ (𝐹𝑛)(𝑡𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛))
7168, 70eqtrid 2790 . . . . . . . . . . . . . 14 (𝑛 = ((2nd𝑥) + 1) → 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛))
72 oveq2 7285 . . . . . . . . . . . . . . 15 (𝑛 = ((2nd𝑥) + 1) → (𝑡𝐵𝑛) = (𝑡𝐵((2nd𝑥) + 1)))
7372iuneq2d 4955 . . . . . . . . . . . . . 14 (𝑛 = ((2nd𝑥) + 1) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7471, 73eqtrd 2778 . . . . . . . . . . . . 13 (𝑛 = ((2nd𝑥) + 1) → 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7574eqeq2d 2749 . . . . . . . . . . . 12 (𝑛 = ((2nd𝑥) + 1) → (𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ↔ 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))))
7675rspccva 3560 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ∧ ((2nd𝑥) + 1) ∈ ℕ0) → 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7766, 61, 76syl2an 596 . . . . . . . . . 10 ((𝜑𝑥𝐺) → 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7877ineq2d 4148 . . . . . . . . 9 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑋) = ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))))
799fveq2d 6780 . . . . . . . . . . . . . 14 (𝑥𝐺 → (𝐵𝑥) = (𝐵‘⟨(1st𝑥), (2nd𝑥)⟩))
80 df-ov 7280 . . . . . . . . . . . . . 14 ((1st𝑥)𝐵(2nd𝑥)) = (𝐵‘⟨(1st𝑥), (2nd𝑥)⟩)
8179, 80eqtr4di 2796 . . . . . . . . . . . . 13 (𝑥𝐺 → (𝐵𝑥) = ((1st𝑥)𝐵(2nd𝑥)))
8281adantl 482 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (𝐵𝑥) = ((1st𝑥)𝐵(2nd𝑥)))
83 inss1 4164 . . . . . . . . . . . . . . . 16 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
84 ffvelrn 6961 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ (2nd𝑥) ∈ ℕ0) → (𝐹‘(2nd𝑥)) ∈ (𝒫 𝑋 ∩ Fin))
8545, 59, 84syl2an 596 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ∈ (𝒫 𝑋 ∩ Fin))
8683, 85sselid 3920 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ∈ 𝒫 𝑋)
8786elpwid 4546 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ⊆ 𝑋)
8819simp2d 1142 . . . . . . . . . . . . . . 15 (𝑥𝐺 → (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
8988adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
9087, 89sseldd 3923 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (1st𝑥) ∈ 𝑋)
9159adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (2nd𝑥) ∈ ℕ0)
92 oveq1 7284 . . . . . . . . . . . . . 14 (𝑧 = (1st𝑥) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((1st𝑥)(ball‘𝐷)(1 / (2↑𝑚))))
93 oveq2 7285 . . . . . . . . . . . . . . . 16 (𝑚 = (2nd𝑥) → (2↑𝑚) = (2↑(2nd𝑥)))
9493oveq2d 7293 . . . . . . . . . . . . . . 15 (𝑚 = (2nd𝑥) → (1 / (2↑𝑚)) = (1 / (2↑(2nd𝑥))))
9594oveq2d 7293 . . . . . . . . . . . . . 14 (𝑚 = (2nd𝑥) → ((1st𝑥)(ball‘𝐷)(1 / (2↑𝑚))) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
96 heibor.5 . . . . . . . . . . . . . 14 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
97 ovex 7310 . . . . . . . . . . . . . 14 ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ∈ V
9892, 95, 96, 97ovmpo 7433 . . . . . . . . . . . . 13 (((1st𝑥) ∈ 𝑋 ∧ (2nd𝑥) ∈ ℕ0) → ((1st𝑥)𝐵(2nd𝑥)) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
9990, 91, 98syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → ((1st𝑥)𝐵(2nd𝑥)) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
10082, 99eqtrd 2778 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → (𝐵𝑥) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
101 heibor.6 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (CMet‘𝑋))
102 cmetmet 24448 . . . . . . . . . . . . . . 15 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
103101, 102syl 17 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ (Met‘𝑋))
104 metxmet 23485 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
105103, 104syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (∞Met‘𝑋))
106105adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → 𝐷 ∈ (∞Met‘𝑋))
107 2nn 12044 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
108 nnexpcl 13793 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ (2nd𝑥) ∈ ℕ0) → (2↑(2nd𝑥)) ∈ ℕ)
109107, 91, 108sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐺) → (2↑(2nd𝑥)) ∈ ℕ)
110109nnrpd 12768 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (2↑(2nd𝑥)) ∈ ℝ+)
111110rpreccld 12780 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (1 / (2↑(2nd𝑥))) ∈ ℝ+)
112111rpxrd 12771 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (1 / (2↑(2nd𝑥))) ∈ ℝ*)
113 blssm 23569 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st𝑥) ∈ 𝑋 ∧ (1 / (2↑(2nd𝑥))) ∈ ℝ*) → ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ⊆ 𝑋)
114106, 90, 112, 113syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ⊆ 𝑋)
115100, 114eqsstrd 3960 . . . . . . . . . 10 ((𝜑𝑥𝐺) → (𝐵𝑥) ⊆ 𝑋)
116 df-ss 3905 . . . . . . . . . 10 ((𝐵𝑥) ⊆ 𝑋 ↔ ((𝐵𝑥) ∩ 𝑋) = (𝐵𝑥))
117115, 116sylib 217 . . . . . . . . 9 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑋) = (𝐵𝑥))
11878, 117eqtr3d 2780 . . . . . . . 8 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥))
11965, 118eqtrid 2790 . . . . . . 7 ((𝜑𝑥𝐺) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥))
120 eqimss2 3979 . . . . . . 7 ( 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥) → (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))))
121119, 120syl 17 . . . . . 6 ((𝜑𝑥𝐺) → (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))))
12219simp3d 1143 . . . . . . . 8 (𝑥𝐺 → ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾)
12381, 122eqeltrd 2839 . . . . . . 7 (𝑥𝐺 → (𝐵𝑥) ∈ 𝐾)
124123adantl 482 . . . . . 6 ((𝜑𝑥𝐺) → (𝐵𝑥) ∈ 𝐾)
125 fvex 6789 . . . . . . . 8 (𝐵𝑥) ∈ V
126125inex1 5243 . . . . . . 7 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ V
12713, 14, 126heiborlem1 35966 . . . . . 6 (((𝐹‘((2nd𝑥) + 1)) ∈ Fin ∧ (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∧ (𝐵𝑥) ∈ 𝐾) → ∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
12864, 121, 124, 127syl3anc 1370 . . . . 5 ((𝜑𝑥𝐺) → ∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
12983, 63sselid 3920 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ 𝒫 𝑋)
130129elpwid 4546 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ⊆ 𝑋)
13113mopnuni 23592 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
132105, 131syl 17 . . . . . . . . . . . 12 (𝜑𝑋 = 𝐽)
133132adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → 𝑋 = 𝐽)
134130, 133sseqtrd 3962 . . . . . . . . . 10 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ⊆ 𝐽)
135134sselda 3922 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))) → 𝑡 𝐽)
136135adantrr 714 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → 𝑡 𝐽)
13761adantl 482 . . . . . . . . . 10 ((𝜑𝑥𝐺) → ((2nd𝑥) + 1) ∈ ℕ0)
138 id 22 . . . . . . . . . 10 (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1)))
139 snfi 8832 . . . . . . . . . . . 12 {(𝑡𝐵((2nd𝑥) + 1))} ∈ Fin
140 inss2 4165 . . . . . . . . . . . . 13 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ (𝑡𝐵((2nd𝑥) + 1))
141 ovex 7310 . . . . . . . . . . . . . . 15 (𝑡𝐵((2nd𝑥) + 1)) ∈ V
142141unisn 4863 . . . . . . . . . . . . . 14 {(𝑡𝐵((2nd𝑥) + 1))} = (𝑡𝐵((2nd𝑥) + 1))
143 uniiun 4990 . . . . . . . . . . . . . 14 {(𝑡𝐵((2nd𝑥) + 1))} = 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
144142, 143eqtr3i 2768 . . . . . . . . . . . . 13 (𝑡𝐵((2nd𝑥) + 1)) = 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
145140, 144sseqtri 3958 . . . . . . . . . . . 12 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
146 vex 3435 . . . . . . . . . . . . 13 𝑔 ∈ V
14713, 14, 146heiborlem1 35966 . . . . . . . . . . . 12 (({(𝑡𝐵((2nd𝑥) + 1))} ∈ Fin ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔 ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → ∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾)
148139, 145, 147mp3an12 1450 . . . . . . . . . . 11 (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → ∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾)
149 eleq1 2826 . . . . . . . . . . . 12 (𝑔 = (𝑡𝐵((2nd𝑥) + 1)) → (𝑔𝐾 ↔ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾))
150141, 149rexsn 4620 . . . . . . . . . . 11 (∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾 ↔ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾)
151148, 150sylib 217 . . . . . . . . . 10 (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾)
152 ovex 7310 . . . . . . . . . . . 12 ((2nd𝑥) + 1) ∈ V
15313, 14, 6, 42, 152heiborlem2 35967 . . . . . . . . . . 11 (𝑡𝐺((2nd𝑥) + 1) ↔ (((2nd𝑥) + 1) ∈ ℕ0𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾))
154153biimpri 227 . . . . . . . . . 10 ((((2nd𝑥) + 1) ∈ ℕ0𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾) → 𝑡𝐺((2nd𝑥) + 1))
155137, 138, 151, 154syl3an 1159 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → 𝑡𝐺((2nd𝑥) + 1))
1561553expb 1119 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → 𝑡𝐺((2nd𝑥) + 1))
157 simprr 770 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
158136, 156, 157jca32 516 . . . . . . 7 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → (𝑡 𝐽 ∧ (𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
159158ex 413 . . . . . 6 ((𝜑𝑥𝐺) → ((𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → (𝑡 𝐽 ∧ (𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))))
160159reximdv2 3198 . . . . 5 ((𝜑𝑥𝐺) → (∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → ∃𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
161128, 160mpd 15 . . . 4 ((𝜑𝑥𝐺) → ∃𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))
162161ralrimiva 3103 . . 3 (𝜑 → ∀𝑥𝐺𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))
16313fvexi 6790 . . . . 5 𝐽 ∈ V
164163uniex 7594 . . . 4 𝐽 ∈ V
165 breq1 5079 . . . . 5 (𝑡 = (𝑔𝑥) → (𝑡𝐺((2nd𝑥) + 1) ↔ (𝑔𝑥)𝐺((2nd𝑥) + 1)))
166 oveq1 7284 . . . . . . 7 (𝑡 = (𝑔𝑥) → (𝑡𝐵((2nd𝑥) + 1)) = ((𝑔𝑥)𝐵((2nd𝑥) + 1)))
167166ineq2d 4148 . . . . . 6 (𝑡 = (𝑔𝑥) → ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))))
168167eleq1d 2823 . . . . 5 (𝑡 = (𝑔𝑥) → (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
169165, 168anbi12d 631 . . . 4 (𝑡 = (𝑔𝑥) → ((𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
170164, 169axcc4dom 10195 . . 3 ((𝐺 ≼ ω ∧ ∀𝑥𝐺𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
17158, 162, 170syl2anc 584 . 2 (𝜑 → ∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
172 exsimpr 1872 . 2 (∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
173171, 172syl 17 1 (𝜑 → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wral 3064  wrex 3065  Vcvv 3431  cin 3887  wss 3888  𝒫 cpw 4535  {csn 4563  cop 4569   cuni 4841   ciun 4926   class class class wbr 5076  {copab 5138   × cxp 5589  Rel wrel 5596  wf 6431  cfv 6435  (class class class)co 7277  cmpo 7279  ωcom 7712  1st c1st 7829  2nd c2nd 7830  cen 8728  cdom 8729  csdm 8730  Fincfn 8731  1c1 10870   + caddc 10872  *cxr 11006   / cdiv 11630  cn 11971  2c2 12026  0cn0 12231  cexp 13780  ∞Metcxmet 20580  Metcmet 20581  ballcbl 20582  MetOpencmopn 20585  CMetccmet 24416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-inf2 9397  ax-cc 10189  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946  ax-pre-sup 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-isom 6444  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-er 8496  df-map 8615  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-sup 9199  df-inf 9200  df-oi 9267  df-card 9695  df-acn 9698  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-n0 12232  df-z 12318  df-uz 12581  df-q 12687  df-rp 12729  df-xneg 12846  df-xadd 12847  df-xmul 12848  df-seq 13720  df-exp 13781  df-topgen 17152  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-top 22041  df-topon 22058  df-bases 22094  df-cmet 24419
This theorem is referenced by:  heiborlem10  35975
  Copyright terms: Public domain W3C validator