Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem3 Structured version   Visualization version   GIF version

Theorem heiborlem3 37799
Description: Lemma for heibor 37807. Using countable choice ax-cc 10472, we have fixed in advance a collection of finite 2↑-𝑛 nets (𝐹𝑛) for 𝑋 (note that an 𝑟-net is a set of points in 𝑋 whose 𝑟 -balls cover 𝑋). The set 𝐺 is the subset of these points whose corresponding balls have no finite subcover (i.e. in the set 𝐾). If the theorem was false, then 𝑋 would be in 𝐾, and so some ball at each level would also be in 𝐾. But we can say more than this; given a ball (𝑦𝐵𝑛) on level 𝑛, since level 𝑛 + 1 covers the space and thus also (𝑦𝐵𝑛), using heiborlem1 37797 there is a ball on the next level whose intersection with (𝑦𝐵𝑛) also has no finite subcover. Now since the set 𝐺 is a countable union of finite sets, it is countable (which needs ax-cc 10472 via iunctb 10611), and so we can apply ax-cc 10472 to 𝐺 directly to get a function from 𝐺 to itself, which points from each ball in 𝐾 to a ball on the next level in 𝐾, and such that the intersection between these balls is also in 𝐾. (Contributed by Jeff Madsen, 18-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
Assertion
Ref Expression
heiborlem3 (𝜑 → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑢,𝐹   𝑥,𝑔,𝐺   𝜑,𝑔,𝑥   𝑔,𝑚,𝑛,𝑢,𝑣,𝑦,𝑧,𝐷,𝑥   𝐵,𝑔,𝑛,𝑢,𝑣,𝑦   𝑔,𝐽,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑔,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑔,𝑋,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑔,𝐾,𝑛,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑔,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)

Proof of Theorem heiborlem3
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 nn0ex 12529 . . . . . 6 0 ∈ V
2 fvex 6919 . . . . . . 7 (𝐹𝑡) ∈ V
3 vsnex 5439 . . . . . . 7 {𝑡} ∈ V
42, 3xpex 7771 . . . . . 6 ((𝐹𝑡) × {𝑡}) ∈ V
51, 4iunex 7991 . . . . 5 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∈ V
6 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
76relopabiv 5832 . . . . . . . 8 Rel 𝐺
8 1st2nd 8062 . . . . . . . 8 ((Rel 𝐺𝑥𝐺) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
97, 8mpan 690 . . . . . . 7 (𝑥𝐺𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
109eleq1d 2823 . . . . . . . . . . 11 (𝑥𝐺 → (𝑥𝐺 ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐺))
11 df-br 5148 . . . . . . . . . . 11 ((1st𝑥)𝐺(2nd𝑥) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐺)
1210, 11bitr4di 289 . . . . . . . . . 10 (𝑥𝐺 → (𝑥𝐺 ↔ (1st𝑥)𝐺(2nd𝑥)))
13 heibor.1 . . . . . . . . . . 11 𝐽 = (MetOpen‘𝐷)
14 heibor.3 . . . . . . . . . . 11 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
15 fvex 6919 . . . . . . . . . . 11 (1st𝑥) ∈ V
16 fvex 6919 . . . . . . . . . . 11 (2nd𝑥) ∈ V
1713, 14, 6, 15, 16heiborlem2 37798 . . . . . . . . . 10 ((1st𝑥)𝐺(2nd𝑥) ↔ ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾))
1812, 17bitrdi 287 . . . . . . . . 9 (𝑥𝐺 → (𝑥𝐺 ↔ ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾)))
1918ibi 267 . . . . . . . 8 (𝑥𝐺 → ((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾))
2016snid 4666 . . . . . . . . . . . 12 (2nd𝑥) ∈ {(2nd𝑥)}
21 opelxp 5724 . . . . . . . . . . . 12 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}) ↔ ((1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ (2nd𝑥) ∈ {(2nd𝑥)}))
2220, 21mpbiran2 710 . . . . . . . . . . 11 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}) ↔ (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
23 fveq2 6906 . . . . . . . . . . . . . 14 (𝑡 = (2nd𝑥) → (𝐹𝑡) = (𝐹‘(2nd𝑥)))
24 sneq 4640 . . . . . . . . . . . . . 14 (𝑡 = (2nd𝑥) → {𝑡} = {(2nd𝑥)})
2523, 24xpeq12d 5719 . . . . . . . . . . . . 13 (𝑡 = (2nd𝑥) → ((𝐹𝑡) × {𝑡}) = ((𝐹‘(2nd𝑥)) × {(2nd𝑥)}))
2625eleq2d 2824 . . . . . . . . . . . 12 (𝑡 = (2nd𝑥) → (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)})))
2726rspcev 3621 . . . . . . . . . . 11 (((2nd𝑥) ∈ ℕ0 ∧ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹‘(2nd𝑥)) × {(2nd𝑥)})) → ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
2822, 27sylan2br 595 . . . . . . . . . 10 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥))) → ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
29 eliun 4999 . . . . . . . . . 10 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ↔ ∃𝑡 ∈ ℕ0 ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐹𝑡) × {𝑡}))
3028, 29sylibr 234 . . . . . . . . 9 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥))) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
31303adant3 1131 . . . . . . . 8 (((2nd𝑥) ∈ ℕ0 ∧ (1st𝑥) ∈ (𝐹‘(2nd𝑥)) ∧ ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
3219, 31syl 17 . . . . . . 7 (𝑥𝐺 → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
339, 32eqeltrd 2838 . . . . . 6 (𝑥𝐺𝑥 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}))
3433ssriv 3998 . . . . 5 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})
35 ssdomg 9038 . . . . 5 ( 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∈ V → (𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) → 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})))
365, 34, 35mp2 9 . . . 4 𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡})
37 nn0ennn 14016 . . . . . . 7 0 ≈ ℕ
38 nnenom 14017 . . . . . . 7 ℕ ≈ ω
3937, 38entri 9046 . . . . . 6 0 ≈ ω
40 endom 9017 . . . . . 6 (ℕ0 ≈ ω → ℕ0 ≼ ω)
4139, 40ax-mp 5 . . . . 5 0 ≼ ω
42 vex 3481 . . . . . . . 8 𝑡 ∈ V
432, 42xpsnen 9093 . . . . . . 7 ((𝐹𝑡) × {𝑡}) ≈ (𝐹𝑡)
44 inss2 4245 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ Fin
45 heibor.7 . . . . . . . . . 10 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
4645ffvelcdmda 7103 . . . . . . . . 9 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ∈ (𝒫 𝑋 ∩ Fin))
4744, 46sselid 3992 . . . . . . . 8 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ∈ Fin)
48 isfinite 9689 . . . . . . . . 9 ((𝐹𝑡) ∈ Fin ↔ (𝐹𝑡) ≺ ω)
49 sdomdom 9018 . . . . . . . . 9 ((𝐹𝑡) ≺ ω → (𝐹𝑡) ≼ ω)
5048, 49sylbi 217 . . . . . . . 8 ((𝐹𝑡) ∈ Fin → (𝐹𝑡) ≼ ω)
5147, 50syl 17 . . . . . . 7 ((𝜑𝑡 ∈ ℕ0) → (𝐹𝑡) ≼ ω)
52 endomtr 9050 . . . . . . 7 ((((𝐹𝑡) × {𝑡}) ≈ (𝐹𝑡) ∧ (𝐹𝑡) ≼ ω) → ((𝐹𝑡) × {𝑡}) ≼ ω)
5343, 51, 52sylancr 587 . . . . . 6 ((𝜑𝑡 ∈ ℕ0) → ((𝐹𝑡) × {𝑡}) ≼ ω)
5453ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
55 iunctb 10611 . . . . 5 ((ℕ0 ≼ ω ∧ ∀𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω) → 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
5641, 54, 55sylancr 587 . . . 4 (𝜑 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω)
57 domtr 9045 . . . 4 ((𝐺 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ∧ 𝑡 ∈ ℕ0 ((𝐹𝑡) × {𝑡}) ≼ ω) → 𝐺 ≼ ω)
5836, 56, 57sylancr 587 . . 3 (𝜑𝐺 ≼ ω)
5919simp1d 1141 . . . . . . . . 9 (𝑥𝐺 → (2nd𝑥) ∈ ℕ0)
60 peano2nn0 12563 . . . . . . . . 9 ((2nd𝑥) ∈ ℕ0 → ((2nd𝑥) + 1) ∈ ℕ0)
6159, 60syl 17 . . . . . . . 8 (𝑥𝐺 → ((2nd𝑥) + 1) ∈ ℕ0)
62 ffvelcdm 7100 . . . . . . . 8 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ ((2nd𝑥) + 1) ∈ ℕ0) → (𝐹‘((2nd𝑥) + 1)) ∈ (𝒫 𝑋 ∩ Fin))
6345, 61, 62syl2an 596 . . . . . . 7 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ (𝒫 𝑋 ∩ Fin))
6444, 63sselid 3992 . . . . . 6 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ Fin)
65 iunin2 5075 . . . . . . . 8 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
66 heibor.8 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
67 oveq1 7437 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑡 → (𝑦𝐵𝑛) = (𝑡𝐵𝑛))
6867cbviunv 5044 . . . . . . . . . . . . . . 15 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹𝑛)(𝑡𝐵𝑛)
69 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑛 = ((2nd𝑥) + 1) → (𝐹𝑛) = (𝐹‘((2nd𝑥) + 1)))
7069iuneq1d 5023 . . . . . . . . . . . . . . 15 (𝑛 = ((2nd𝑥) + 1) → 𝑡 ∈ (𝐹𝑛)(𝑡𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛))
7168, 70eqtrid 2786 . . . . . . . . . . . . . 14 (𝑛 = ((2nd𝑥) + 1) → 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛))
72 oveq2 7438 . . . . . . . . . . . . . . 15 (𝑛 = ((2nd𝑥) + 1) → (𝑡𝐵𝑛) = (𝑡𝐵((2nd𝑥) + 1)))
7372iuneq2d 5026 . . . . . . . . . . . . . 14 (𝑛 = ((2nd𝑥) + 1) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7471, 73eqtrd 2774 . . . . . . . . . . . . 13 (𝑛 = ((2nd𝑥) + 1) → 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7574eqeq2d 2745 . . . . . . . . . . . 12 (𝑛 = ((2nd𝑥) + 1) → (𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ↔ 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))))
7675rspccva 3620 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ∧ ((2nd𝑥) + 1) ∈ ℕ0) → 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7766, 61, 76syl2an 596 . . . . . . . . . 10 ((𝜑𝑥𝐺) → 𝑋 = 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1)))
7877ineq2d 4227 . . . . . . . . 9 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑋) = ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))))
799fveq2d 6910 . . . . . . . . . . . . . 14 (𝑥𝐺 → (𝐵𝑥) = (𝐵‘⟨(1st𝑥), (2nd𝑥)⟩))
80 df-ov 7433 . . . . . . . . . . . . . 14 ((1st𝑥)𝐵(2nd𝑥)) = (𝐵‘⟨(1st𝑥), (2nd𝑥)⟩)
8179, 80eqtr4di 2792 . . . . . . . . . . . . 13 (𝑥𝐺 → (𝐵𝑥) = ((1st𝑥)𝐵(2nd𝑥)))
8281adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (𝐵𝑥) = ((1st𝑥)𝐵(2nd𝑥)))
83 inss1 4244 . . . . . . . . . . . . . . . 16 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
84 ffvelcdm 7100 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ (2nd𝑥) ∈ ℕ0) → (𝐹‘(2nd𝑥)) ∈ (𝒫 𝑋 ∩ Fin))
8545, 59, 84syl2an 596 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ∈ (𝒫 𝑋 ∩ Fin))
8683, 85sselid 3992 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ∈ 𝒫 𝑋)
8786elpwid 4613 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (𝐹‘(2nd𝑥)) ⊆ 𝑋)
8819simp2d 1142 . . . . . . . . . . . . . . 15 (𝑥𝐺 → (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
8988adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (1st𝑥) ∈ (𝐹‘(2nd𝑥)))
9087, 89sseldd 3995 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (1st𝑥) ∈ 𝑋)
9159adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (2nd𝑥) ∈ ℕ0)
92 oveq1 7437 . . . . . . . . . . . . . 14 (𝑧 = (1st𝑥) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((1st𝑥)(ball‘𝐷)(1 / (2↑𝑚))))
93 oveq2 7438 . . . . . . . . . . . . . . . 16 (𝑚 = (2nd𝑥) → (2↑𝑚) = (2↑(2nd𝑥)))
9493oveq2d 7446 . . . . . . . . . . . . . . 15 (𝑚 = (2nd𝑥) → (1 / (2↑𝑚)) = (1 / (2↑(2nd𝑥))))
9594oveq2d 7446 . . . . . . . . . . . . . 14 (𝑚 = (2nd𝑥) → ((1st𝑥)(ball‘𝐷)(1 / (2↑𝑚))) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
96 heibor.5 . . . . . . . . . . . . . 14 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
97 ovex 7463 . . . . . . . . . . . . . 14 ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ∈ V
9892, 95, 96, 97ovmpo 7592 . . . . . . . . . . . . 13 (((1st𝑥) ∈ 𝑋 ∧ (2nd𝑥) ∈ ℕ0) → ((1st𝑥)𝐵(2nd𝑥)) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
9990, 91, 98syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → ((1st𝑥)𝐵(2nd𝑥)) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
10082, 99eqtrd 2774 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → (𝐵𝑥) = ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))))
101 heibor.6 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (CMet‘𝑋))
102 cmetmet 25333 . . . . . . . . . . . . . . 15 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
103101, 102syl 17 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ (Met‘𝑋))
104 metxmet 24359 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
105103, 104syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (∞Met‘𝑋))
106105adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → 𝐷 ∈ (∞Met‘𝑋))
107 2nn 12336 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
108 nnexpcl 14111 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ (2nd𝑥) ∈ ℕ0) → (2↑(2nd𝑥)) ∈ ℕ)
109107, 91, 108sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐺) → (2↑(2nd𝑥)) ∈ ℕ)
110109nnrpd 13072 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → (2↑(2nd𝑥)) ∈ ℝ+)
111110rpreccld 13084 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → (1 / (2↑(2nd𝑥))) ∈ ℝ+)
112111rpxrd 13075 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (1 / (2↑(2nd𝑥))) ∈ ℝ*)
113 blssm 24443 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st𝑥) ∈ 𝑋 ∧ (1 / (2↑(2nd𝑥))) ∈ ℝ*) → ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ⊆ 𝑋)
114106, 90, 112, 113syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → ((1st𝑥)(ball‘𝐷)(1 / (2↑(2nd𝑥)))) ⊆ 𝑋)
115100, 114eqsstrd 4033 . . . . . . . . . 10 ((𝜑𝑥𝐺) → (𝐵𝑥) ⊆ 𝑋)
116 dfss2 3980 . . . . . . . . . 10 ((𝐵𝑥) ⊆ 𝑋 ↔ ((𝐵𝑥) ∩ 𝑋) = (𝐵𝑥))
117115, 116sylib 218 . . . . . . . . 9 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑋) = (𝐵𝑥))
11878, 117eqtr3d 2776 . . . . . . . 8 ((𝜑𝑥𝐺) → ((𝐵𝑥) ∩ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))(𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥))
11965, 118eqtrid 2786 . . . . . . 7 ((𝜑𝑥𝐺) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥))
120 eqimss2 4054 . . . . . . 7 ( 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = (𝐵𝑥) → (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))))
121119, 120syl 17 . . . . . 6 ((𝜑𝑥𝐺) → (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))))
12219simp3d 1143 . . . . . . . 8 (𝑥𝐺 → ((1st𝑥)𝐵(2nd𝑥)) ∈ 𝐾)
12381, 122eqeltrd 2838 . . . . . . 7 (𝑥𝐺 → (𝐵𝑥) ∈ 𝐾)
124123adantl 481 . . . . . 6 ((𝜑𝑥𝐺) → (𝐵𝑥) ∈ 𝐾)
125 fvex 6919 . . . . . . . 8 (𝐵𝑥) ∈ V
126125inex1 5322 . . . . . . 7 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ V
12713, 14, 126heiborlem1 37797 . . . . . 6 (((𝐹‘((2nd𝑥) + 1)) ∈ Fin ∧ (𝐵𝑥) ⊆ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∧ (𝐵𝑥) ∈ 𝐾) → ∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
12864, 121, 124, 127syl3anc 1370 . . . . 5 ((𝜑𝑥𝐺) → ∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
12983, 63sselid 3992 . . . . . . . . . . . 12 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ∈ 𝒫 𝑋)
130129elpwid 4613 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ⊆ 𝑋)
13113mopnuni 24466 . . . . . . . . . . . . 13 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
132105, 131syl 17 . . . . . . . . . . . 12 (𝜑𝑋 = 𝐽)
133132adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐺) → 𝑋 = 𝐽)
134130, 133sseqtrd 4035 . . . . . . . . . 10 ((𝜑𝑥𝐺) → (𝐹‘((2nd𝑥) + 1)) ⊆ 𝐽)
135134sselda 3994 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1))) → 𝑡 𝐽)
136135adantrr 717 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → 𝑡 𝐽)
13761adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐺) → ((2nd𝑥) + 1) ∈ ℕ0)
138 id 22 . . . . . . . . . 10 (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) → 𝑡 ∈ (𝐹‘((2nd𝑥) + 1)))
139 snfi 9081 . . . . . . . . . . . 12 {(𝑡𝐵((2nd𝑥) + 1))} ∈ Fin
140 inss2 4245 . . . . . . . . . . . . 13 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ (𝑡𝐵((2nd𝑥) + 1))
141 ovex 7463 . . . . . . . . . . . . . . 15 (𝑡𝐵((2nd𝑥) + 1)) ∈ V
142141unisn 4930 . . . . . . . . . . . . . 14 {(𝑡𝐵((2nd𝑥) + 1))} = (𝑡𝐵((2nd𝑥) + 1))
143 uniiun 5062 . . . . . . . . . . . . . 14 {(𝑡𝐵((2nd𝑥) + 1))} = 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
144142, 143eqtr3i 2764 . . . . . . . . . . . . 13 (𝑡𝐵((2nd𝑥) + 1)) = 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
145140, 144sseqtri 4031 . . . . . . . . . . . 12 ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔
146 vex 3481 . . . . . . . . . . . . 13 𝑔 ∈ V
14713, 14, 146heiborlem1 37797 . . . . . . . . . . . 12 (({(𝑡𝐵((2nd𝑥) + 1))} ∈ Fin ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ⊆ 𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔 ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → ∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾)
148139, 145, 147mp3an12 1450 . . . . . . . . . . 11 (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → ∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾)
149 eleq1 2826 . . . . . . . . . . . 12 (𝑔 = (𝑡𝐵((2nd𝑥) + 1)) → (𝑔𝐾 ↔ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾))
150141, 149rexsn 4686 . . . . . . . . . . 11 (∃𝑔 ∈ {(𝑡𝐵((2nd𝑥) + 1))}𝑔𝐾 ↔ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾)
151148, 150sylib 218 . . . . . . . . . 10 (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾)
152 ovex 7463 . . . . . . . . . . . 12 ((2nd𝑥) + 1) ∈ V
15313, 14, 6, 42, 152heiborlem2 37798 . . . . . . . . . . 11 (𝑡𝐺((2nd𝑥) + 1) ↔ (((2nd𝑥) + 1) ∈ ℕ0𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾))
154153biimpri 228 . . . . . . . . . 10 ((((2nd𝑥) + 1) ∈ ℕ0𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ (𝑡𝐵((2nd𝑥) + 1)) ∈ 𝐾) → 𝑡𝐺((2nd𝑥) + 1))
155137, 138, 151, 154syl3an 1159 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → 𝑡𝐺((2nd𝑥) + 1))
1561553expb 1119 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → 𝑡𝐺((2nd𝑥) + 1))
157 simprr 773 . . . . . . . 8 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)
158136, 156, 157jca32 515 . . . . . . 7 (((𝜑𝑥𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → (𝑡 𝐽 ∧ (𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
159158ex 412 . . . . . 6 ((𝜑𝑥𝐺) → ((𝑡 ∈ (𝐹‘((2nd𝑥) + 1)) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) → (𝑡 𝐽 ∧ (𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))))
160159reximdv2 3161 . . . . 5 ((𝜑𝑥𝐺) → (∃𝑡 ∈ (𝐹‘((2nd𝑥) + 1))((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 → ∃𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
161128, 160mpd 15 . . . 4 ((𝜑𝑥𝐺) → ∃𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))
162161ralrimiva 3143 . . 3 (𝜑 → ∀𝑥𝐺𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾))
16313fvexi 6920 . . . . 5 𝐽 ∈ V
164163uniex 7759 . . . 4 𝐽 ∈ V
165 breq1 5150 . . . . 5 (𝑡 = (𝑔𝑥) → (𝑡𝐺((2nd𝑥) + 1) ↔ (𝑔𝑥)𝐺((2nd𝑥) + 1)))
166 oveq1 7437 . . . . . . 7 (𝑡 = (𝑔𝑥) → (𝑡𝐵((2nd𝑥) + 1)) = ((𝑔𝑥)𝐵((2nd𝑥) + 1)))
167166ineq2d 4227 . . . . . 6 (𝑡 = (𝑔𝑥) → ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) = ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))))
168167eleq1d 2823 . . . . 5 (𝑡 = (𝑔𝑥) → (((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
169165, 168anbi12d 632 . . . 4 (𝑡 = (𝑔𝑥) → ((𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
170164, 169axcc4dom 10478 . . 3 ((𝐺 ≼ ω ∧ ∀𝑥𝐺𝑡 𝐽(𝑡𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ (𝑡𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
17158, 162, 170syl2anc 584 . 2 (𝜑 → ∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)))
172 exsimpr 1866 . 2 (∃𝑔(𝑔:𝐺 𝐽 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾)) → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
173171, 172syl 17 1 (𝜑 → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  {cab 2711  wral 3058  wrex 3067  Vcvv 3477  cin 3961  wss 3962  𝒫 cpw 4604  {csn 4630  cop 4636   cuni 4911   ciun 4995   class class class wbr 5147  {copab 5209   × cxp 5686  Rel wrel 5693  wf 6558  cfv 6562  (class class class)co 7430  cmpo 7432  ωcom 7886  1st c1st 8010  2nd c2nd 8011  cen 8980  cdom 8981  csdm 8982  Fincfn 8983  1c1 11153   + caddc 11155  *cxr 11291   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  cexp 14098  ∞Metcxmet 21366  Metcmet 21367  ballcbl 21368  MetOpencmopn 21371  CMetccmet 25301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-seq 14039  df-exp 14099  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-bases 22968  df-cmet 25304
This theorem is referenced by:  heiborlem10  37806
  Copyright terms: Public domain W3C validator