Step | Hyp | Ref
| Expression |
1 | | nn0ex 12169 |
. . . . . 6
⊢
ℕ0 ∈ V |
2 | | fvex 6769 |
. . . . . . 7
⊢ (𝐹‘𝑡) ∈ V |
3 | | snex 5349 |
. . . . . . 7
⊢ {𝑡} ∈ V |
4 | 2, 3 | xpex 7581 |
. . . . . 6
⊢ ((𝐹‘𝑡) × {𝑡}) ∈ V |
5 | 1, 4 | iunex 7784 |
. . . . 5
⊢ ∪ 𝑡 ∈ ℕ0 ((𝐹‘𝑡) × {𝑡}) ∈ V |
6 | | heibor.4 |
. . . . . . . . 9
⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
7 | 6 | relopabiv 5719 |
. . . . . . . 8
⊢ Rel 𝐺 |
8 | | 1st2nd 7853 |
. . . . . . . 8
⊢ ((Rel
𝐺 ∧ 𝑥 ∈ 𝐺) → 𝑥 = 〈(1st ‘𝑥), (2nd ‘𝑥)〉) |
9 | 7, 8 | mpan 686 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐺 → 𝑥 = 〈(1st ‘𝑥), (2nd ‘𝑥)〉) |
10 | 9 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐺 → (𝑥 ∈ 𝐺 ↔ 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ 𝐺)) |
11 | | df-br 5071 |
. . . . . . . . . . 11
⊢
((1st ‘𝑥)𝐺(2nd ‘𝑥) ↔ 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ 𝐺) |
12 | 10, 11 | bitr4di 288 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐺 → (𝑥 ∈ 𝐺 ↔ (1st ‘𝑥)𝐺(2nd ‘𝑥))) |
13 | | heibor.1 |
. . . . . . . . . . 11
⊢ 𝐽 = (MetOpen‘𝐷) |
14 | | heibor.3 |
. . . . . . . . . . 11
⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
15 | | fvex 6769 |
. . . . . . . . . . 11
⊢
(1st ‘𝑥) ∈ V |
16 | | fvex 6769 |
. . . . . . . . . . 11
⊢
(2nd ‘𝑥) ∈ V |
17 | 13, 14, 6, 15, 16 | heiborlem2 35897 |
. . . . . . . . . 10
⊢
((1st ‘𝑥)𝐺(2nd ‘𝑥) ↔ ((2nd ‘𝑥) ∈ ℕ0
∧ (1st ‘𝑥) ∈ (𝐹‘(2nd ‘𝑥)) ∧ ((1st
‘𝑥)𝐵(2nd ‘𝑥)) ∈ 𝐾)) |
18 | 12, 17 | bitrdi 286 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐺 → (𝑥 ∈ 𝐺 ↔ ((2nd ‘𝑥) ∈ ℕ0
∧ (1st ‘𝑥) ∈ (𝐹‘(2nd ‘𝑥)) ∧ ((1st
‘𝑥)𝐵(2nd ‘𝑥)) ∈ 𝐾))) |
19 | 18 | ibi 266 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐺 → ((2nd ‘𝑥) ∈ ℕ0
∧ (1st ‘𝑥) ∈ (𝐹‘(2nd ‘𝑥)) ∧ ((1st
‘𝑥)𝐵(2nd ‘𝑥)) ∈ 𝐾)) |
20 | 16 | snid 4594 |
. . . . . . . . . . . 12
⊢
(2nd ‘𝑥) ∈ {(2nd ‘𝑥)} |
21 | | opelxp 5616 |
. . . . . . . . . . . 12
⊢
(〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ ((𝐹‘(2nd ‘𝑥)) × {(2nd
‘𝑥)}) ↔
((1st ‘𝑥)
∈ (𝐹‘(2nd ‘𝑥)) ∧ (2nd
‘𝑥) ∈
{(2nd ‘𝑥)})) |
22 | 20, 21 | mpbiran2 706 |
. . . . . . . . . . 11
⊢
(〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ ((𝐹‘(2nd ‘𝑥)) × {(2nd
‘𝑥)}) ↔
(1st ‘𝑥)
∈ (𝐹‘(2nd ‘𝑥))) |
23 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (2nd ‘𝑥) → (𝐹‘𝑡) = (𝐹‘(2nd ‘𝑥))) |
24 | | sneq 4568 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (2nd ‘𝑥) → {𝑡} = {(2nd ‘𝑥)}) |
25 | 23, 24 | xpeq12d 5611 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (2nd ‘𝑥) → ((𝐹‘𝑡) × {𝑡}) = ((𝐹‘(2nd ‘𝑥)) × {(2nd
‘𝑥)})) |
26 | 25 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑡 = (2nd ‘𝑥) → (〈(1st
‘𝑥), (2nd
‘𝑥)〉 ∈
((𝐹‘𝑡) × {𝑡}) ↔ 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ ((𝐹‘(2nd
‘𝑥)) ×
{(2nd ‘𝑥)}))) |
27 | 26 | rspcev 3552 |
. . . . . . . . . . 11
⊢
(((2nd ‘𝑥) ∈ ℕ0 ∧
〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ ((𝐹‘(2nd ‘𝑥)) × {(2nd
‘𝑥)})) →
∃𝑡 ∈
ℕ0 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ ((𝐹‘𝑡) × {𝑡})) |
28 | 22, 27 | sylan2br 594 |
. . . . . . . . . 10
⊢
(((2nd ‘𝑥) ∈ ℕ0 ∧
(1st ‘𝑥)
∈ (𝐹‘(2nd ‘𝑥))) → ∃𝑡 ∈ ℕ0
〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ ((𝐹‘𝑡) × {𝑡})) |
29 | | eliun 4925 |
. . . . . . . . . 10
⊢
(〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ ∪ 𝑡 ∈ ℕ0 ((𝐹‘𝑡) × {𝑡}) ↔ ∃𝑡 ∈ ℕ0
〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ ((𝐹‘𝑡) × {𝑡})) |
30 | 28, 29 | sylibr 233 |
. . . . . . . . 9
⊢
(((2nd ‘𝑥) ∈ ℕ0 ∧
(1st ‘𝑥)
∈ (𝐹‘(2nd ‘𝑥))) → 〈(1st
‘𝑥), (2nd
‘𝑥)〉 ∈
∪ 𝑡 ∈ ℕ0 ((𝐹‘𝑡) × {𝑡})) |
31 | 30 | 3adant3 1130 |
. . . . . . . 8
⊢
(((2nd ‘𝑥) ∈ ℕ0 ∧
(1st ‘𝑥)
∈ (𝐹‘(2nd ‘𝑥)) ∧ ((1st
‘𝑥)𝐵(2nd ‘𝑥)) ∈ 𝐾) → 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ ∪ 𝑡 ∈ ℕ0 ((𝐹‘𝑡) × {𝑡})) |
32 | 19, 31 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐺 → 〈(1st ‘𝑥), (2nd ‘𝑥)〉 ∈ ∪ 𝑡 ∈ ℕ0 ((𝐹‘𝑡) × {𝑡})) |
33 | 9, 32 | eqeltrd 2839 |
. . . . . 6
⊢ (𝑥 ∈ 𝐺 → 𝑥 ∈ ∪
𝑡 ∈
ℕ0 ((𝐹‘𝑡) × {𝑡})) |
34 | 33 | ssriv 3921 |
. . . . 5
⊢ 𝐺 ⊆ ∪ 𝑡 ∈ ℕ0 ((𝐹‘𝑡) × {𝑡}) |
35 | | ssdomg 8741 |
. . . . 5
⊢ (∪ 𝑡 ∈ ℕ0 ((𝐹‘𝑡) × {𝑡}) ∈ V → (𝐺 ⊆ ∪
𝑡 ∈
ℕ0 ((𝐹‘𝑡) × {𝑡}) → 𝐺 ≼ ∪
𝑡 ∈
ℕ0 ((𝐹‘𝑡) × {𝑡}))) |
36 | 5, 34, 35 | mp2 9 |
. . . 4
⊢ 𝐺 ≼ ∪ 𝑡 ∈ ℕ0 ((𝐹‘𝑡) × {𝑡}) |
37 | | nn0ennn 13627 |
. . . . . . 7
⊢
ℕ0 ≈ ℕ |
38 | | nnenom 13628 |
. . . . . . 7
⊢ ℕ
≈ ω |
39 | 37, 38 | entri 8749 |
. . . . . 6
⊢
ℕ0 ≈ ω |
40 | | endom 8722 |
. . . . . 6
⊢
(ℕ0 ≈ ω → ℕ0 ≼
ω) |
41 | 39, 40 | ax-mp 5 |
. . . . 5
⊢
ℕ0 ≼ ω |
42 | | vex 3426 |
. . . . . . . 8
⊢ 𝑡 ∈ V |
43 | 2, 42 | xpsnen 8796 |
. . . . . . 7
⊢ ((𝐹‘𝑡) × {𝑡}) ≈ (𝐹‘𝑡) |
44 | | inss2 4160 |
. . . . . . . . 9
⊢
(𝒫 𝑋 ∩
Fin) ⊆ Fin |
45 | | heibor.7 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
46 | 45 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ ℕ0) → (𝐹‘𝑡) ∈ (𝒫 𝑋 ∩ Fin)) |
47 | 44, 46 | sselid 3915 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ ℕ0) → (𝐹‘𝑡) ∈ Fin) |
48 | | isfinite 9340 |
. . . . . . . . 9
⊢ ((𝐹‘𝑡) ∈ Fin ↔ (𝐹‘𝑡) ≺ ω) |
49 | | sdomdom 8723 |
. . . . . . . . 9
⊢ ((𝐹‘𝑡) ≺ ω → (𝐹‘𝑡) ≼ ω) |
50 | 48, 49 | sylbi 216 |
. . . . . . . 8
⊢ ((𝐹‘𝑡) ∈ Fin → (𝐹‘𝑡) ≼ ω) |
51 | 47, 50 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℕ0) → (𝐹‘𝑡) ≼ ω) |
52 | | endomtr 8753 |
. . . . . . 7
⊢ ((((𝐹‘𝑡) × {𝑡}) ≈ (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≼ ω) → ((𝐹‘𝑡) × {𝑡}) ≼ ω) |
53 | 43, 51, 52 | sylancr 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ ℕ0) → ((𝐹‘𝑡) × {𝑡}) ≼ ω) |
54 | 53 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑡 ∈ ℕ0 ((𝐹‘𝑡) × {𝑡}) ≼ ω) |
55 | | iunctb 10261 |
. . . . 5
⊢
((ℕ0 ≼ ω ∧ ∀𝑡 ∈ ℕ0 ((𝐹‘𝑡) × {𝑡}) ≼ ω) → ∪ 𝑡 ∈ ℕ0 ((𝐹‘𝑡) × {𝑡}) ≼ ω) |
56 | 41, 54, 55 | sylancr 586 |
. . . 4
⊢ (𝜑 → ∪ 𝑡 ∈ ℕ0 ((𝐹‘𝑡) × {𝑡}) ≼ ω) |
57 | | domtr 8748 |
. . . 4
⊢ ((𝐺 ≼ ∪ 𝑡 ∈ ℕ0 ((𝐹‘𝑡) × {𝑡}) ∧ ∪
𝑡 ∈
ℕ0 ((𝐹‘𝑡) × {𝑡}) ≼ ω) → 𝐺 ≼ ω) |
58 | 36, 56, 57 | sylancr 586 |
. . 3
⊢ (𝜑 → 𝐺 ≼ ω) |
59 | 19 | simp1d 1140 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐺 → (2nd ‘𝑥) ∈
ℕ0) |
60 | | peano2nn0 12203 |
. . . . . . . . 9
⊢
((2nd ‘𝑥) ∈ ℕ0 →
((2nd ‘𝑥)
+ 1) ∈ ℕ0) |
61 | 59, 60 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐺 → ((2nd ‘𝑥) + 1) ∈
ℕ0) |
62 | | ffvelrn 6941 |
. . . . . . . 8
⊢ ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧
((2nd ‘𝑥)
+ 1) ∈ ℕ0) → (𝐹‘((2nd ‘𝑥) + 1)) ∈ (𝒫 𝑋 ∩ Fin)) |
63 | 45, 61, 62 | syl2an 595 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (𝐹‘((2nd ‘𝑥) + 1)) ∈ (𝒫 𝑋 ∩ Fin)) |
64 | 44, 63 | sselid 3915 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (𝐹‘((2nd ‘𝑥) + 1)) ∈
Fin) |
65 | | iunin2 4996 |
. . . . . . . 8
⊢ ∪ 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) = ((𝐵‘𝑥) ∩ ∪
𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))(𝑡𝐵((2nd ‘𝑥) + 1))) |
66 | | heibor.8 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
67 | | oveq1 7262 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑡 → (𝑦𝐵𝑛) = (𝑡𝐵𝑛)) |
68 | 67 | cbviunv 4966 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛) = ∪ 𝑡 ∈ (𝐹‘𝑛)(𝑡𝐵𝑛) |
69 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = ((2nd ‘𝑥) + 1) → (𝐹‘𝑛) = (𝐹‘((2nd ‘𝑥) + 1))) |
70 | 69 | iuneq1d 4948 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = ((2nd ‘𝑥) + 1) → ∪ 𝑡 ∈ (𝐹‘𝑛)(𝑡𝐵𝑛) = ∪ 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))(𝑡𝐵𝑛)) |
71 | 68, 70 | syl5eq 2791 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = ((2nd ‘𝑥) + 1) → ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛) = ∪ 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))(𝑡𝐵𝑛)) |
72 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = ((2nd ‘𝑥) + 1) → (𝑡𝐵𝑛) = (𝑡𝐵((2nd ‘𝑥) + 1))) |
73 | 72 | iuneq2d 4950 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = ((2nd ‘𝑥) + 1) → ∪ 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))(𝑡𝐵𝑛) = ∪ 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))(𝑡𝐵((2nd ‘𝑥) + 1))) |
74 | 71, 73 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (𝑛 = ((2nd ‘𝑥) + 1) → ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛) = ∪ 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))(𝑡𝐵((2nd ‘𝑥) + 1))) |
75 | 74 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑛 = ((2nd ‘𝑥) + 1) → (𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛) ↔ 𝑋 = ∪ 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))(𝑡𝐵((2nd ‘𝑥) + 1)))) |
76 | 75 | rspccva 3551 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
ℕ0 𝑋 =
∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛) ∧ ((2nd ‘𝑥) + 1) ∈
ℕ0) → 𝑋 = ∪ 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))(𝑡𝐵((2nd ‘𝑥) + 1))) |
77 | 66, 61, 76 | syl2an 595 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → 𝑋 = ∪ 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))(𝑡𝐵((2nd ‘𝑥) + 1))) |
78 | 77 | ineq2d 4143 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → ((𝐵‘𝑥) ∩ 𝑋) = ((𝐵‘𝑥) ∩ ∪
𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))(𝑡𝐵((2nd ‘𝑥) + 1)))) |
79 | 9 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐺 → (𝐵‘𝑥) = (𝐵‘〈(1st ‘𝑥), (2nd ‘𝑥)〉)) |
80 | | df-ov 7258 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑥)𝐵(2nd ‘𝑥)) = (𝐵‘〈(1st ‘𝑥), (2nd ‘𝑥)〉) |
81 | 79, 80 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐺 → (𝐵‘𝑥) = ((1st ‘𝑥)𝐵(2nd ‘𝑥))) |
82 | 81 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (𝐵‘𝑥) = ((1st ‘𝑥)𝐵(2nd ‘𝑥))) |
83 | | inss1 4159 |
. . . . . . . . . . . . . . . 16
⊢
(𝒫 𝑋 ∩
Fin) ⊆ 𝒫 𝑋 |
84 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧
(2nd ‘𝑥)
∈ ℕ0) → (𝐹‘(2nd ‘𝑥)) ∈ (𝒫 𝑋 ∩ Fin)) |
85 | 45, 59, 84 | syl2an 595 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (𝐹‘(2nd ‘𝑥)) ∈ (𝒫 𝑋 ∩ Fin)) |
86 | 83, 85 | sselid 3915 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (𝐹‘(2nd ‘𝑥)) ∈ 𝒫 𝑋) |
87 | 86 | elpwid 4541 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (𝐹‘(2nd ‘𝑥)) ⊆ 𝑋) |
88 | 19 | simp2d 1141 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐺 → (1st ‘𝑥) ∈ (𝐹‘(2nd ‘𝑥))) |
89 | 88 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (1st ‘𝑥) ∈ (𝐹‘(2nd ‘𝑥))) |
90 | 87, 89 | sseldd 3918 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (1st ‘𝑥) ∈ 𝑋) |
91 | 59 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (2nd ‘𝑥) ∈
ℕ0) |
92 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (1st ‘𝑥) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((1st ‘𝑥)(ball‘𝐷)(1 / (2↑𝑚)))) |
93 | | oveq2 7263 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (2nd ‘𝑥) → (2↑𝑚) = (2↑(2nd
‘𝑥))) |
94 | 93 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (2nd ‘𝑥) → (1 / (2↑𝑚)) = (1 /
(2↑(2nd ‘𝑥)))) |
95 | 94 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (2nd ‘𝑥) → ((1st
‘𝑥)(ball‘𝐷)(1 / (2↑𝑚))) = ((1st ‘𝑥)(ball‘𝐷)(1 / (2↑(2nd ‘𝑥))))) |
96 | | heibor.5 |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
97 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑥)(ball‘𝐷)(1 / (2↑(2nd ‘𝑥)))) ∈ V |
98 | 92, 95, 96, 97 | ovmpo 7411 |
. . . . . . . . . . . . 13
⊢
(((1st ‘𝑥) ∈ 𝑋 ∧ (2nd ‘𝑥) ∈ ℕ0)
→ ((1st ‘𝑥)𝐵(2nd ‘𝑥)) = ((1st ‘𝑥)(ball‘𝐷)(1 / (2↑(2nd ‘𝑥))))) |
99 | 90, 91, 98 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → ((1st ‘𝑥)𝐵(2nd ‘𝑥)) = ((1st ‘𝑥)(ball‘𝐷)(1 / (2↑(2nd ‘𝑥))))) |
100 | 82, 99 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (𝐵‘𝑥) = ((1st ‘𝑥)(ball‘𝐷)(1 / (2↑(2nd ‘𝑥))))) |
101 | | heibor.6 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
102 | | cmetmet 24355 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
103 | 101, 102 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
104 | | metxmet 23395 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
105 | 103, 104 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
106 | 105 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → 𝐷 ∈ (∞Met‘𝑋)) |
107 | | 2nn 11976 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℕ |
108 | | nnexpcl 13723 |
. . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℕ ∧ (2nd ‘𝑥) ∈ ℕ0) →
(2↑(2nd ‘𝑥)) ∈ ℕ) |
109 | 107, 91, 108 | sylancr 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (2↑(2nd
‘𝑥)) ∈
ℕ) |
110 | 109 | nnrpd 12699 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (2↑(2nd
‘𝑥)) ∈
ℝ+) |
111 | 110 | rpreccld 12711 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (1 / (2↑(2nd
‘𝑥))) ∈
ℝ+) |
112 | 111 | rpxrd 12702 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (1 / (2↑(2nd
‘𝑥))) ∈
ℝ*) |
113 | | blssm 23479 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘𝑥) ∈ 𝑋 ∧ (1 /
(2↑(2nd ‘𝑥))) ∈ ℝ*) →
((1st ‘𝑥)(ball‘𝐷)(1 / (2↑(2nd ‘𝑥)))) ⊆ 𝑋) |
114 | 106, 90, 112, 113 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → ((1st ‘𝑥)(ball‘𝐷)(1 / (2↑(2nd ‘𝑥)))) ⊆ 𝑋) |
115 | 100, 114 | eqsstrd 3955 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (𝐵‘𝑥) ⊆ 𝑋) |
116 | | df-ss 3900 |
. . . . . . . . . 10
⊢ ((𝐵‘𝑥) ⊆ 𝑋 ↔ ((𝐵‘𝑥) ∩ 𝑋) = (𝐵‘𝑥)) |
117 | 115, 116 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → ((𝐵‘𝑥) ∩ 𝑋) = (𝐵‘𝑥)) |
118 | 78, 117 | eqtr3d 2780 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → ((𝐵‘𝑥) ∩ ∪
𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))(𝑡𝐵((2nd ‘𝑥) + 1))) = (𝐵‘𝑥)) |
119 | 65, 118 | syl5eq 2791 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → ∪
𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) = (𝐵‘𝑥)) |
120 | | eqimss2 3974 |
. . . . . . 7
⊢ (∪ 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) = (𝐵‘𝑥) → (𝐵‘𝑥) ⊆ ∪
𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1)))) |
121 | 119, 120 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (𝐵‘𝑥) ⊆ ∪
𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1)))) |
122 | 19 | simp3d 1142 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐺 → ((1st ‘𝑥)𝐵(2nd ‘𝑥)) ∈ 𝐾) |
123 | 81, 122 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐺 → (𝐵‘𝑥) ∈ 𝐾) |
124 | 123 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (𝐵‘𝑥) ∈ 𝐾) |
125 | | fvex 6769 |
. . . . . . . 8
⊢ (𝐵‘𝑥) ∈ V |
126 | 125 | inex1 5236 |
. . . . . . 7
⊢ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ V |
127 | 13, 14, 126 | heiborlem1 35896 |
. . . . . 6
⊢ (((𝐹‘((2nd
‘𝑥) + 1)) ∈ Fin
∧ (𝐵‘𝑥) ⊆ ∪ 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∧ (𝐵‘𝑥) ∈ 𝐾) → ∃𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾) |
128 | 64, 121, 124, 127 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → ∃𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾) |
129 | 83, 63 | sselid 3915 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (𝐹‘((2nd ‘𝑥) + 1)) ∈ 𝒫 𝑋) |
130 | 129 | elpwid 4541 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (𝐹‘((2nd ‘𝑥) + 1)) ⊆ 𝑋) |
131 | 13 | mopnuni 23502 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
132 | 105, 131 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
133 | 132 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → 𝑋 = ∪ 𝐽) |
134 | 130, 133 | sseqtrd 3957 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (𝐹‘((2nd ‘𝑥) + 1)) ⊆ ∪ 𝐽) |
135 | 134 | sselda 3917 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))) → 𝑡 ∈ ∪ 𝐽) |
136 | 135 | adantrr 713 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1)) ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) → 𝑡 ∈ ∪ 𝐽) |
137 | 61 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → ((2nd ‘𝑥) + 1) ∈
ℕ0) |
138 | | id 22 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1)) → 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))) |
139 | | snfi 8788 |
. . . . . . . . . . . 12
⊢ {(𝑡𝐵((2nd ‘𝑥) + 1))} ∈ Fin |
140 | | inss2 4160 |
. . . . . . . . . . . . 13
⊢ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ⊆ (𝑡𝐵((2nd ‘𝑥) + 1)) |
141 | | ovex 7288 |
. . . . . . . . . . . . . . 15
⊢ (𝑡𝐵((2nd ‘𝑥) + 1)) ∈ V |
142 | 141 | unisn 4858 |
. . . . . . . . . . . . . 14
⊢ ∪ {(𝑡𝐵((2nd ‘𝑥) + 1))} = (𝑡𝐵((2nd ‘𝑥) + 1)) |
143 | | uniiun 4984 |
. . . . . . . . . . . . . 14
⊢ ∪ {(𝑡𝐵((2nd ‘𝑥) + 1))} = ∪ 𝑔 ∈ {(𝑡𝐵((2nd ‘𝑥) + 1))}𝑔 |
144 | 142, 143 | eqtr3i 2768 |
. . . . . . . . . . . . 13
⊢ (𝑡𝐵((2nd ‘𝑥) + 1)) = ∪
𝑔 ∈ {(𝑡𝐵((2nd ‘𝑥) + 1))}𝑔 |
145 | 140, 144 | sseqtri 3953 |
. . . . . . . . . . . 12
⊢ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ⊆ ∪ 𝑔 ∈ {(𝑡𝐵((2nd ‘𝑥) + 1))}𝑔 |
146 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑔 ∈ V |
147 | 13, 14, 146 | heiborlem1 35896 |
. . . . . . . . . . . 12
⊢ (({(𝑡𝐵((2nd ‘𝑥) + 1))} ∈ Fin ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ⊆ ∪ 𝑔 ∈ {(𝑡𝐵((2nd ‘𝑥) + 1))}𝑔 ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾) → ∃𝑔 ∈ {(𝑡𝐵((2nd ‘𝑥) + 1))}𝑔 ∈ 𝐾) |
148 | 139, 145,
147 | mp3an12 1449 |
. . . . . . . . . . 11
⊢ (((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾 → ∃𝑔 ∈ {(𝑡𝐵((2nd ‘𝑥) + 1))}𝑔 ∈ 𝐾) |
149 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑡𝐵((2nd ‘𝑥) + 1)) → (𝑔 ∈ 𝐾 ↔ (𝑡𝐵((2nd ‘𝑥) + 1)) ∈ 𝐾)) |
150 | 141, 149 | rexsn 4615 |
. . . . . . . . . . 11
⊢
(∃𝑔 ∈
{(𝑡𝐵((2nd ‘𝑥) + 1))}𝑔 ∈ 𝐾 ↔ (𝑡𝐵((2nd ‘𝑥) + 1)) ∈ 𝐾) |
151 | 148, 150 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾 → (𝑡𝐵((2nd ‘𝑥) + 1)) ∈ 𝐾) |
152 | | ovex 7288 |
. . . . . . . . . . . 12
⊢
((2nd ‘𝑥) + 1) ∈ V |
153 | 13, 14, 6, 42, 152 | heiborlem2 35897 |
. . . . . . . . . . 11
⊢ (𝑡𝐺((2nd ‘𝑥) + 1) ↔ (((2nd ‘𝑥) + 1) ∈
ℕ0 ∧ 𝑡
∈ (𝐹‘((2nd ‘𝑥) + 1)) ∧ (𝑡𝐵((2nd ‘𝑥) + 1)) ∈ 𝐾)) |
154 | 153 | biimpri 227 |
. . . . . . . . . 10
⊢
((((2nd ‘𝑥) + 1) ∈ ℕ0 ∧ 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1)) ∧ (𝑡𝐵((2nd ‘𝑥) + 1)) ∈ 𝐾) → 𝑡𝐺((2nd ‘𝑥) + 1)) |
155 | 137, 138,
151, 154 | syl3an 1158 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ 𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1)) ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾) → 𝑡𝐺((2nd ‘𝑥) + 1)) |
156 | 155 | 3expb 1118 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1)) ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) → 𝑡𝐺((2nd ‘𝑥) + 1)) |
157 | | simprr 769 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1)) ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) → ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾) |
158 | 136, 156,
157 | jca32 515 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐺) ∧ (𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1)) ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) → (𝑡 ∈ ∪ 𝐽 ∧ (𝑡𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾))) |
159 | 158 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → ((𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1)) ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾) → (𝑡 ∈ ∪ 𝐽 ∧ (𝑡𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)))) |
160 | 159 | reximdv2 3198 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → (∃𝑡 ∈ (𝐹‘((2nd ‘𝑥) + 1))((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾 → ∃𝑡 ∈ ∪ 𝐽(𝑡𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾))) |
161 | 128, 160 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐺) → ∃𝑡 ∈ ∪ 𝐽(𝑡𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
162 | 161 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ∃𝑡 ∈ ∪ 𝐽(𝑡𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
163 | 13 | fvexi 6770 |
. . . . 5
⊢ 𝐽 ∈ V |
164 | 163 | uniex 7572 |
. . . 4
⊢ ∪ 𝐽
∈ V |
165 | | breq1 5073 |
. . . . 5
⊢ (𝑡 = (𝑔‘𝑥) → (𝑡𝐺((2nd ‘𝑥) + 1) ↔ (𝑔‘𝑥)𝐺((2nd ‘𝑥) + 1))) |
166 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑡 = (𝑔‘𝑥) → (𝑡𝐵((2nd ‘𝑥) + 1)) = ((𝑔‘𝑥)𝐵((2nd ‘𝑥) + 1))) |
167 | 166 | ineq2d 4143 |
. . . . . 6
⊢ (𝑡 = (𝑔‘𝑥) → ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) = ((𝐵‘𝑥) ∩ ((𝑔‘𝑥)𝐵((2nd ‘𝑥) + 1)))) |
168 | 167 | eleq1d 2823 |
. . . . 5
⊢ (𝑡 = (𝑔‘𝑥) → (((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾 ↔ ((𝐵‘𝑥) ∩ ((𝑔‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
169 | 165, 168 | anbi12d 630 |
. . . 4
⊢ (𝑡 = (𝑔‘𝑥) → ((𝑡𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾) ↔ ((𝑔‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑔‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾))) |
170 | 164, 169 | axcc4dom 10128 |
. . 3
⊢ ((𝐺 ≼ ω ∧
∀𝑥 ∈ 𝐺 ∃𝑡 ∈ ∪ 𝐽(𝑡𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ (𝑡𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) → ∃𝑔(𝑔:𝐺⟶∪ 𝐽 ∧ ∀𝑥 ∈ 𝐺 ((𝑔‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑔‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾))) |
171 | 58, 162, 170 | syl2anc 583 |
. 2
⊢ (𝜑 → ∃𝑔(𝑔:𝐺⟶∪ 𝐽 ∧ ∀𝑥 ∈ 𝐺 ((𝑔‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑔‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾))) |
172 | | exsimpr 1873 |
. 2
⊢
(∃𝑔(𝑔:𝐺⟶∪ 𝐽 ∧ ∀𝑥 ∈ 𝐺 ((𝑔‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑔‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) → ∃𝑔∀𝑥 ∈ 𝐺 ((𝑔‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑔‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
173 | 171, 172 | syl 17 |
1
⊢ (𝜑 → ∃𝑔∀𝑥 ∈ 𝐺 ((𝑔‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑔‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |