Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6s3f Structured version   Visualization version   GIF version

Theorem ac6s3f 37649
Description: Generalization of the Axiom of Choice to classes, with bound-variable hypothesis. (Contributed by Giovanni Mascellani, 19-Aug-2018.)
Hypotheses
Ref Expression
ac6s3f.1 𝑦𝜓
ac6s3f.2 𝐴 ∈ V
ac6s3f.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6s3f (∀𝑥𝐴𝑦𝜑 → ∃𝑓𝑥𝐴 𝜓)
Distinct variable groups:   𝜑,𝑓   𝑥,𝑦   𝑥,𝐴,𝑓   𝑦,𝑓   𝐴,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑓)   𝐴(𝑦)

Proof of Theorem ac6s3f
StepHypRef Expression
1 rexv 3497 . . . 4 (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑)
21ralbii 3089 . . 3 (∀𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∀𝑥𝐴𝑦𝜑)
32biimpri 227 . 2 (∀𝑥𝐴𝑦𝜑 → ∀𝑥𝐴𝑦 ∈ V 𝜑)
4 ac6s3f.1 . . 3 𝑦𝜓
5 ac6s3f.2 . . 3 𝐴 ∈ V
6 ac6s3f.3 . . 3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
74, 5, 6ac6sf 10518 . 2 (∀𝑥𝐴𝑦 ∈ V 𝜑 → ∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥𝐴 𝜓))
8 exsimpr 1864 . 2 (∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥𝐴 𝜓) → ∃𝑓𝑥𝐴 𝜓)
93, 7, 83syl 18 1 (∀𝑥𝐴𝑦𝜑 → ∃𝑓𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wnf 1777  wcel 2098  wral 3057  wrex 3066  Vcvv 3471  wf 6547  cfv 6551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-reg 9621  ax-inf2 9670  ax-ac2 10492
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-om 7875  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-en 8969  df-r1 9793  df-rank 9794  df-card 9968  df-ac 10145
This theorem is referenced by:  ac6s6  37650
  Copyright terms: Public domain W3C validator