Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6s3f Structured version   Visualization version   GIF version

Theorem ac6s3f 37343
Description: Generalization of the Axiom of Choice to classes, with bound-variable hypothesis. (Contributed by Giovanni Mascellani, 19-Aug-2018.)
Hypotheses
Ref Expression
ac6s3f.1 𝑦𝜓
ac6s3f.2 𝐴 ∈ V
ac6s3f.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6s3f (∀𝑥𝐴𝑦𝜑 → ∃𝑓𝑥𝐴 𝜓)
Distinct variable groups:   𝜑,𝑓   𝑥,𝑦   𝑥,𝐴,𝑓   𝑦,𝑓   𝐴,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑓)   𝐴(𝑦)

Proof of Theorem ac6s3f
StepHypRef Expression
1 rexv 3499 . . . 4 (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑)
21ralbii 3092 . . 3 (∀𝑥𝐴𝑦 ∈ V 𝜑 ↔ ∀𝑥𝐴𝑦𝜑)
32biimpri 227 . 2 (∀𝑥𝐴𝑦𝜑 → ∀𝑥𝐴𝑦 ∈ V 𝜑)
4 ac6s3f.1 . . 3 𝑦𝜓
5 ac6s3f.2 . . 3 𝐴 ∈ V
6 ac6s3f.3 . . 3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
74, 5, 6ac6sf 10488 . 2 (∀𝑥𝐴𝑦 ∈ V 𝜑 → ∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥𝐴 𝜓))
8 exsimpr 1871 . 2 (∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥𝐴 𝜓) → ∃𝑓𝑥𝐴 𝜓)
93, 7, 83syl 18 1 (∀𝑥𝐴𝑦𝜑 → ∃𝑓𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wex 1780  wnf 1784  wcel 2105  wral 3060  wrex 3069  Vcvv 3473  wf 6539  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-reg 9591  ax-inf2 9640  ax-ac2 10462
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-en 8944  df-r1 9763  df-rank 9764  df-card 9938  df-ac 10115
This theorem is referenced by:  ac6s6  37344
  Copyright terms: Public domain W3C validator