| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ac6s3f | Structured version Visualization version GIF version | ||
| Description: Generalization of the Axiom of Choice to classes, with bound-variable hypothesis. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
| Ref | Expression |
|---|---|
| ac6s3f.1 | ⊢ Ⅎ𝑦𝜓 |
| ac6s3f.2 | ⊢ 𝐴 ∈ V |
| ac6s3f.3 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ac6s3f | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexv 3475 | . . . 4 ⊢ (∃𝑦 ∈ V 𝜑 ↔ ∃𝑦𝜑) | |
| 2 | 1 | ralbii 3075 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦𝜑) |
| 3 | 2 | biimpri 228 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑) |
| 4 | ac6s3f.1 | . . 3 ⊢ Ⅎ𝑦𝜓 | |
| 5 | ac6s3f.2 | . . 3 ⊢ 𝐴 ∈ V | |
| 6 | ac6s3f.3 | . . 3 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
| 7 | 4, 5, 6 | ac6sf 10442 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ V 𝜑 → ∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 8 | exsimpr 1869 | . 2 ⊢ (∃𝑓(𝑓:𝐴⟶V ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑓∀𝑥 ∈ 𝐴 𝜓) | |
| 9 | 3, 7, 8 | 3syl 18 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ⟶wf 6507 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-en 8919 df-r1 9717 df-rank 9718 df-card 9892 df-ac 10069 |
| This theorem is referenced by: ac6s6 38166 |
| Copyright terms: Public domain | W3C validator |