MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac4 Structured version   Visualization version   GIF version

Theorem dfac4 10160
Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of [BellMachover] p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac4 (CHOICE ↔ ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Distinct variable group:   𝑥,𝑓,𝑧

Proof of Theorem dfac4
Dummy variables 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 10159 . 2 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
2 fveq1 6906 . . . . . . . . 9 (𝑓 = 𝑦 → (𝑓𝑧) = (𝑦𝑧))
32eleq1d 2824 . . . . . . . 8 (𝑓 = 𝑦 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑦𝑧) ∈ 𝑧))
43imbi2d 340 . . . . . . 7 (𝑓 = 𝑦 → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
54ralbidv 3176 . . . . . 6 (𝑓 = 𝑦 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
65cbvexvw 2034 . . . . 5 (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧))
7 fvex 6920 . . . . . . . . 9 (𝑦𝑤) ∈ V
8 eqid 2735 . . . . . . . . 9 (𝑤𝑥 ↦ (𝑦𝑤)) = (𝑤𝑥 ↦ (𝑦𝑤))
97, 8fnmpti 6712 . . . . . . . 8 (𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥
10 fveq2 6907 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑦𝑤) = (𝑦𝑧))
11 fvex 6920 . . . . . . . . . . . . 13 (𝑦𝑧) ∈ V
1210, 8, 11fvmpt 7016 . . . . . . . . . . . 12 (𝑧𝑥 → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) = (𝑦𝑧))
1312eleq1d 2824 . . . . . . . . . . 11 (𝑧𝑥 → (((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧 ↔ (𝑦𝑧) ∈ 𝑧))
1413imbi2d 340 . . . . . . . . . 10 (𝑧𝑥 → ((𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
1514ralbiia 3089 . . . . . . . . 9 (∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧))
1615anbi2i 623 . . . . . . . 8 (((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)) ↔ ((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
179, 16mpbiran 709 . . . . . . 7 (((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧))
18 fvrn0 6937 . . . . . . . . . . 11 (𝑦𝑤) ∈ (ran 𝑦 ∪ {∅})
1918rgenw 3063 . . . . . . . . . 10 𝑤𝑥 (𝑦𝑤) ∈ (ran 𝑦 ∪ {∅})
208fmpt 7130 . . . . . . . . . 10 (∀𝑤𝑥 (𝑦𝑤) ∈ (ran 𝑦 ∪ {∅}) ↔ (𝑤𝑥 ↦ (𝑦𝑤)):𝑥⟶(ran 𝑦 ∪ {∅}))
2119, 20mpbi 230 . . . . . . . . 9 (𝑤𝑥 ↦ (𝑦𝑤)):𝑥⟶(ran 𝑦 ∪ {∅})
22 vex 3482 . . . . . . . . 9 𝑥 ∈ V
23 vex 3482 . . . . . . . . . . 11 𝑦 ∈ V
2423rnex 7933 . . . . . . . . . 10 ran 𝑦 ∈ V
25 p0ex 5390 . . . . . . . . . 10 {∅} ∈ V
2624, 25unex 7763 . . . . . . . . 9 (ran 𝑦 ∪ {∅}) ∈ V
27 fex2 7957 . . . . . . . . 9 (((𝑤𝑥 ↦ (𝑦𝑤)):𝑥⟶(ran 𝑦 ∪ {∅}) ∧ 𝑥 ∈ V ∧ (ran 𝑦 ∪ {∅}) ∈ V) → (𝑤𝑥 ↦ (𝑦𝑤)) ∈ V)
2821, 22, 26, 27mp3an 1460 . . . . . . . 8 (𝑤𝑥 ↦ (𝑦𝑤)) ∈ V
29 fneq1 6660 . . . . . . . . 9 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → (𝑓 Fn 𝑥 ↔ (𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥))
30 fveq1 6906 . . . . . . . . . . . 12 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → (𝑓𝑧) = ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧))
3130eleq1d 2824 . . . . . . . . . . 11 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧))
3231imbi2d 340 . . . . . . . . . 10 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)))
3332ralbidv 3176 . . . . . . . . 9 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)))
3429, 33anbi12d 632 . . . . . . . 8 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → ((𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧))))
3528, 34spcev 3606 . . . . . . 7 (((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
3617, 35sylbir 235 . . . . . 6 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
3736exlimiv 1928 . . . . 5 (∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
386, 37sylbi 217 . . . 4 (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
39 exsimpr 1867 . . . 4 (∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
4038, 39impbii 209 . . 3 (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
4140albii 1816 . 2 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
421, 41bitri 275 1 (CHOICE ↔ ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  Vcvv 3478  cun 3961  c0 4339  {csn 4631  cmpt 5231  ran crn 5690   Fn wfn 6558  wf 6559  cfv 6563  CHOICEwac 10153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ac 10154
This theorem is referenced by:  dfac5  10167  dfacacn  10180  ac5  10515
  Copyright terms: Public domain W3C validator