MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac4 Structured version   Visualization version   GIF version

Theorem dfac4 9878
Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of [BellMachover] p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac4 (CHOICE ↔ ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Distinct variable group:   𝑥,𝑓,𝑧

Proof of Theorem dfac4
Dummy variables 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 9877 . 2 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
2 fveq1 6773 . . . . . . . . 9 (𝑓 = 𝑦 → (𝑓𝑧) = (𝑦𝑧))
32eleq1d 2823 . . . . . . . 8 (𝑓 = 𝑦 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑦𝑧) ∈ 𝑧))
43imbi2d 341 . . . . . . 7 (𝑓 = 𝑦 → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
54ralbidv 3112 . . . . . 6 (𝑓 = 𝑦 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
65cbvexvw 2040 . . . . 5 (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧))
7 fvex 6787 . . . . . . . . 9 (𝑦𝑤) ∈ V
8 eqid 2738 . . . . . . . . 9 (𝑤𝑥 ↦ (𝑦𝑤)) = (𝑤𝑥 ↦ (𝑦𝑤))
97, 8fnmpti 6576 . . . . . . . 8 (𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥
10 fveq2 6774 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑦𝑤) = (𝑦𝑧))
11 fvex 6787 . . . . . . . . . . . . 13 (𝑦𝑧) ∈ V
1210, 8, 11fvmpt 6875 . . . . . . . . . . . 12 (𝑧𝑥 → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) = (𝑦𝑧))
1312eleq1d 2823 . . . . . . . . . . 11 (𝑧𝑥 → (((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧 ↔ (𝑦𝑧) ∈ 𝑧))
1413imbi2d 341 . . . . . . . . . 10 (𝑧𝑥 → ((𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
1514ralbiia 3091 . . . . . . . . 9 (∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧))
1615anbi2i 623 . . . . . . . 8 (((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)) ↔ ((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
179, 16mpbiran 706 . . . . . . 7 (((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧))
18 fvrn0 6802 . . . . . . . . . . 11 (𝑦𝑤) ∈ (ran 𝑦 ∪ {∅})
1918rgenw 3076 . . . . . . . . . 10 𝑤𝑥 (𝑦𝑤) ∈ (ran 𝑦 ∪ {∅})
208fmpt 6984 . . . . . . . . . 10 (∀𝑤𝑥 (𝑦𝑤) ∈ (ran 𝑦 ∪ {∅}) ↔ (𝑤𝑥 ↦ (𝑦𝑤)):𝑥⟶(ran 𝑦 ∪ {∅}))
2119, 20mpbi 229 . . . . . . . . 9 (𝑤𝑥 ↦ (𝑦𝑤)):𝑥⟶(ran 𝑦 ∪ {∅})
22 vex 3436 . . . . . . . . 9 𝑥 ∈ V
23 vex 3436 . . . . . . . . . . 11 𝑦 ∈ V
2423rnex 7759 . . . . . . . . . 10 ran 𝑦 ∈ V
25 p0ex 5307 . . . . . . . . . 10 {∅} ∈ V
2624, 25unex 7596 . . . . . . . . 9 (ran 𝑦 ∪ {∅}) ∈ V
27 fex2 7780 . . . . . . . . 9 (((𝑤𝑥 ↦ (𝑦𝑤)):𝑥⟶(ran 𝑦 ∪ {∅}) ∧ 𝑥 ∈ V ∧ (ran 𝑦 ∪ {∅}) ∈ V) → (𝑤𝑥 ↦ (𝑦𝑤)) ∈ V)
2821, 22, 26, 27mp3an 1460 . . . . . . . 8 (𝑤𝑥 ↦ (𝑦𝑤)) ∈ V
29 fneq1 6524 . . . . . . . . 9 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → (𝑓 Fn 𝑥 ↔ (𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥))
30 fveq1 6773 . . . . . . . . . . . 12 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → (𝑓𝑧) = ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧))
3130eleq1d 2823 . . . . . . . . . . 11 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧))
3231imbi2d 341 . . . . . . . . . 10 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)))
3332ralbidv 3112 . . . . . . . . 9 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)))
3429, 33anbi12d 631 . . . . . . . 8 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → ((𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧))))
3528, 34spcev 3545 . . . . . . 7 (((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
3617, 35sylbir 234 . . . . . 6 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
3736exlimiv 1933 . . . . 5 (∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
386, 37sylbi 216 . . . 4 (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
39 exsimpr 1872 . . . 4 (∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
4038, 39impbii 208 . . 3 (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
4140albii 1822 . 2 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
421, 41bitri 274 1 (CHOICE ↔ ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  Vcvv 3432  cun 3885  c0 4256  {csn 4561  cmpt 5157  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  CHOICEwac 9871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ac 9872
This theorem is referenced by:  dfac5  9884  dfacacn  9897  ac5  10233
  Copyright terms: Public domain W3C validator