MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac4 Structured version   Visualization version   GIF version

Theorem dfac4 9542
Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of [BellMachover] p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac4 (CHOICE ↔ ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Distinct variable group:   𝑥,𝑓,𝑧

Proof of Theorem dfac4
Dummy variables 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 9541 . 2 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
2 fveq1 6664 . . . . . . . . 9 (𝑓 = 𝑦 → (𝑓𝑧) = (𝑦𝑧))
32eleq1d 2897 . . . . . . . 8 (𝑓 = 𝑦 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑦𝑧) ∈ 𝑧))
43imbi2d 343 . . . . . . 7 (𝑓 = 𝑦 → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
54ralbidv 3197 . . . . . 6 (𝑓 = 𝑦 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
65cbvexvw 2040 . . . . 5 (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧))
7 fvex 6678 . . . . . . . . 9 (𝑦𝑤) ∈ V
8 eqid 2821 . . . . . . . . 9 (𝑤𝑥 ↦ (𝑦𝑤)) = (𝑤𝑥 ↦ (𝑦𝑤))
97, 8fnmpti 6486 . . . . . . . 8 (𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥
10 fveq2 6665 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑦𝑤) = (𝑦𝑧))
11 fvex 6678 . . . . . . . . . . . . 13 (𝑦𝑧) ∈ V
1210, 8, 11fvmpt 6763 . . . . . . . . . . . 12 (𝑧𝑥 → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) = (𝑦𝑧))
1312eleq1d 2897 . . . . . . . . . . 11 (𝑧𝑥 → (((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧 ↔ (𝑦𝑧) ∈ 𝑧))
1413imbi2d 343 . . . . . . . . . 10 (𝑧𝑥 → ((𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
1514ralbiia 3164 . . . . . . . . 9 (∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧))
1615anbi2i 624 . . . . . . . 8 (((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)) ↔ ((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
179, 16mpbiran 707 . . . . . . 7 (((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧))
18 fvrn0 6693 . . . . . . . . . . 11 (𝑦𝑤) ∈ (ran 𝑦 ∪ {∅})
1918rgenw 3150 . . . . . . . . . 10 𝑤𝑥 (𝑦𝑤) ∈ (ran 𝑦 ∪ {∅})
208fmpt 6869 . . . . . . . . . 10 (∀𝑤𝑥 (𝑦𝑤) ∈ (ran 𝑦 ∪ {∅}) ↔ (𝑤𝑥 ↦ (𝑦𝑤)):𝑥⟶(ran 𝑦 ∪ {∅}))
2119, 20mpbi 232 . . . . . . . . 9 (𝑤𝑥 ↦ (𝑦𝑤)):𝑥⟶(ran 𝑦 ∪ {∅})
22 vex 3498 . . . . . . . . 9 𝑥 ∈ V
23 vex 3498 . . . . . . . . . . 11 𝑦 ∈ V
2423rnex 7611 . . . . . . . . . 10 ran 𝑦 ∈ V
25 p0ex 5277 . . . . . . . . . 10 {∅} ∈ V
2624, 25unex 7463 . . . . . . . . 9 (ran 𝑦 ∪ {∅}) ∈ V
27 fex2 7632 . . . . . . . . 9 (((𝑤𝑥 ↦ (𝑦𝑤)):𝑥⟶(ran 𝑦 ∪ {∅}) ∧ 𝑥 ∈ V ∧ (ran 𝑦 ∪ {∅}) ∈ V) → (𝑤𝑥 ↦ (𝑦𝑤)) ∈ V)
2821, 22, 26, 27mp3an 1457 . . . . . . . 8 (𝑤𝑥 ↦ (𝑦𝑤)) ∈ V
29 fneq1 6439 . . . . . . . . 9 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → (𝑓 Fn 𝑥 ↔ (𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥))
30 fveq1 6664 . . . . . . . . . . . 12 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → (𝑓𝑧) = ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧))
3130eleq1d 2897 . . . . . . . . . . 11 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧))
3231imbi2d 343 . . . . . . . . . 10 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)))
3332ralbidv 3197 . . . . . . . . 9 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)))
3429, 33anbi12d 632 . . . . . . . 8 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → ((𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧))))
3528, 34spcev 3607 . . . . . . 7 (((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
3617, 35sylbir 237 . . . . . 6 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
3736exlimiv 1927 . . . . 5 (∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
386, 37sylbi 219 . . . 4 (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
39 exsimpr 1866 . . . 4 (∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
4038, 39impbii 211 . . 3 (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
4140albii 1816 . 2 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
421, 41bitri 277 1 (CHOICE ↔ ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1531   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  Vcvv 3495  cun 3934  c0 4291  {csn 4561  cmpt 5139  ran crn 5551   Fn wfn 6345  wf 6346  cfv 6350  CHOICEwac 9535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-ac 9536
This theorem is referenced by:  dfac5  9548  dfacacn  9561  ac5  9893
  Copyright terms: Public domain W3C validator