MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac4 Structured version   Visualization version   GIF version

Theorem dfac4 10117
Description: Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of [BellMachover] p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dfac4 (CHOICE ↔ ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Distinct variable group:   𝑥,𝑓,𝑧

Proof of Theorem dfac4
Dummy variables 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 10116 . 2 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
2 fveq1 6891 . . . . . . . . 9 (𝑓 = 𝑦 → (𝑓𝑧) = (𝑦𝑧))
32eleq1d 2819 . . . . . . . 8 (𝑓 = 𝑦 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑦𝑧) ∈ 𝑧))
43imbi2d 341 . . . . . . 7 (𝑓 = 𝑦 → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
54ralbidv 3178 . . . . . 6 (𝑓 = 𝑦 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
65cbvexvw 2041 . . . . 5 (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧))
7 fvex 6905 . . . . . . . . 9 (𝑦𝑤) ∈ V
8 eqid 2733 . . . . . . . . 9 (𝑤𝑥 ↦ (𝑦𝑤)) = (𝑤𝑥 ↦ (𝑦𝑤))
97, 8fnmpti 6694 . . . . . . . 8 (𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥
10 fveq2 6892 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑦𝑤) = (𝑦𝑧))
11 fvex 6905 . . . . . . . . . . . . 13 (𝑦𝑧) ∈ V
1210, 8, 11fvmpt 6999 . . . . . . . . . . . 12 (𝑧𝑥 → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) = (𝑦𝑧))
1312eleq1d 2819 . . . . . . . . . . 11 (𝑧𝑥 → (((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧 ↔ (𝑦𝑧) ∈ 𝑧))
1413imbi2d 341 . . . . . . . . . 10 (𝑧𝑥 → ((𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
1514ralbiia 3092 . . . . . . . . 9 (∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧))
1615anbi2i 624 . . . . . . . 8 (((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)) ↔ ((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧)))
179, 16mpbiran 708 . . . . . . 7 (((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧))
18 fvrn0 6922 . . . . . . . . . . 11 (𝑦𝑤) ∈ (ran 𝑦 ∪ {∅})
1918rgenw 3066 . . . . . . . . . 10 𝑤𝑥 (𝑦𝑤) ∈ (ran 𝑦 ∪ {∅})
208fmpt 7110 . . . . . . . . . 10 (∀𝑤𝑥 (𝑦𝑤) ∈ (ran 𝑦 ∪ {∅}) ↔ (𝑤𝑥 ↦ (𝑦𝑤)):𝑥⟶(ran 𝑦 ∪ {∅}))
2119, 20mpbi 229 . . . . . . . . 9 (𝑤𝑥 ↦ (𝑦𝑤)):𝑥⟶(ran 𝑦 ∪ {∅})
22 vex 3479 . . . . . . . . 9 𝑥 ∈ V
23 vex 3479 . . . . . . . . . . 11 𝑦 ∈ V
2423rnex 7903 . . . . . . . . . 10 ran 𝑦 ∈ V
25 p0ex 5383 . . . . . . . . . 10 {∅} ∈ V
2624, 25unex 7733 . . . . . . . . 9 (ran 𝑦 ∪ {∅}) ∈ V
27 fex2 7924 . . . . . . . . 9 (((𝑤𝑥 ↦ (𝑦𝑤)):𝑥⟶(ran 𝑦 ∪ {∅}) ∧ 𝑥 ∈ V ∧ (ran 𝑦 ∪ {∅}) ∈ V) → (𝑤𝑥 ↦ (𝑦𝑤)) ∈ V)
2821, 22, 26, 27mp3an 1462 . . . . . . . 8 (𝑤𝑥 ↦ (𝑦𝑤)) ∈ V
29 fneq1 6641 . . . . . . . . 9 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → (𝑓 Fn 𝑥 ↔ (𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥))
30 fveq1 6891 . . . . . . . . . . . 12 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → (𝑓𝑧) = ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧))
3130eleq1d 2819 . . . . . . . . . . 11 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧))
3231imbi2d 341 . . . . . . . . . 10 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)))
3332ralbidv 3178 . . . . . . . . 9 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)))
3429, 33anbi12d 632 . . . . . . . 8 (𝑓 = (𝑤𝑥 ↦ (𝑦𝑤)) → ((𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧))))
3528, 34spcev 3597 . . . . . . 7 (((𝑤𝑥 ↦ (𝑦𝑤)) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝑤𝑥 ↦ (𝑦𝑤))‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
3617, 35sylbir 234 . . . . . 6 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
3736exlimiv 1934 . . . . 5 (∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → (𝑦𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
386, 37sylbi 216 . . . 4 (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
39 exsimpr 1873 . . . 4 (∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
4038, 39impbii 208 . . 3 (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
4140albii 1822 . 2 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
421, 41bitri 275 1 (CHOICE ↔ ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wex 1782  wcel 2107  wne 2941  wral 3062  Vcvv 3475  cun 3947  c0 4323  {csn 4629  cmpt 5232  ran crn 5678   Fn wfn 6539  wf 6540  cfv 6544  CHOICEwac 10110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ac 10111
This theorem is referenced by:  dfac5  10123  dfacacn  10136  ac5  10472
  Copyright terms: Public domain W3C validator