Step | Hyp | Ref
| Expression |
1 | | dfac3 9877 |
. 2
⊢
(CHOICE ↔ ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
2 | | fveq1 6773 |
. . . . . . . . 9
⊢ (𝑓 = 𝑦 → (𝑓‘𝑧) = (𝑦‘𝑧)) |
3 | 2 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑓 = 𝑦 → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑦‘𝑧) ∈ 𝑧)) |
4 | 3 | imbi2d 341 |
. . . . . . 7
⊢ (𝑓 = 𝑦 → ((𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝑦‘𝑧) ∈ 𝑧))) |
5 | 4 | ralbidv 3112 |
. . . . . 6
⊢ (𝑓 = 𝑦 → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑦‘𝑧) ∈ 𝑧))) |
6 | 5 | cbvexvw 2040 |
. . . . 5
⊢
(∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑦‘𝑧) ∈ 𝑧)) |
7 | | fvex 6787 |
. . . . . . . . 9
⊢ (𝑦‘𝑤) ∈ V |
8 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) = (𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) |
9 | 7, 8 | fnmpti 6576 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) Fn 𝑥 |
10 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (𝑦‘𝑤) = (𝑦‘𝑧)) |
11 | | fvex 6787 |
. . . . . . . . . . . . 13
⊢ (𝑦‘𝑧) ∈ V |
12 | 10, 8, 11 | fvmpt 6875 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑥 → ((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤))‘𝑧) = (𝑦‘𝑧)) |
13 | 12 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝑥 → (((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤))‘𝑧) ∈ 𝑧 ↔ (𝑦‘𝑧) ∈ 𝑧)) |
14 | 13 | imbi2d 341 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑥 → ((𝑧 ≠ ∅ → ((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤))‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝑦‘𝑧) ∈ 𝑧))) |
15 | 14 | ralbiia 3091 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → ((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤))‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑦‘𝑧) ∈ 𝑧)) |
16 | 15 | anbi2i 623 |
. . . . . . . 8
⊢ (((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤))‘𝑧) ∈ 𝑧)) ↔ ((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑦‘𝑧) ∈ 𝑧))) |
17 | 9, 16 | mpbiran 706 |
. . . . . . 7
⊢ (((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤))‘𝑧) ∈ 𝑧)) ↔ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑦‘𝑧) ∈ 𝑧)) |
18 | | fvrn0 6802 |
. . . . . . . . . . 11
⊢ (𝑦‘𝑤) ∈ (ran 𝑦 ∪ {∅}) |
19 | 18 | rgenw 3076 |
. . . . . . . . . 10
⊢
∀𝑤 ∈
𝑥 (𝑦‘𝑤) ∈ (ran 𝑦 ∪ {∅}) |
20 | 8 | fmpt 6984 |
. . . . . . . . . 10
⊢
(∀𝑤 ∈
𝑥 (𝑦‘𝑤) ∈ (ran 𝑦 ∪ {∅}) ↔ (𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)):𝑥⟶(ran 𝑦 ∪ {∅})) |
21 | 19, 20 | mpbi 229 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)):𝑥⟶(ran 𝑦 ∪ {∅}) |
22 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
23 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
24 | 23 | rnex 7759 |
. . . . . . . . . 10
⊢ ran 𝑦 ∈ V |
25 | | p0ex 5307 |
. . . . . . . . . 10
⊢ {∅}
∈ V |
26 | 24, 25 | unex 7596 |
. . . . . . . . 9
⊢ (ran
𝑦 ∪ {∅}) ∈
V |
27 | | fex2 7780 |
. . . . . . . . 9
⊢ (((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)):𝑥⟶(ran 𝑦 ∪ {∅}) ∧ 𝑥 ∈ V ∧ (ran 𝑦 ∪ {∅}) ∈ V) → (𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) ∈ V) |
28 | 21, 22, 26, 27 | mp3an 1460 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) ∈ V |
29 | | fneq1 6524 |
. . . . . . . . 9
⊢ (𝑓 = (𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) → (𝑓 Fn 𝑥 ↔ (𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) Fn 𝑥)) |
30 | | fveq1 6773 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) → (𝑓‘𝑧) = ((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤))‘𝑧)) |
31 | 30 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) → ((𝑓‘𝑧) ∈ 𝑧 ↔ ((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤))‘𝑧) ∈ 𝑧)) |
32 | 31 | imbi2d 341 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) → ((𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤))‘𝑧) ∈ 𝑧))) |
33 | 32 | ralbidv 3112 |
. . . . . . . . 9
⊢ (𝑓 = (𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤))‘𝑧) ∈ 𝑧))) |
34 | 29, 33 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑓 = (𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) → ((𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) ↔ ((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤))‘𝑧) ∈ 𝑧)))) |
35 | 28, 34 | spcev 3545 |
. . . . . . 7
⊢ (((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤)) Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝑤 ∈ 𝑥 ↦ (𝑦‘𝑤))‘𝑧) ∈ 𝑧)) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
36 | 17, 35 | sylbir 234 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ → (𝑦‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
37 | 36 | exlimiv 1933 |
. . . . 5
⊢
(∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑦‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
38 | 6, 37 | sylbi 216 |
. . . 4
⊢
(∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
39 | | exsimpr 1872 |
. . . 4
⊢
(∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
40 | 38, 39 | impbii 208 |
. . 3
⊢
(∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
41 | 40 | albii 1822 |
. 2
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
42 | 1, 41 | bitri 274 |
1
⊢
(CHOICE ↔ ∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |