| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finacn | Structured version Visualization version GIF version | ||
| Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| finacn | ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8822 | . . . . . . . . 9 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅})) | |
| 2 | 1 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅})) |
| 3 | ffvelcdm 7053 | . . . . . . . . . . . 12 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅})) | |
| 4 | eldifsni 4754 | . . . . . . . . . . . 12 ⊢ ((𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓‘𝑦) ≠ ∅) | |
| 5 | 3, 4 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ≠ ∅) |
| 6 | n0 4316 | . . . . . . . . . . 11 ⊢ ((𝑓‘𝑦) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) | |
| 7 | 5, 6 | sylib 218 | . . . . . . . . . 10 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) |
| 8 | rexv 3475 | . . . . . . . . . 10 ⊢ (∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦) ↔ ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) | |
| 9 | 7, 8 | sylibr 234 | . . . . . . . . 9 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) |
| 10 | 9 | ralrimiva 3125 | . . . . . . . 8 ⊢ (𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) → ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) |
| 11 | 2, 10 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) |
| 12 | eleq1 2816 | . . . . . . . 8 ⊢ (𝑧 = (𝑔‘𝑦) → (𝑧 ∈ (𝑓‘𝑦) ↔ (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
| 13 | 12 | ac6sfi 9231 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
| 14 | 11, 13 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
| 15 | exsimpr 1869 | . . . . . 6 ⊢ (∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → ∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
| 17 | 16 | ralrimiva 3125 | . . . 4 ⊢ (𝐴 ∈ Fin → ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
| 18 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 19 | isacn 9997 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ Fin) → (𝑥 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
| 20 | 18, 19 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
| 21 | 17, 20 | mpbird 257 | . . 3 ⊢ (𝐴 ∈ Fin → 𝑥 ∈ AC 𝐴) |
| 22 | 18 | a1i 11 | . . 3 ⊢ (𝐴 ∈ Fin → 𝑥 ∈ V) |
| 23 | 21, 22 | 2thd 265 | . 2 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ V)) |
| 24 | 23 | eqrdv 2727 | 1 ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ∖ cdif 3911 ∅c0 4296 𝒫 cpw 4563 {csn 4589 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 AC wacn 9891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-map 8801 df-en 8919 df-fin 8922 df-acn 9895 |
| This theorem is referenced by: acndom 10004 |
| Copyright terms: Public domain | W3C validator |