|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > finacn | Structured version Visualization version GIF version | ||
| Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| finacn | ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elmapi 8890 | . . . . . . . . 9 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅})) | |
| 2 | 1 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅})) | 
| 3 | ffvelcdm 7100 | . . . . . . . . . . . 12 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅})) | |
| 4 | eldifsni 4789 | . . . . . . . . . . . 12 ⊢ ((𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓‘𝑦) ≠ ∅) | |
| 5 | 3, 4 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ≠ ∅) | 
| 6 | n0 4352 | . . . . . . . . . . 11 ⊢ ((𝑓‘𝑦) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) | |
| 7 | 5, 6 | sylib 218 | . . . . . . . . . 10 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) | 
| 8 | rexv 3508 | . . . . . . . . . 10 ⊢ (∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦) ↔ ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) | |
| 9 | 7, 8 | sylibr 234 | . . . . . . . . 9 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) | 
| 10 | 9 | ralrimiva 3145 | . . . . . . . 8 ⊢ (𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) → ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) | 
| 11 | 2, 10 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) | 
| 12 | eleq1 2828 | . . . . . . . 8 ⊢ (𝑧 = (𝑔‘𝑦) → (𝑧 ∈ (𝑓‘𝑦) ↔ (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
| 13 | 12 | ac6sfi 9321 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | 
| 14 | 11, 13 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | 
| 15 | exsimpr 1868 | . . . . . 6 ⊢ (∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → ∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) | 
| 17 | 16 | ralrimiva 3145 | . . . 4 ⊢ (𝐴 ∈ Fin → ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) | 
| 18 | vex 3483 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 19 | isacn 10085 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ Fin) → (𝑥 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
| 20 | 18, 19 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | 
| 21 | 17, 20 | mpbird 257 | . . 3 ⊢ (𝐴 ∈ Fin → 𝑥 ∈ AC 𝐴) | 
| 22 | 18 | a1i 11 | . . 3 ⊢ (𝐴 ∈ Fin → 𝑥 ∈ V) | 
| 23 | 21, 22 | 2thd 265 | . 2 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ V)) | 
| 24 | 23 | eqrdv 2734 | 1 ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 Vcvv 3479 ∖ cdif 3947 ∅c0 4332 𝒫 cpw 4599 {csn 4625 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ↑m cmap 8867 Fincfn 8986 AC wacn 9979 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-map 8869 df-en 8987 df-fin 8990 df-acn 9983 | 
| This theorem is referenced by: acndom 10092 | 
| Copyright terms: Public domain | W3C validator |