MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finacn Structured version   Visualization version   GIF version

Theorem finacn 10088
Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
finacn (𝐴 ∈ Fin → AC 𝐴 = V)

Proof of Theorem finacn
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8888 . . . . . . . . 9 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}))
21adantl 481 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}))
3 ffvelcdm 7101 . . . . . . . . . . . 12 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → (𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}))
4 eldifsni 4795 . . . . . . . . . . . 12 ((𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓𝑦) ≠ ∅)
53, 4syl 17 . . . . . . . . . . 11 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → (𝑓𝑦) ≠ ∅)
6 n0 4359 . . . . . . . . . . 11 ((𝑓𝑦) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑓𝑦))
75, 6sylib 218 . . . . . . . . . 10 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → ∃𝑧 𝑧 ∈ (𝑓𝑦))
8 rexv 3507 . . . . . . . . . 10 (∃𝑧 ∈ V 𝑧 ∈ (𝑓𝑦) ↔ ∃𝑧 𝑧 ∈ (𝑓𝑦))
97, 8sylibr 234 . . . . . . . . 9 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → ∃𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
109ralrimiva 3144 . . . . . . . 8 (𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) → ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
112, 10syl 17 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
12 eleq1 2827 . . . . . . . 8 (𝑧 = (𝑔𝑦) → (𝑧 ∈ (𝑓𝑦) ↔ (𝑔𝑦) ∈ (𝑓𝑦)))
1312ac6sfi 9318 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
1411, 13syldan 591 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
15 exsimpr 1867 . . . . . 6 (∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)) → ∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
1614, 15syl 17 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
1716ralrimiva 3144 . . . 4 (𝐴 ∈ Fin → ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
18 vex 3482 . . . . 5 𝑥 ∈ V
19 isacn 10082 . . . . 5 ((𝑥 ∈ V ∧ 𝐴 ∈ Fin) → (𝑥AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
2018, 19mpan 690 . . . 4 (𝐴 ∈ Fin → (𝑥AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
2117, 20mpbird 257 . . 3 (𝐴 ∈ Fin → 𝑥AC 𝐴)
2218a1i 11 . . 3 (𝐴 ∈ Fin → 𝑥 ∈ V)
2321, 222thd 265 . 2 (𝐴 ∈ Fin → (𝑥AC 𝐴𝑥 ∈ V))
2423eqrdv 2733 1 (𝐴 ∈ Fin → AC 𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  c0 4339  𝒫 cpw 4605  {csn 4631  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  Fincfn 8984  AC wacn 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-map 8867  df-en 8985  df-fin 8988  df-acn 9980
This theorem is referenced by:  acndom  10089
  Copyright terms: Public domain W3C validator