MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finacn Structured version   Visualization version   GIF version

Theorem finacn 9911
Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
finacn (𝐴 ∈ Fin → AC 𝐴 = V)

Proof of Theorem finacn
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8712 . . . . . . . . 9 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}))
21adantl 483 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}))
3 ffvelcdm 7019 . . . . . . . . . . . 12 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → (𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}))
4 eldifsni 4741 . . . . . . . . . . . 12 ((𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓𝑦) ≠ ∅)
53, 4syl 17 . . . . . . . . . . 11 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → (𝑓𝑦) ≠ ∅)
6 n0 4297 . . . . . . . . . . 11 ((𝑓𝑦) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑓𝑦))
75, 6sylib 217 . . . . . . . . . 10 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → ∃𝑧 𝑧 ∈ (𝑓𝑦))
8 rexv 3467 . . . . . . . . . 10 (∃𝑧 ∈ V 𝑧 ∈ (𝑓𝑦) ↔ ∃𝑧 𝑧 ∈ (𝑓𝑦))
97, 8sylibr 233 . . . . . . . . 9 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → ∃𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
109ralrimiva 3140 . . . . . . . 8 (𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) → ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
112, 10syl 17 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
12 eleq1 2825 . . . . . . . 8 (𝑧 = (𝑔𝑦) → (𝑧 ∈ (𝑓𝑦) ↔ (𝑔𝑦) ∈ (𝑓𝑦)))
1312ac6sfi 9156 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
1411, 13syldan 592 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
15 exsimpr 1872 . . . . . 6 (∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)) → ∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
1614, 15syl 17 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
1716ralrimiva 3140 . . . 4 (𝐴 ∈ Fin → ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
18 vex 3446 . . . . 5 𝑥 ∈ V
19 isacn 9905 . . . . 5 ((𝑥 ∈ V ∧ 𝐴 ∈ Fin) → (𝑥AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
2018, 19mpan 688 . . . 4 (𝐴 ∈ Fin → (𝑥AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
2117, 20mpbird 257 . . 3 (𝐴 ∈ Fin → 𝑥AC 𝐴)
2218a1i 11 . . 3 (𝐴 ∈ Fin → 𝑥 ∈ V)
2321, 222thd 265 . 2 (𝐴 ∈ Fin → (𝑥AC 𝐴𝑥 ∈ V))
2423eqrdv 2735 1 (𝐴 ∈ Fin → AC 𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wex 1781  wcel 2106  wne 2941  wral 3062  wrex 3071  Vcvv 3442  cdif 3898  c0 4273  𝒫 cpw 4551  {csn 4577  wf 6479  cfv 6483  (class class class)co 7341  m cmap 8690  Fincfn 8808  AC wacn 9799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-map 8692  df-en 8809  df-fin 8812  df-acn 9803
This theorem is referenced by:  acndom  9912
  Copyright terms: Public domain W3C validator