![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finacn | Structured version Visualization version GIF version |
Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
finacn | ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8845 | . . . . . . . . 9 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅})) | |
2 | 1 | adantl 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅})) |
3 | ffvelcdm 7082 | . . . . . . . . . . . 12 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅})) | |
4 | eldifsni 4792 | . . . . . . . . . . . 12 ⊢ ((𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓‘𝑦) ≠ ∅) | |
5 | 3, 4 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ≠ ∅) |
6 | n0 4345 | . . . . . . . . . . 11 ⊢ ((𝑓‘𝑦) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) | |
7 | 5, 6 | sylib 217 | . . . . . . . . . 10 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) |
8 | rexv 3498 | . . . . . . . . . 10 ⊢ (∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦) ↔ ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) | |
9 | 7, 8 | sylibr 233 | . . . . . . . . 9 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) |
10 | 9 | ralrimiva 3144 | . . . . . . . 8 ⊢ (𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) → ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) |
11 | 2, 10 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) |
12 | eleq1 2819 | . . . . . . . 8 ⊢ (𝑧 = (𝑔‘𝑦) → (𝑧 ∈ (𝑓‘𝑦) ↔ (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
13 | 12 | ac6sfi 9289 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
14 | 11, 13 | syldan 589 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
15 | exsimpr 1870 | . . . . . 6 ⊢ (∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → ∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
17 | 16 | ralrimiva 3144 | . . . 4 ⊢ (𝐴 ∈ Fin → ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
18 | vex 3476 | . . . . 5 ⊢ 𝑥 ∈ V | |
19 | isacn 10041 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ Fin) → (𝑥 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
20 | 18, 19 | mpan 686 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
21 | 17, 20 | mpbird 256 | . . 3 ⊢ (𝐴 ∈ Fin → 𝑥 ∈ AC 𝐴) |
22 | 18 | a1i 11 | . . 3 ⊢ (𝐴 ∈ Fin → 𝑥 ∈ V) |
23 | 21, 22 | 2thd 264 | . 2 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ V)) |
24 | 23 | eqrdv 2728 | 1 ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 Vcvv 3472 ∖ cdif 3944 ∅c0 4321 𝒫 cpw 4601 {csn 4627 ⟶wf 6538 ‘cfv 6542 (class class class)co 7411 ↑m cmap 8822 Fincfn 8941 AC wacn 9935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-map 8824 df-en 8942 df-fin 8945 df-acn 9939 |
This theorem is referenced by: acndom 10048 |
Copyright terms: Public domain | W3C validator |