MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finacn Structured version   Visualization version   GIF version

Theorem finacn 10119
Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
finacn (𝐴 ∈ Fin → AC 𝐴 = V)

Proof of Theorem finacn
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8907 . . . . . . . . 9 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}))
21adantl 481 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}))
3 ffvelcdm 7115 . . . . . . . . . . . 12 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → (𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}))
4 eldifsni 4815 . . . . . . . . . . . 12 ((𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓𝑦) ≠ ∅)
53, 4syl 17 . . . . . . . . . . 11 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → (𝑓𝑦) ≠ ∅)
6 n0 4376 . . . . . . . . . . 11 ((𝑓𝑦) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑓𝑦))
75, 6sylib 218 . . . . . . . . . 10 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → ∃𝑧 𝑧 ∈ (𝑓𝑦))
8 rexv 3517 . . . . . . . . . 10 (∃𝑧 ∈ V 𝑧 ∈ (𝑓𝑦) ↔ ∃𝑧 𝑧 ∈ (𝑓𝑦))
97, 8sylibr 234 . . . . . . . . 9 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → ∃𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
109ralrimiva 3152 . . . . . . . 8 (𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) → ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
112, 10syl 17 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
12 eleq1 2832 . . . . . . . 8 (𝑧 = (𝑔𝑦) → (𝑧 ∈ (𝑓𝑦) ↔ (𝑔𝑦) ∈ (𝑓𝑦)))
1312ac6sfi 9348 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
1411, 13syldan 590 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
15 exsimpr 1868 . . . . . 6 (∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)) → ∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
1614, 15syl 17 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
1716ralrimiva 3152 . . . 4 (𝐴 ∈ Fin → ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
18 vex 3492 . . . . 5 𝑥 ∈ V
19 isacn 10113 . . . . 5 ((𝑥 ∈ V ∧ 𝐴 ∈ Fin) → (𝑥AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
2018, 19mpan 689 . . . 4 (𝐴 ∈ Fin → (𝑥AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
2117, 20mpbird 257 . . 3 (𝐴 ∈ Fin → 𝑥AC 𝐴)
2218a1i 11 . . 3 (𝐴 ∈ Fin → 𝑥 ∈ V)
2321, 222thd 265 . 2 (𝐴 ∈ Fin → (𝑥AC 𝐴𝑥 ∈ V))
2423eqrdv 2738 1 (𝐴 ∈ Fin → AC 𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  c0 4352  𝒫 cpw 4622  {csn 4648  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003  AC wacn 10007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-map 8886  df-en 9004  df-fin 9007  df-acn 10011
This theorem is referenced by:  acndom  10120
  Copyright terms: Public domain W3C validator