![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finacn | Structured version Visualization version GIF version |
Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
finacn | ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8035 | . . . . . . . . 9 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐴) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅})) | |
2 | 1 | adantl 467 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐴)) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅})) |
3 | ffvelrn 6502 | . . . . . . . . . . . 12 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅})) | |
4 | eldifsni 4458 | . . . . . . . . . . . 12 ⊢ ((𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓‘𝑦) ≠ ∅) | |
5 | 3, 4 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ≠ ∅) |
6 | n0 4079 | . . . . . . . . . . 11 ⊢ ((𝑓‘𝑦) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) | |
7 | 5, 6 | sylib 208 | . . . . . . . . . 10 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) |
8 | rexv 3372 | . . . . . . . . . 10 ⊢ (∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦) ↔ ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) | |
9 | 7, 8 | sylibr 224 | . . . . . . . . 9 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) |
10 | 9 | ralrimiva 3115 | . . . . . . . 8 ⊢ (𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) → ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) |
11 | 2, 10 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐴)) → ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) |
12 | eleq1 2838 | . . . . . . . 8 ⊢ (𝑧 = (𝑔‘𝑦) → (𝑧 ∈ (𝑓‘𝑦) ↔ (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
13 | 12 | ac6sfi 8364 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
14 | 11, 13 | syldan 579 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐴)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
15 | exsimpr 1947 | . . . . . 6 ⊢ (∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → ∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐴)) → ∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
17 | 16 | ralrimiva 3115 | . . . 4 ⊢ (𝐴 ∈ Fin → ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
18 | vex 3354 | . . . . 5 ⊢ 𝑥 ∈ V | |
19 | isacn 9071 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ Fin) → (𝑥 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
20 | 18, 19 | mpan 670 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
21 | 17, 20 | mpbird 247 | . . 3 ⊢ (𝐴 ∈ Fin → 𝑥 ∈ AC 𝐴) |
22 | 18 | a1i 11 | . . 3 ⊢ (𝐴 ∈ Fin → 𝑥 ∈ V) |
23 | 21, 22 | 2thd 255 | . 2 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ V)) |
24 | 23 | eqrdv 2769 | 1 ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∃wex 1852 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ∃wrex 3062 Vcvv 3351 ∖ cdif 3720 ∅c0 4063 𝒫 cpw 4298 {csn 4317 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 ↑𝑚 cmap 8013 Fincfn 8113 AC wacn 8968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-1o 7717 df-er 7900 df-map 8015 df-en 8114 df-fin 8117 df-acn 8972 |
This theorem is referenced by: acndom 9078 |
Copyright terms: Public domain | W3C validator |