Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > finacn | Structured version Visualization version GIF version |
Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
finacn | ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8595 | . . . . . . . . 9 ⊢ (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅})) | |
2 | 1 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅})) |
3 | ffvelrn 6941 | . . . . . . . . . . . 12 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅})) | |
4 | eldifsni 4720 | . . . . . . . . . . . 12 ⊢ ((𝑓‘𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓‘𝑦) ≠ ∅) | |
5 | 3, 4 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → (𝑓‘𝑦) ≠ ∅) |
6 | n0 4277 | . . . . . . . . . . 11 ⊢ ((𝑓‘𝑦) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) | |
7 | 5, 6 | sylib 217 | . . . . . . . . . 10 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) |
8 | rexv 3447 | . . . . . . . . . 10 ⊢ (∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦) ↔ ∃𝑧 𝑧 ∈ (𝑓‘𝑦)) | |
9 | 7, 8 | sylibr 233 | . . . . . . . . 9 ⊢ ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦 ∈ 𝐴) → ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) |
10 | 9 | ralrimiva 3107 | . . . . . . . 8 ⊢ (𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) → ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) |
11 | 2, 10 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) |
12 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑧 = (𝑔‘𝑦) → (𝑧 ∈ (𝑓‘𝑦) ↔ (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
13 | 12 | ac6sfi 8988 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 ∃𝑧 ∈ V 𝑧 ∈ (𝑓‘𝑦)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
14 | 11, 13 | syldan 590 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
15 | exsimpr 1873 | . . . . . 6 ⊢ (∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) → ∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
17 | 16 | ralrimiva 3107 | . . . 4 ⊢ (𝐴 ∈ Fin → ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
18 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
19 | isacn 9731 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ Fin) → (𝑥 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
20 | 18, 19 | mpan 686 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
21 | 17, 20 | mpbird 256 | . . 3 ⊢ (𝐴 ∈ Fin → 𝑥 ∈ AC 𝐴) |
22 | 18 | a1i 11 | . . 3 ⊢ (𝐴 ∈ Fin → 𝑥 ∈ V) |
23 | 21, 22 | 2thd 264 | . 2 ⊢ (𝐴 ∈ Fin → (𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ V)) |
24 | 23 | eqrdv 2736 | 1 ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∖ cdif 3880 ∅c0 4253 𝒫 cpw 4530 {csn 4558 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 AC wacn 9627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-map 8575 df-en 8692 df-fin 8695 df-acn 9631 |
This theorem is referenced by: acndom 9738 |
Copyright terms: Public domain | W3C validator |