MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finacn Structured version   Visualization version   GIF version

Theorem finacn 9476
Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
finacn (𝐴 ∈ Fin → AC 𝐴 = V)

Proof of Theorem finacn
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8428 . . . . . . . . 9 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}))
21adantl 484 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}))
3 ffvelrn 6849 . . . . . . . . . . . 12 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → (𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}))
4 eldifsni 4722 . . . . . . . . . . . 12 ((𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓𝑦) ≠ ∅)
53, 4syl 17 . . . . . . . . . . 11 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → (𝑓𝑦) ≠ ∅)
6 n0 4310 . . . . . . . . . . 11 ((𝑓𝑦) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑓𝑦))
75, 6sylib 220 . . . . . . . . . 10 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → ∃𝑧 𝑧 ∈ (𝑓𝑦))
8 rexv 3520 . . . . . . . . . 10 (∃𝑧 ∈ V 𝑧 ∈ (𝑓𝑦) ↔ ∃𝑧 𝑧 ∈ (𝑓𝑦))
97, 8sylibr 236 . . . . . . . . 9 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → ∃𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
109ralrimiva 3182 . . . . . . . 8 (𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) → ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
112, 10syl 17 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
12 eleq1 2900 . . . . . . . 8 (𝑧 = (𝑔𝑦) → (𝑧 ∈ (𝑓𝑦) ↔ (𝑔𝑦) ∈ (𝑓𝑦)))
1312ac6sfi 8762 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
1411, 13syldan 593 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
15 exsimpr 1870 . . . . . 6 (∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)) → ∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
1614, 15syl 17 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
1716ralrimiva 3182 . . . 4 (𝐴 ∈ Fin → ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
18 vex 3497 . . . . 5 𝑥 ∈ V
19 isacn 9470 . . . . 5 ((𝑥 ∈ V ∧ 𝐴 ∈ Fin) → (𝑥AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
2018, 19mpan 688 . . . 4 (𝐴 ∈ Fin → (𝑥AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
2117, 20mpbird 259 . . 3 (𝐴 ∈ Fin → 𝑥AC 𝐴)
2218a1i 11 . . 3 (𝐴 ∈ Fin → 𝑥 ∈ V)
2321, 222thd 267 . 2 (𝐴 ∈ Fin → (𝑥AC 𝐴𝑥 ∈ V))
2423eqrdv 2819 1 (𝐴 ∈ Fin → AC 𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  c0 4291  𝒫 cpw 4539  {csn 4567  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  Fincfn 8509  AC wacn 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-1o 8102  df-er 8289  df-map 8408  df-en 8510  df-fin 8513  df-acn 9371
This theorem is referenced by:  acndom  9477
  Copyright terms: Public domain W3C validator