MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finacn Structured version   Visualization version   GIF version

Theorem finacn 9806
Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
finacn (𝐴 ∈ Fin → AC 𝐴 = V)

Proof of Theorem finacn
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 8637 . . . . . . . . 9 (𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}))
21adantl 482 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → 𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}))
3 ffvelrn 6959 . . . . . . . . . . . 12 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → (𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}))
4 eldifsni 4723 . . . . . . . . . . . 12 ((𝑓𝑦) ∈ (𝒫 𝑥 ∖ {∅}) → (𝑓𝑦) ≠ ∅)
53, 4syl 17 . . . . . . . . . . 11 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → (𝑓𝑦) ≠ ∅)
6 n0 4280 . . . . . . . . . . 11 ((𝑓𝑦) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑓𝑦))
75, 6sylib 217 . . . . . . . . . 10 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → ∃𝑧 𝑧 ∈ (𝑓𝑦))
8 rexv 3457 . . . . . . . . . 10 (∃𝑧 ∈ V 𝑧 ∈ (𝑓𝑦) ↔ ∃𝑧 𝑧 ∈ (𝑓𝑦))
97, 8sylibr 233 . . . . . . . . 9 ((𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) ∧ 𝑦𝐴) → ∃𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
109ralrimiva 3103 . . . . . . . 8 (𝑓:𝐴⟶(𝒫 𝑥 ∖ {∅}) → ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
112, 10syl 17 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦))
12 eleq1 2826 . . . . . . . 8 (𝑧 = (𝑔𝑦) → (𝑧 ∈ (𝑓𝑦) ↔ (𝑔𝑦) ∈ (𝑓𝑦)))
1312ac6sfi 9058 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴𝑧 ∈ V 𝑧 ∈ (𝑓𝑦)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
1411, 13syldan 591 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
15 exsimpr 1872 . . . . . 6 (∃𝑔(𝑔:𝐴⟶V ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)) → ∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
1614, 15syl 17 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)) → ∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
1716ralrimiva 3103 . . . 4 (𝐴 ∈ Fin → ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
18 vex 3436 . . . . 5 𝑥 ∈ V
19 isacn 9800 . . . . 5 ((𝑥 ∈ V ∧ 𝐴 ∈ Fin) → (𝑥AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
2018, 19mpan 687 . . . 4 (𝐴 ∈ Fin → (𝑥AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)))
2117, 20mpbird 256 . . 3 (𝐴 ∈ Fin → 𝑥AC 𝐴)
2218a1i 11 . . 3 (𝐴 ∈ Fin → 𝑥 ∈ V)
2321, 222thd 264 . 2 (𝐴 ∈ Fin → (𝑥AC 𝐴𝑥 ∈ V))
2423eqrdv 2736 1 (𝐴 ∈ Fin → AC 𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  c0 4256  𝒫 cpw 4533  {csn 4561  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  AC wacn 9696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-map 8617  df-en 8734  df-fin 8737  df-acn 9700
This theorem is referenced by:  acndom  9807
  Copyright terms: Public domain W3C validator