Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imassrn | Structured version Visualization version GIF version |
Description: The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
imassrn | ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpr 1877 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴) → ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) | |
2 | 1 | ss2abi 3980 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} ⊆ {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
3 | dfima3 5932 | . 2 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝐵 ∧ 〈𝑥, 𝑦〉 ∈ 𝐴)} | |
4 | dfrn3 5758 | . 2 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} | |
5 | 2, 3, 4 | 3sstr4i 3944 | 1 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 |
Copyright terms: Public domain | W3C validator |