| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afveu | Structured version Visualization version GIF version | ||
| Description: The value of a function at a unique point, analogous to fveu 6850. (Contributed by Alexander van der Vekens, 29-Nov-2017.) |
| Ref | Expression |
|---|---|
| afveu | ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5111 | . . . 4 ⊢ (𝐴𝐹𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐹) | |
| 2 | 1 | eubii 2579 | . . 3 ⊢ (∃!𝑥 𝐴𝐹𝑥 ↔ ∃!𝑥〈𝐴, 𝑥〉 ∈ 𝐹) |
| 3 | eu2ndop1stv 47130 | . . 3 ⊢ (∃!𝑥〈𝐴, 𝑥〉 ∈ 𝐹 → 𝐴 ∈ V) | |
| 4 | 2, 3 | sylbi 217 | . 2 ⊢ (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ V) |
| 5 | euex 2571 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
| 6 | eldmg 5865 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
| 7 | 5, 6 | syl5ibrcom 247 | . . . 4 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ V → 𝐴 ∈ dom 𝐹)) |
| 8 | 7 | impcom 407 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → 𝐴 ∈ dom 𝐹) |
| 9 | dfdfat2 47133 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
| 10 | afvfundmfveq 47143 | . . . . . . . . 9 ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
| 11 | fveu 6850 | . . . . . . . . 9 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) | |
| 12 | 10, 11 | sylan9eq 2785 | . . . . . . . 8 ⊢ ((𝐹 defAt 𝐴 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
| 13 | 12 | ex 412 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
| 14 | 9, 13 | sylbir 235 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
| 15 | 14 | expcom 413 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}))) |
| 16 | 15 | pm2.43a 54 | . . . 4 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
| 18 | 8, 17 | mpd 15 | . 2 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
| 19 | 4, 18 | mpancom 688 | 1 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2562 {cab 2708 Vcvv 3450 〈cop 4598 ∪ cuni 4874 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 defAt wdfat 47121 '''cafv 47122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 df-aiota 47090 df-dfat 47124 df-afv 47125 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |