Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afveu Structured version   Visualization version   GIF version

Theorem afveu 47068
Description: The value of a function at a unique point, analogous to fveu 6909. (Contributed by Alexander van der Vekens, 29-Nov-2017.)
Assertion
Ref Expression
afveu (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem afveu
StepHypRef Expression
1 df-br 5167 . . . 4 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
21eubii 2588 . . 3 (∃!𝑥 𝐴𝐹𝑥 ↔ ∃!𝑥𝐴, 𝑥⟩ ∈ 𝐹)
3 eu2ndop1stv 47040 . . 3 (∃!𝑥𝐴, 𝑥⟩ ∈ 𝐹𝐴 ∈ V)
42, 3sylbi 217 . 2 (∃!𝑥 𝐴𝐹𝑥𝐴 ∈ V)
5 euex 2580 . . . . 5 (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥)
6 eldmg 5923 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥))
75, 6syl5ibrcom 247 . . . 4 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ V → 𝐴 ∈ dom 𝐹))
87impcom 407 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → 𝐴 ∈ dom 𝐹)
9 dfdfat2 47043 . . . . . . 7 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
10 afvfundmfveq 47053 . . . . . . . . 9 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
11 fveu 6909 . . . . . . . . 9 (∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = {𝑥𝐴𝐹𝑥})
1210, 11sylan9eq 2800 . . . . . . . 8 ((𝐹 defAt 𝐴 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})
1312ex 412 . . . . . . 7 (𝐹 defAt 𝐴 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥}))
149, 13sylbir 235 . . . . . 6 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥}))
1514expcom 413 . . . . 5 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})))
1615pm2.43a 54 . . . 4 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥}))
1716adantl 481 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥}))
188, 17mpd 15 . 2 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})
194, 18mpancom 687 1 (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  {cab 2717  Vcvv 3488  cop 4654   cuni 4931   class class class wbr 5166  dom cdm 5700  cfv 6573   defAt wdfat 47031  '''cafv 47032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-aiota 47000  df-dfat 47034  df-afv 47035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator