![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afveu | Structured version Visualization version GIF version |
Description: The value of a function at a unique point, analogous to fveu 6890. (Contributed by Alexander van der Vekens, 29-Nov-2017.) |
Ref | Expression |
---|---|
afveu | ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5154 | . . . 4 ⊢ (𝐴𝐹𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐹) | |
2 | 1 | eubii 2574 | . . 3 ⊢ (∃!𝑥 𝐴𝐹𝑥 ↔ ∃!𝑥〈𝐴, 𝑥〉 ∈ 𝐹) |
3 | eu2ndop1stv 46738 | . . 3 ⊢ (∃!𝑥〈𝐴, 𝑥〉 ∈ 𝐹 → 𝐴 ∈ V) | |
4 | 2, 3 | sylbi 216 | . 2 ⊢ (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ V) |
5 | euex 2566 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
6 | eldmg 5905 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
7 | 5, 6 | syl5ibrcom 246 | . . . 4 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ V → 𝐴 ∈ dom 𝐹)) |
8 | 7 | impcom 406 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → 𝐴 ∈ dom 𝐹) |
9 | dfdfat2 46741 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
10 | afvfundmfveq 46751 | . . . . . . . . 9 ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
11 | fveu 6890 | . . . . . . . . 9 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) | |
12 | 10, 11 | sylan9eq 2786 | . . . . . . . 8 ⊢ ((𝐹 defAt 𝐴 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
13 | 12 | ex 411 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
14 | 9, 13 | sylbir 234 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
15 | 14 | expcom 412 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}))) |
16 | 15 | pm2.43a 54 | . . . 4 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
17 | 16 | adantl 480 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
18 | 8, 17 | mpd 15 | . 2 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
19 | 4, 18 | mpancom 686 | 1 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∃!weu 2557 {cab 2703 Vcvv 3462 〈cop 4639 ∪ cuni 4913 class class class wbr 5153 dom cdm 5682 ‘cfv 6554 defAt wdfat 46729 '''cafv 46730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-res 5694 df-iota 6506 df-fun 6556 df-fv 6562 df-aiota 46698 df-dfat 46732 df-afv 46733 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |