Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afveu | Structured version Visualization version GIF version |
Description: The value of a function at a unique point, analogous to fveu 6746. (Contributed by Alexander van der Vekens, 29-Nov-2017.) |
Ref | Expression |
---|---|
afveu | ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5071 | . . . 4 ⊢ (𝐴𝐹𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐹) | |
2 | 1 | eubii 2585 | . . 3 ⊢ (∃!𝑥 𝐴𝐹𝑥 ↔ ∃!𝑥〈𝐴, 𝑥〉 ∈ 𝐹) |
3 | eu2ndop1stv 44504 | . . 3 ⊢ (∃!𝑥〈𝐴, 𝑥〉 ∈ 𝐹 → 𝐴 ∈ V) | |
4 | 2, 3 | sylbi 216 | . 2 ⊢ (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ V) |
5 | euex 2577 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥) | |
6 | eldmg 5796 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥)) | |
7 | 5, 6 | syl5ibrcom 246 | . . . 4 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ V → 𝐴 ∈ dom 𝐹)) |
8 | 7 | impcom 407 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → 𝐴 ∈ dom 𝐹) |
9 | dfdfat2 44507 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
10 | afvfundmfveq 44517 | . . . . . . . . 9 ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
11 | fveu 6746 | . . . . . . . . 9 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) | |
12 | 10, 11 | sylan9eq 2799 | . . . . . . . 8 ⊢ ((𝐹 defAt 𝐴 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
13 | 12 | ex 412 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
14 | 9, 13 | sylbir 234 | . . . . . 6 ⊢ ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
15 | 14 | expcom 413 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}))) |
16 | 15 | pm2.43a 54 | . . . 4 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
17 | 16 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥})) |
18 | 8, 17 | mpd 15 | . 2 ⊢ ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
19 | 4, 18 | mpancom 684 | 1 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃!weu 2568 {cab 2715 Vcvv 3422 〈cop 4564 ∪ cuni 4836 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 defAt wdfat 44495 '''cafv 44496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-aiota 44464 df-dfat 44498 df-afv 44499 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |