Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afveu Structured version   Visualization version   GIF version

Theorem afveu 44645
Description: The value of a function at a unique point, analogous to fveu 6763. (Contributed by Alexander van der Vekens, 29-Nov-2017.)
Assertion
Ref Expression
afveu (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem afveu
StepHypRef Expression
1 df-br 5075 . . . 4 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
21eubii 2585 . . 3 (∃!𝑥 𝐴𝐹𝑥 ↔ ∃!𝑥𝐴, 𝑥⟩ ∈ 𝐹)
3 eu2ndop1stv 44617 . . 3 (∃!𝑥𝐴, 𝑥⟩ ∈ 𝐹𝐴 ∈ V)
42, 3sylbi 216 . 2 (∃!𝑥 𝐴𝐹𝑥𝐴 ∈ V)
5 euex 2577 . . . . 5 (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥)
6 eldmg 5807 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥))
75, 6syl5ibrcom 246 . . . 4 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ V → 𝐴 ∈ dom 𝐹))
87impcom 408 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → 𝐴 ∈ dom 𝐹)
9 dfdfat2 44620 . . . . . . 7 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
10 afvfundmfveq 44630 . . . . . . . . 9 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
11 fveu 6763 . . . . . . . . 9 (∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = {𝑥𝐴𝐹𝑥})
1210, 11sylan9eq 2798 . . . . . . . 8 ((𝐹 defAt 𝐴 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})
1312ex 413 . . . . . . 7 (𝐹 defAt 𝐴 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥}))
149, 13sylbir 234 . . . . . 6 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥}))
1514expcom 414 . . . . 5 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})))
1615pm2.43a 54 . . . 4 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥}))
1716adantl 482 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥}))
188, 17mpd 15 . 2 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})
194, 18mpancom 685 1 (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  ∃!weu 2568  {cab 2715  Vcvv 3432  cop 4567   cuni 4839   class class class wbr 5074  dom cdm 5589  cfv 6433   defAt wdfat 44608  '''cafv 44609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-aiota 44577  df-dfat 44611  df-afv 44612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator