Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afveu Structured version   Visualization version   GIF version

Theorem afveu 47263
Description: The value of a function at a unique point, analogous to fveu 6811. (Contributed by Alexander van der Vekens, 29-Nov-2017.)
Assertion
Ref Expression
afveu (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem afveu
StepHypRef Expression
1 df-br 5090 . . . 4 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
21eubii 2580 . . 3 (∃!𝑥 𝐴𝐹𝑥 ↔ ∃!𝑥𝐴, 𝑥⟩ ∈ 𝐹)
3 eu2ndop1stv 47235 . . 3 (∃!𝑥𝐴, 𝑥⟩ ∈ 𝐹𝐴 ∈ V)
42, 3sylbi 217 . 2 (∃!𝑥 𝐴𝐹𝑥𝐴 ∈ V)
5 euex 2572 . . . . 5 (∃!𝑥 𝐴𝐹𝑥 → ∃𝑥 𝐴𝐹𝑥)
6 eldmg 5837 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ dom 𝐹 ↔ ∃𝑥 𝐴𝐹𝑥))
75, 6syl5ibrcom 247 . . . 4 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ V → 𝐴 ∈ dom 𝐹))
87impcom 407 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → 𝐴 ∈ dom 𝐹)
9 dfdfat2 47238 . . . . . . 7 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
10 afvfundmfveq 47248 . . . . . . . . 9 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
11 fveu 6811 . . . . . . . . 9 (∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = {𝑥𝐴𝐹𝑥})
1210, 11sylan9eq 2786 . . . . . . . 8 ((𝐹 defAt 𝐴 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})
1312ex 412 . . . . . . 7 (𝐹 defAt 𝐴 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥}))
149, 13sylbir 235 . . . . . 6 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥}))
1514expcom 413 . . . . 5 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})))
1615pm2.43a 54 . . . 4 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥}))
1716adantl 481 . . 3 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐴 ∈ dom 𝐹 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥}))
188, 17mpd 15 . 2 ((𝐴 ∈ V ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})
194, 18mpancom 688 1 (∃!𝑥 𝐴𝐹𝑥 → (𝐹'''𝐴) = {𝑥𝐴𝐹𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  {cab 2709  Vcvv 3436  cop 4579   cuni 4856   class class class wbr 5089  dom cdm 5614  cfv 6481   defAt wdfat 47226  '''cafv 47227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-aiota 47195  df-dfat 47229  df-afv 47230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator