![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-gte | Structured version Visualization version GIF version |
Description: Simple example of ≥, in this case, 0 is greater than or equal to 0. This is useful as an example, and helps us gain confidence that we've correctly defined the symbol. (Contributed by David A. Wheeler, 1-Jan-2017.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ex-gte | ⊢ 0 ≥ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le0 12313 | . 2 ⊢ 0 ≤ 0 | |
2 | c0ex 11208 | . . 3 ⊢ 0 ∈ V | |
3 | 2, 2 | gte-lteh 47771 | . 2 ⊢ (0 ≥ 0 ↔ 0 ≤ 0) |
4 | 1, 3 | mpbir 230 | 1 ⊢ 0 ≥ 0 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5149 0cc0 11110 ≤ cle 11249 ≥ cge-real 47765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-i2m1 11178 ax-rnegex 11181 ax-cnre 11183 ax-pre-lttri 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-gte 47767 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |