| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-gte | Structured version Visualization version GIF version | ||
| Description: Simple example of ≥, in this case, 0 is greater than or equal to 0. This is useful as an example, and helps us gain confidence that we've correctly defined the symbol. (Contributed by David A. Wheeler, 1-Jan-2017.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ex-gte | ⊢ 0 ≥ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le0 12223 | . 2 ⊢ 0 ≤ 0 | |
| 2 | c0ex 11103 | . . 3 ⊢ 0 ∈ V | |
| 3 | 2, 2 | gte-lteh 49757 | . 2 ⊢ (0 ≥ 0 ↔ 0 ≤ 0) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 0 ≥ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5091 0cc0 11003 ≤ cle 11144 ≥ cge-real 49751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-i2m1 11071 ax-rnegex 11074 ax-cnre 11076 ax-pre-lttri 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-gte 49753 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |