| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-gte | Structured version Visualization version GIF version | ||
| Description: Simple example of ≥, in this case, 0 is greater than or equal to 0. This is useful as an example, and helps us gain confidence that we've correctly defined the symbol. (Contributed by David A. Wheeler, 1-Jan-2017.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ex-gte | ⊢ 0 ≥ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0le0 12233 | . 2 ⊢ 0 ≤ 0 | |
| 2 | c0ex 11113 | . . 3 ⊢ 0 ∈ V | |
| 3 | 2, 2 | gte-lteh 49851 | . 2 ⊢ (0 ≥ 0 ↔ 0 ≤ 0) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ 0 ≥ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5093 0cc0 11013 ≤ cle 11154 ≥ cge-real 49845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-i2m1 11081 ax-rnegex 11084 ax-cnre 11086 ax-pre-lttri 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-gte 49847 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |