![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > heeq1 | Structured version Visualization version GIF version |
Description: Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
Ref | Expression |
---|---|
heeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | heeq12 43782 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐴) → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐴)) | |
3 | 1, 2 | mpan2 691 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 hereditary whe 43778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-cnv 5701 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-he 43779 |
This theorem is referenced by: 0heALT 43789 |
Copyright terms: Public domain | W3C validator |