| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > heeq1 | Structured version Visualization version GIF version | ||
| Description: Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
| Ref | Expression |
|---|---|
| heeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . 2 ⊢ 𝐴 = 𝐴 | |
| 2 | heeq12 43727 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐴) → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐴)) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 hereditary 𝐴 ↔ 𝑆 hereditary 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 hereditary whe 43723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-he 43724 |
| This theorem is referenced by: 0heALT 43734 |
| Copyright terms: Public domain | W3C validator |