![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0heALT | Structured version Visualization version GIF version |
Description: The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
0heALT | ⊢ ∅ hereditary 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xphe 43743 | . 2 ⊢ (∅ × 𝐴) hereditary 𝐴 | |
2 | 0xp 5798 | . . 3 ⊢ (∅ × 𝐴) = ∅ | |
3 | heeq1 43739 | . . 3 ⊢ ((∅ × 𝐴) = ∅ → ((∅ × 𝐴) hereditary 𝐴 ↔ ∅ hereditary 𝐴)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((∅ × 𝐴) hereditary 𝐴 ↔ ∅ hereditary 𝐴) |
5 | 1, 4 | mpbi 230 | 1 ⊢ ∅ hereditary 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∅c0 4352 × cxp 5698 hereditary whe 43734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-he 43735 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |