Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0heALT Structured version   Visualization version   GIF version

Theorem 0heALT 43744
Description: The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
0heALT ∅ hereditary 𝐴

Proof of Theorem 0heALT
StepHypRef Expression
1 xphe 43742 . 2 (∅ × 𝐴) hereditary 𝐴
2 0xp 5745 . . 3 (∅ × 𝐴) = ∅
3 heeq1 43738 . . 3 ((∅ × 𝐴) = ∅ → ((∅ × 𝐴) hereditary 𝐴 ↔ ∅ hereditary 𝐴))
42, 3ax-mp 5 . 2 ((∅ × 𝐴) hereditary 𝐴 ↔ ∅ hereditary 𝐴)
51, 4mpbi 230 1 ∅ hereditary 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  c0 4304   × cxp 5644   hereditary whe 43733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-xp 5652  df-rel 5653  df-cnv 5654  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-he 43734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator