| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0heALT | Structured version Visualization version GIF version | ||
| Description: The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| 0heALT | ⊢ ∅ hereditary 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xphe 43743 | . 2 ⊢ (∅ × 𝐴) hereditary 𝐴 | |
| 2 | 0xp 5729 | . . 3 ⊢ (∅ × 𝐴) = ∅ | |
| 3 | heeq1 43739 | . . 3 ⊢ ((∅ × 𝐴) = ∅ → ((∅ × 𝐴) hereditary 𝐴 ↔ ∅ hereditary 𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((∅ × 𝐴) hereditary 𝐴 ↔ ∅ hereditary 𝐴) |
| 5 | 1, 4 | mpbi 230 | 1 ⊢ ∅ hereditary 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∅c0 4292 × cxp 5629 hereditary whe 43734 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-he 43735 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |