Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0heALT Structured version   Visualization version   GIF version

Theorem 0heALT 43886
Description: The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
0heALT ∅ hereditary 𝐴

Proof of Theorem 0heALT
StepHypRef Expression
1 xphe 43884 . 2 (∅ × 𝐴) hereditary 𝐴
2 0xp 5713 . . 3 (∅ × 𝐴) = ∅
3 heeq1 43880 . . 3 ((∅ × 𝐴) = ∅ → ((∅ × 𝐴) hereditary 𝐴 ↔ ∅ hereditary 𝐴))
42, 3ax-mp 5 . 2 ((∅ × 𝐴) hereditary 𝐴 ↔ ∅ hereditary 𝐴)
51, 4mpbi 230 1 ∅ hereditary 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  c0 4280   × cxp 5612   hereditary whe 43875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-he 43876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator