Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heeq2 Structured version   Visualization version   GIF version

Theorem heeq2 42992
Description: Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.)
Assertion
Ref Expression
heeq2 (𝐴 = 𝐵 → (𝑅 hereditary 𝐴𝑅 hereditary 𝐵))

Proof of Theorem heeq2
StepHypRef Expression
1 eqid 2731 . 2 𝑅 = 𝑅
2 heeq12 42990 . 2 ((𝑅 = 𝑅𝐴 = 𝐵) → (𝑅 hereditary 𝐴𝑅 hereditary 𝐵))
31, 2mpan 687 1 (𝐴 = 𝐵 → (𝑅 hereditary 𝐴𝑅 hereditary 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540   hereditary whe 42986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-he 42987
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator