| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hladdf | Structured version Visualization version GIF version | ||
| Description: Mapping for Hilbert space vector addition. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hladdf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| hladdf.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| hladdf | ⊢ (𝑈 ∈ CHilOLD → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlnv 30863 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | |
| 2 | hladdf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 3 | hladdf.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 4 | 2, 3 | nvgf 30590 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 × cxp 5609 ⟶wf 6472 ‘cfv 6476 NrmCVeccnv 30556 +𝑣 cpv 30557 BaseSetcba 30558 CHilOLDchlo 30857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-1st 7916 df-2nd 7917 df-grpo 30465 df-ablo 30517 df-vc 30531 df-nv 30564 df-va 30567 df-ba 30568 df-sm 30569 df-0v 30570 df-nmcv 30572 df-cbn 30835 df-hlo 30858 |
| This theorem is referenced by: axhfvadd-zf 30954 |
| Copyright terms: Public domain | W3C validator |