Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvexi | Structured version Visualization version GIF version |
Description: The value of a class exists. Inference form of fvex 6796. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fvexi.1 | ⊢ 𝐴 = (𝐹‘𝐵) |
Ref | Expression |
---|---|
fvexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexi.1 | . 2 ⊢ 𝐴 = (𝐹‘𝐵) | |
2 | fvex 6796 | . 2 ⊢ (𝐹‘𝐵) ∈ V | |
3 | 1, 2 | eqeltri 2836 | 1 ⊢ 𝐴 ∈ V |
Copyright terms: Public domain | W3C validator |