MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibllem Structured version   Visualization version   GIF version

Theorem ibllem 25692
Description: Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014.)
Hypothesis
Ref Expression
ibllem.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
ibllem (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))

Proof of Theorem ibllem
StepHypRef Expression
1 ibllem.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
21breq2d 5101 . . . 4 ((𝜑𝑥𝐴) → (0 ≤ 𝐵 ↔ 0 ≤ 𝐶))
32pm5.32da 579 . . 3 (𝜑 → ((𝑥𝐴 ∧ 0 ≤ 𝐵) ↔ (𝑥𝐴 ∧ 0 ≤ 𝐶)))
43ifbid 4496 . 2 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐵, 0))
51adantrr 717 . . 3 ((𝜑 ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐵 = 𝐶)
65ifeq1da 4504 . 2 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐵, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
74, 6eqtrd 2766 1 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ifcif 4472   class class class wbr 5089  0cc0 11006  cle 11147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090
This theorem is referenced by:  isibl  25693  isibl2  25694  iblitg  25696  iblcnlem1  25716  iblcnlem  25717  itgcnlem  25718  iblrelem  25719  itgrevallem1  25723  itgeqa  25742
  Copyright terms: Public domain W3C validator