| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibllem | Structured version Visualization version GIF version | ||
| Description: Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014.) |
| Ref | Expression |
|---|---|
| ibllem.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ibllem | ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibllem.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | breq2d 5101 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝐵 ↔ 0 ≤ 𝐶)) |
| 3 | 2 | pm5.32da 579 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶))) |
| 4 | 3 | ifbid 4496 | . 2 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐵, 0)) |
| 5 | 1 | adantrr 717 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 𝐵 = 𝐶) |
| 6 | 5 | ifeq1da 4504 | . 2 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
| 7 | 4, 6 | eqtrd 2766 | 1 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ifcif 4472 class class class wbr 5089 0cc0 11006 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: isibl 25693 isibl2 25694 iblitg 25696 iblcnlem1 25716 iblcnlem 25717 itgcnlem 25718 iblrelem 25719 itgrevallem1 25723 itgeqa 25742 |
| Copyright terms: Public domain | W3C validator |