Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ibllem | Structured version Visualization version GIF version |
Description: Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014.) |
Ref | Expression |
---|---|
ibllem.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ibllem | ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibllem.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
2 | 1 | breq2d 5082 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝐵 ↔ 0 ≤ 𝐶)) |
3 | 2 | pm5.32da 578 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶))) |
4 | 3 | ifbid 4479 | . 2 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐵, 0)) |
5 | 1 | adantrr 713 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 𝐵 = 𝐶) |
6 | 5 | ifeq1da 4487 | . 2 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
7 | 4, 6 | eqtrd 2778 | 1 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 0cc0 10802 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: isibl 24835 isibl2 24836 iblitg 24838 iblcnlem1 24857 iblcnlem 24858 itgcnlem 24859 iblrelem 24860 itgrevallem1 24864 itgeqa 24883 |
Copyright terms: Public domain | W3C validator |