![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibllem | Structured version Visualization version GIF version |
Description: Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014.) |
Ref | Expression |
---|---|
ibllem.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ibllem | ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibllem.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
2 | 1 | breq2d 5165 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝐵 ↔ 0 ≤ 𝐶)) |
3 | 2 | pm5.32da 577 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶))) |
4 | 3 | ifbid 4556 | . 2 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐵, 0)) |
5 | 1 | adantrr 715 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 𝐵 = 𝐶) |
6 | 5 | ifeq1da 4564 | . 2 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
7 | 4, 6 | eqtrd 2766 | 1 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ifcif 4533 class class class wbr 5153 0cc0 11158 ≤ cle 11299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 |
This theorem is referenced by: isibl 25786 isibl2 25787 iblitg 25789 iblcnlem1 25808 iblcnlem 25809 itgcnlem 25810 iblrelem 25811 itgrevallem1 25815 itgeqa 25834 |
Copyright terms: Public domain | W3C validator |