MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibllem Structured version   Visualization version   GIF version

Theorem ibllem 24927
Description: Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014.)
Hypothesis
Ref Expression
ibllem.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
ibllem (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))

Proof of Theorem ibllem
StepHypRef Expression
1 ibllem.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
21breq2d 5091 . . . 4 ((𝜑𝑥𝐴) → (0 ≤ 𝐵 ↔ 0 ≤ 𝐶))
32pm5.32da 579 . . 3 (𝜑 → ((𝑥𝐴 ∧ 0 ≤ 𝐵) ↔ (𝑥𝐴 ∧ 0 ≤ 𝐶)))
43ifbid 4488 . 2 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐵, 0))
51adantrr 714 . . 3 ((𝜑 ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐵 = 𝐶)
65ifeq1da 4496 . 2 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐵, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
74, 6eqtrd 2780 1 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  ifcif 4465   class class class wbr 5079  0cc0 10872  cle 11011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080
This theorem is referenced by:  isibl  24928  isibl2  24929  iblitg  24931  iblcnlem1  24950  iblcnlem  24951  itgcnlem  24952  iblrelem  24953  itgrevallem1  24957  itgeqa  24976
  Copyright terms: Public domain W3C validator