Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ibllem | Structured version Visualization version GIF version |
Description: Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014.) |
Ref | Expression |
---|---|
ibllem.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ibllem | ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibllem.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
2 | 1 | breq2d 5091 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝐵 ↔ 0 ≤ 𝐶)) |
3 | 2 | pm5.32da 579 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶))) |
4 | 3 | ifbid 4488 | . 2 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐵, 0)) |
5 | 1 | adantrr 714 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 𝐵 = 𝐶) |
6 | 5 | ifeq1da 4496 | . 2 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
7 | 4, 6 | eqtrd 2780 | 1 ⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ifcif 4465 class class class wbr 5079 0cc0 10872 ≤ cle 11011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 |
This theorem is referenced by: isibl 24928 isibl2 24929 iblitg 24931 iblcnlem1 24950 iblcnlem 24951 itgcnlem 24952 iblrelem 24953 itgrevallem1 24957 itgeqa 24976 |
Copyright terms: Public domain | W3C validator |