MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cn Structured version   Visualization version   GIF version

Theorem itg2cn 25128
Description: A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a 25401 which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itg2cn.1 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2cn.2 (𝜑𝐹 ∈ MblFn)
itg2cn.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2cn.4 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
itg2cn (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Distinct variable groups:   𝑢,𝑑,𝑥,𝐶   𝐹,𝑑,𝑢,𝑥   𝜑,𝑢,𝑥
Allowed substitution hint:   𝜑(𝑑)

Proof of Theorem itg2cn
Dummy variables 𝑚 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2cn.3 . . . . . 6 (𝜑 → (∫2𝐹) ∈ ℝ)
2 itg2cn.4 . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
32rphalfcld 12969 . . . . . 6 (𝜑 → (𝐶 / 2) ∈ ℝ+)
41, 3ltsubrpd 12989 . . . . 5 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) < (∫2𝐹))
53rpred 12957 . . . . . . 7 (𝜑 → (𝐶 / 2) ∈ ℝ)
61, 5resubcld 11583 . . . . . 6 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ)
76, 1ltnled 11302 . . . . 5 (𝜑 → (((∫2𝐹) − (𝐶 / 2)) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2))))
84, 7mpbid 231 . . . 4 (𝜑 → ¬ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2)))
9 itg2cn.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:ℝ⟶(0[,)+∞))
109ffvelcdmda 7035 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
11 elrege0 13371 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1210, 11sylib 217 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1312simpld 495 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1413rexrd 11205 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ*)
1512simprd 496 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
16 elxrge0 13374 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
1714, 15, 16sylanbrc 583 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
18 0e0iccpnf 13376 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
19 ifcl 4531 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2017, 18, 19sylancl 586 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2120adantlr 713 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2221fmpttd 7063 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
23 itg2cl 25097 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) ∈ ℝ*)
2422, 23syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) ∈ ℝ*)
2524fmpttd 7063 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))):ℕ⟶ℝ*)
2625frnd 6676 . . . . . 6 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) ⊆ ℝ*)
276rexrd 11205 . . . . . 6 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ*)
28 supxrleub 13245 . . . . . 6 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) ⊆ ℝ* ∧ ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2))))
2926, 27, 28syl2anc 584 . . . . 5 (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2))))
30 itg2cn.2 . . . . . . 7 (𝜑𝐹 ∈ MblFn)
319, 30, 1itg2cnlem1 25126 . . . . . 6 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = (∫2𝐹))
3231breq1d 5115 . . . . 5 (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2))))
3325ffnd 6669 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ)
34 breq1 5108 . . . . . . . 8 (𝑧 = ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) → (𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2))))
3534ralrn 7038 . . . . . . 7 ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2))))
36 breq2 5109 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐹𝑥) ≤ 𝑛 ↔ (𝐹𝑥) ≤ 𝑚))
3736ifbid 4509 . . . . . . . . . . . 12 (𝑛 = 𝑚 → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
3837mpteq2dv 5207 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
3938fveq2d 6846 . . . . . . . . . 10 (𝑛 = 𝑚 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
40 eqid 2736 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))
41 fvex 6855 . . . . . . . . . 10 (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ∈ V
4239, 40, 41fvmpt 6948 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
4342breq1d 5115 . . . . . . . 8 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4443ralbiia 3094 . . . . . . 7 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
4535, 44bitrdi 286 . . . . . 6 ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4633, 45syl 17 . . . . 5 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4729, 32, 463bitr3d 308 . . . 4 (𝜑 → ((∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
488, 47mtbid 323 . . 3 (𝜑 → ¬ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
49 rexnal 3103 . . 3 (∃𝑚 ∈ ℕ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ¬ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
5048, 49sylibr 233 . 2 (𝜑 → ∃𝑚 ∈ ℕ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
519adantr 481 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐹:ℝ⟶(0[,)+∞))
5230adantr 481 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐹 ∈ MblFn)
531adantr 481 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → (∫2𝐹) ∈ ℝ)
542adantr 481 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐶 ∈ ℝ+)
55 simprl 769 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝑚 ∈ ℕ)
56 simprr 771 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
57 fveq2 6842 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5857breq1d 5115 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑥) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
5958, 57ifbieq1d 4510 . . . . . . . 8 (𝑥 = 𝑦 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
6059cbvmptv 5218 . . . . . . 7 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
6160fveq2i 6845 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0)))
6261breq1i 5112 . . . . 5 ((∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
6356, 62sylnib 327 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ¬ (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
6451, 52, 53, 54, 55, 63itg2cnlem2 25127 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
65 elequ1 2113 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝑢𝑦𝑢))
6665, 57ifbieq1d 4510 . . . . . . . . 9 (𝑥 = 𝑦 → if(𝑥𝑢, (𝐹𝑥), 0) = if(𝑦𝑢, (𝐹𝑦), 0))
6766cbvmptv 5218 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0)) = (𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))
6867fveq2i 6845 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0)))
6968breq1i 5112 . . . . . 6 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶 ↔ (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶)
7069imbi2i 335 . . . . 5 (((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7170ralbii 3096 . . . 4 (∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7271rexbii 3097 . . 3 (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7364, 72sylibr 233 . 2 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
7450, 73rexlimddv 3158 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2106  wral 3064  wrex 3073  wss 3910  ifcif 4486   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  cr 11050  0cc0 11051  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  +crp 12915  [,)cico 13266  [,]cicc 13267  volcvol 24827  MblFncmbf 24978  2citg2 24980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cmp 22738  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-0p 25034
This theorem is referenced by:  itgcn  25209
  Copyright terms: Public domain W3C validator