Step | Hyp | Ref
| Expression |
1 | | itg2cn.3 |
. . . . . 6
⊢ (𝜑 →
(∫2‘𝐹)
∈ ℝ) |
2 | | itg2cn.4 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
3 | 2 | rphalfcld 12784 |
. . . . . 6
⊢ (𝜑 → (𝐶 / 2) ∈
ℝ+) |
4 | 1, 3 | ltsubrpd 12804 |
. . . . 5
⊢ (𝜑 →
((∫2‘𝐹) − (𝐶 / 2)) < (∫2‘𝐹)) |
5 | 3 | rpred 12772 |
. . . . . . 7
⊢ (𝜑 → (𝐶 / 2) ∈ ℝ) |
6 | 1, 5 | resubcld 11403 |
. . . . . 6
⊢ (𝜑 →
((∫2‘𝐹) − (𝐶 / 2)) ∈ ℝ) |
7 | 6, 1 | ltnled 11122 |
. . . . 5
⊢ (𝜑 →
(((∫2‘𝐹) − (𝐶 / 2)) < (∫2‘𝐹) ↔ ¬
(∫2‘𝐹)
≤ ((∫2‘𝐹) − (𝐶 / 2)))) |
8 | 4, 7 | mpbid 231 |
. . . 4
⊢ (𝜑 → ¬
(∫2‘𝐹)
≤ ((∫2‘𝐹) − (𝐶 / 2))) |
9 | | itg2cn.1 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
10 | 9 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,)+∞)) |
11 | | elrege0 13186 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
12 | 10, 11 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
13 | 12 | simpld 495 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
14 | 13 | rexrd 11025 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈
ℝ*) |
15 | 12 | simprd 496 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹‘𝑥)) |
16 | | elxrge0 13189 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑥) ∈ (0[,]+∞) ↔ ((𝐹‘𝑥) ∈ ℝ* ∧ 0 ≤
(𝐹‘𝑥))) |
17 | 14, 15, 16 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,]+∞)) |
18 | | 0e0iccpnf 13191 |
. . . . . . . . . . . 12
⊢ 0 ∈
(0[,]+∞) |
19 | | ifcl 4504 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) ∈ (0[,]+∞) ∧ 0 ∈
(0[,]+∞)) → if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0) ∈ (0[,]+∞)) |
20 | 17, 18, 19 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0) ∈ (0[,]+∞)) |
21 | 20 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0) ∈ (0[,]+∞)) |
22 | 21 | fmpttd 6989 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥),
0)):ℝ⟶(0[,]+∞)) |
23 | | itg2cl 24897 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)):ℝ⟶(0[,]+∞) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))) ∈
ℝ*) |
24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))) ∈
ℝ*) |
25 | 24 | fmpttd 6989 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥),
0)))):ℕ⟶ℝ*) |
26 | 25 | frnd 6608 |
. . . . . 6
⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))) ⊆
ℝ*) |
27 | 6 | rexrd 11025 |
. . . . . 6
⊢ (𝜑 →
((∫2‘𝐹) − (𝐶 / 2)) ∈
ℝ*) |
28 | | supxrleub 13060 |
. . . . . 6
⊢ ((ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))) ⊆ ℝ* ∧
((∫2‘𝐹) − (𝐶 / 2)) ∈ ℝ*) →
(sup(ran (𝑛 ∈ ℕ
↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))), ℝ*, < ) ≤
((∫2‘𝐹) − (𝐶 / 2)) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))))𝑧 ≤ ((∫2‘𝐹) − (𝐶 / 2)))) |
29 | 26, 27, 28 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))), ℝ*, < ) ≤
((∫2‘𝐹) − (𝐶 / 2)) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))))𝑧 ≤ ((∫2‘𝐹) − (𝐶 / 2)))) |
30 | | itg2cn.2 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ MblFn) |
31 | 9, 30, 1 | itg2cnlem1 24926 |
. . . . . 6
⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))), ℝ*, < ) =
(∫2‘𝐹)) |
32 | 31 | breq1d 5084 |
. . . . 5
⊢ (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))), ℝ*, < ) ≤
((∫2‘𝐹) − (𝐶 / 2)) ↔ (∫2‘𝐹) ≤
((∫2‘𝐹) − (𝐶 / 2)))) |
33 | 25 | ffnd 6601 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))) Fn ℕ) |
34 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑧 = ((𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))))‘𝑚) → (𝑧 ≤ ((∫2‘𝐹) − (𝐶 / 2)) ↔ ((𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))))‘𝑚) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) |
35 | 34 | ralrn 6964 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))))𝑧 ≤ ((∫2‘𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))))‘𝑚) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) |
36 | | breq2 5078 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → ((𝐹‘𝑥) ≤ 𝑛 ↔ (𝐹‘𝑥) ≤ 𝑚)) |
37 | 36 | ifbid 4482 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0) = if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) |
38 | 37 | mpteq2dv 5176 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) |
39 | 38 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (∫2‘(𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)))) |
40 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))) = (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))) |
41 | | fvex 6787 |
. . . . . . . . . 10
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ∈ V |
42 | 39, 40, 41 | fvmpt 6875 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))))‘𝑚) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)))) |
43 | 42 | breq1d 5084 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))))‘𝑚) ≤ ((∫2‘𝐹) − (𝐶 / 2)) ↔
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) |
44 | 43 | ralbiia 3091 |
. . . . . . 7
⊢
(∀𝑚 ∈
ℕ ((𝑛 ∈ ℕ
↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))))‘𝑚) ≤ ((∫2‘𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2))) |
45 | 35, 44 | bitrdi 287 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0)))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))))𝑧 ≤ ((∫2‘𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) |
46 | 33, 45 | syl 17 |
. . . . 5
⊢ (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑛, (𝐹‘𝑥), 0))))𝑧 ≤ ((∫2‘𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) |
47 | 29, 32, 46 | 3bitr3d 309 |
. . . 4
⊢ (𝜑 →
((∫2‘𝐹) ≤ ((∫2‘𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) |
48 | 8, 47 | mtbid 324 |
. . 3
⊢ (𝜑 → ¬ ∀𝑚 ∈ ℕ
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2))) |
49 | | rexnal 3169 |
. . 3
⊢
(∃𝑚 ∈
ℕ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)) ↔ ¬ ∀𝑚 ∈ ℕ
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2))) |
50 | 48, 49 | sylibr 233 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ ℕ ¬
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2))) |
51 | 9 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) → 𝐹:ℝ⟶(0[,)+∞)) |
52 | 30 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) → 𝐹 ∈ MblFn) |
53 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) →
(∫2‘𝐹)
∈ ℝ) |
54 | 2 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) → 𝐶 ∈
ℝ+) |
55 | | simprl 768 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) → 𝑚 ∈ ℕ) |
56 | | simprr 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) → ¬
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2))) |
57 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
58 | 57 | breq1d 5084 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) ≤ 𝑚 ↔ (𝐹‘𝑦) ≤ 𝑚)) |
59 | 58, 57 | ifbieq1d 4483 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0) = if((𝐹‘𝑦) ≤ 𝑚, (𝐹‘𝑦), 0)) |
60 | 59 | cbvmptv 5187 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹‘𝑦) ≤ 𝑚, (𝐹‘𝑦), 0)) |
61 | 60 | fveq2i 6777 |
. . . . . 6
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) = (∫2‘(𝑦 ∈ ℝ ↦
if((𝐹‘𝑦) ≤ 𝑚, (𝐹‘𝑦), 0))) |
62 | 61 | breq1i 5081 |
. . . . 5
⊢
((∫2‘(𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)) ↔
(∫2‘(𝑦
∈ ℝ ↦ if((𝐹‘𝑦) ≤ 𝑚, (𝐹‘𝑦), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2))) |
63 | 56, 62 | sylnib 328 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) → ¬
(∫2‘(𝑦
∈ ℝ ↦ if((𝐹‘𝑦) ≤ 𝑚, (𝐹‘𝑦), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2))) |
64 | 51, 52, 53, 54, 55, 63 | itg2cnlem2 24927 |
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, (𝐹‘𝑦), 0))) < 𝐶)) |
65 | | elequ1 2113 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑢 ↔ 𝑦 ∈ 𝑢)) |
66 | 65, 57 | ifbieq1d 4483 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0) = if(𝑦 ∈ 𝑢, (𝐹‘𝑦), 0)) |
67 | 66 | cbvmptv 5187 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0)) = (𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, (𝐹‘𝑦), 0)) |
68 | 67 | fveq2i 6777 |
. . . . . . 7
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, (𝐹‘𝑦), 0))) |
69 | 68 | breq1i 5081 |
. . . . . 6
⊢
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶 ↔ (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, (𝐹‘𝑦), 0))) < 𝐶) |
70 | 69 | imbi2i 336 |
. . . . 5
⊢
(((vol‘𝑢) <
𝑑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶) ↔ ((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, (𝐹‘𝑦), 0))) < 𝐶)) |
71 | 70 | ralbii 3092 |
. . . 4
⊢
(∀𝑢 ∈
dom vol((vol‘𝑢) <
𝑑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶) ↔ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, (𝐹‘𝑦), 0))) < 𝐶)) |
72 | 71 | rexbii 3181 |
. . 3
⊢
(∃𝑑 ∈
ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶) ↔ ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, (𝐹‘𝑦), 0))) < 𝐶)) |
73 | 64, 72 | sylibr 233 |
. 2
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑚, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶)) |
74 | 50, 73 | rexlimddv 3220 |
1
⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶)) |