MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cn Structured version   Visualization version   GIF version

Theorem itg2cn 25818
Description: A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a 26098 which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itg2cn.1 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2cn.2 (𝜑𝐹 ∈ MblFn)
itg2cn.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2cn.4 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
itg2cn (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Distinct variable groups:   𝑢,𝑑,𝑥,𝐶   𝐹,𝑑,𝑢,𝑥   𝜑,𝑢,𝑥
Allowed substitution hint:   𝜑(𝑑)

Proof of Theorem itg2cn
Dummy variables 𝑚 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2cn.3 . . . . . 6 (𝜑 → (∫2𝐹) ∈ ℝ)
2 itg2cn.4 . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
32rphalfcld 13111 . . . . . 6 (𝜑 → (𝐶 / 2) ∈ ℝ+)
41, 3ltsubrpd 13131 . . . . 5 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) < (∫2𝐹))
53rpred 13099 . . . . . . 7 (𝜑 → (𝐶 / 2) ∈ ℝ)
61, 5resubcld 11718 . . . . . 6 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ)
76, 1ltnled 11437 . . . . 5 (𝜑 → (((∫2𝐹) − (𝐶 / 2)) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2))))
84, 7mpbid 232 . . . 4 (𝜑 → ¬ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2)))
9 itg2cn.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:ℝ⟶(0[,)+∞))
109ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
11 elrege0 13514 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1210, 11sylib 218 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1312simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1413rexrd 11340 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ*)
1512simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
16 elxrge0 13517 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
1714, 15, 16sylanbrc 582 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
18 0e0iccpnf 13519 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
19 ifcl 4593 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2017, 18, 19sylancl 585 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2120adantlr 714 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2221fmpttd 7149 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
23 itg2cl 25787 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) ∈ ℝ*)
2422, 23syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) ∈ ℝ*)
2524fmpttd 7149 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))):ℕ⟶ℝ*)
2625frnd 6755 . . . . . 6 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) ⊆ ℝ*)
276rexrd 11340 . . . . . 6 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ*)
28 supxrleub 13388 . . . . . 6 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) ⊆ ℝ* ∧ ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2))))
2926, 27, 28syl2anc 583 . . . . 5 (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2))))
30 itg2cn.2 . . . . . . 7 (𝜑𝐹 ∈ MblFn)
319, 30, 1itg2cnlem1 25816 . . . . . 6 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = (∫2𝐹))
3231breq1d 5176 . . . . 5 (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2))))
3325ffnd 6748 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ)
34 breq1 5169 . . . . . . . 8 (𝑧 = ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) → (𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2))))
3534ralrn 7122 . . . . . . 7 ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2))))
36 breq2 5170 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐹𝑥) ≤ 𝑛 ↔ (𝐹𝑥) ≤ 𝑚))
3736ifbid 4571 . . . . . . . . . . . 12 (𝑛 = 𝑚 → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
3837mpteq2dv 5268 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
3938fveq2d 6924 . . . . . . . . . 10 (𝑛 = 𝑚 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
40 eqid 2740 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))
41 fvex 6933 . . . . . . . . . 10 (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ∈ V
4239, 40, 41fvmpt 7029 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
4342breq1d 5176 . . . . . . . 8 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4443ralbiia 3097 . . . . . . 7 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
4535, 44bitrdi 287 . . . . . 6 ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4633, 45syl 17 . . . . 5 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4729, 32, 463bitr3d 309 . . . 4 (𝜑 → ((∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
488, 47mtbid 324 . . 3 (𝜑 → ¬ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
49 rexnal 3106 . . 3 (∃𝑚 ∈ ℕ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ¬ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
5048, 49sylibr 234 . 2 (𝜑 → ∃𝑚 ∈ ℕ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
519adantr 480 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐹:ℝ⟶(0[,)+∞))
5230adantr 480 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐹 ∈ MblFn)
531adantr 480 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → (∫2𝐹) ∈ ℝ)
542adantr 480 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐶 ∈ ℝ+)
55 simprl 770 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝑚 ∈ ℕ)
56 simprr 772 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
57 fveq2 6920 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5857breq1d 5176 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑥) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
5958, 57ifbieq1d 4572 . . . . . . . 8 (𝑥 = 𝑦 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
6059cbvmptv 5279 . . . . . . 7 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
6160fveq2i 6923 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0)))
6261breq1i 5173 . . . . 5 ((∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
6356, 62sylnib 328 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ¬ (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
6451, 52, 53, 54, 55, 63itg2cnlem2 25817 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
65 elequ1 2115 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝑢𝑦𝑢))
6665, 57ifbieq1d 4572 . . . . . . . . 9 (𝑥 = 𝑦 → if(𝑥𝑢, (𝐹𝑥), 0) = if(𝑦𝑢, (𝐹𝑦), 0))
6766cbvmptv 5279 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0)) = (𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))
6867fveq2i 6923 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0)))
6968breq1i 5173 . . . . . 6 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶 ↔ (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶)
7069imbi2i 336 . . . . 5 (((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7170ralbii 3099 . . . 4 (∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7271rexbii 3100 . . 3 (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7364, 72sylibr 234 . 2 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
7450, 73rexlimddv 3167 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  wral 3067  wrex 3076  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cr 11183  0cc0 11184  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  +crp 13057  [,)cico 13409  [,]cicc 13410  volcvol 25517  MblFncmbf 25668  2citg2 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cmp 23416  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-0p 25724
This theorem is referenced by:  itgcn  25900
  Copyright terms: Public domain W3C validator