MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cn Structured version   Visualization version   GIF version

Theorem itg2cn 25701
Description: A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a 25981 which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itg2cn.1 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2cn.2 (𝜑𝐹 ∈ MblFn)
itg2cn.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2cn.4 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
itg2cn (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Distinct variable groups:   𝑢,𝑑,𝑥,𝐶   𝐹,𝑑,𝑢,𝑥   𝜑,𝑢,𝑥
Allowed substitution hint:   𝜑(𝑑)

Proof of Theorem itg2cn
Dummy variables 𝑚 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2cn.3 . . . . . 6 (𝜑 → (∫2𝐹) ∈ ℝ)
2 itg2cn.4 . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
32rphalfcld 12956 . . . . . 6 (𝜑 → (𝐶 / 2) ∈ ℝ+)
41, 3ltsubrpd 12976 . . . . 5 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) < (∫2𝐹))
53rpred 12944 . . . . . . 7 (𝜑 → (𝐶 / 2) ∈ ℝ)
61, 5resubcld 11555 . . . . . 6 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ)
76, 1ltnled 11270 . . . . 5 (𝜑 → (((∫2𝐹) − (𝐶 / 2)) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2))))
84, 7mpbid 232 . . . 4 (𝜑 → ¬ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2)))
9 itg2cn.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:ℝ⟶(0[,)+∞))
109ffvelcdmda 7026 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
11 elrege0 13364 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1210, 11sylib 218 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1312simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1413rexrd 11172 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ*)
1512simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
16 elxrge0 13367 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
1714, 15, 16sylanbrc 583 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
18 0e0iccpnf 13369 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
19 ifcl 4522 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2017, 18, 19sylancl 586 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2120adantlr 715 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2221fmpttd 7057 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
23 itg2cl 25670 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) ∈ ℝ*)
2422, 23syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) ∈ ℝ*)
2524fmpttd 7057 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))):ℕ⟶ℝ*)
2625frnd 6667 . . . . . 6 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) ⊆ ℝ*)
276rexrd 11172 . . . . . 6 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ*)
28 supxrleub 13235 . . . . . 6 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) ⊆ ℝ* ∧ ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2))))
2926, 27, 28syl2anc 584 . . . . 5 (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2))))
30 itg2cn.2 . . . . . . 7 (𝜑𝐹 ∈ MblFn)
319, 30, 1itg2cnlem1 25699 . . . . . 6 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = (∫2𝐹))
3231breq1d 5105 . . . . 5 (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2))))
3325ffnd 6660 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ)
34 breq1 5098 . . . . . . . 8 (𝑧 = ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) → (𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2))))
3534ralrn 7030 . . . . . . 7 ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2))))
36 breq2 5099 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐹𝑥) ≤ 𝑛 ↔ (𝐹𝑥) ≤ 𝑚))
3736ifbid 4500 . . . . . . . . . . . 12 (𝑛 = 𝑚 → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
3837mpteq2dv 5189 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
3938fveq2d 6835 . . . . . . . . . 10 (𝑛 = 𝑚 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
40 eqid 2733 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))
41 fvex 6844 . . . . . . . . . 10 (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ∈ V
4239, 40, 41fvmpt 6938 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
4342breq1d 5105 . . . . . . . 8 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4443ralbiia 3078 . . . . . . 7 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
4535, 44bitrdi 287 . . . . . 6 ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4633, 45syl 17 . . . . 5 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4729, 32, 463bitr3d 309 . . . 4 (𝜑 → ((∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
488, 47mtbid 324 . . 3 (𝜑 → ¬ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
49 rexnal 3086 . . 3 (∃𝑚 ∈ ℕ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ¬ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
5048, 49sylibr 234 . 2 (𝜑 → ∃𝑚 ∈ ℕ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
519adantr 480 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐹:ℝ⟶(0[,)+∞))
5230adantr 480 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐹 ∈ MblFn)
531adantr 480 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → (∫2𝐹) ∈ ℝ)
542adantr 480 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐶 ∈ ℝ+)
55 simprl 770 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝑚 ∈ ℕ)
56 simprr 772 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
57 fveq2 6831 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5857breq1d 5105 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑥) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
5958, 57ifbieq1d 4501 . . . . . . . 8 (𝑥 = 𝑦 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
6059cbvmptv 5199 . . . . . . 7 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
6160fveq2i 6834 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0)))
6261breq1i 5102 . . . . 5 ((∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
6356, 62sylnib 328 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ¬ (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
6451, 52, 53, 54, 55, 63itg2cnlem2 25700 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
65 elequ1 2120 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝑢𝑦𝑢))
6665, 57ifbieq1d 4501 . . . . . . . . 9 (𝑥 = 𝑦 → if(𝑥𝑢, (𝐹𝑥), 0) = if(𝑦𝑢, (𝐹𝑦), 0))
6766cbvmptv 5199 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0)) = (𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))
6867fveq2i 6834 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0)))
6968breq1i 5102 . . . . . 6 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶 ↔ (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶)
7069imbi2i 336 . . . . 5 (((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7170ralbii 3080 . . . 4 (∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7271rexbii 3081 . . 3 (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7364, 72sylibr 234 . 2 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
7450, 73rexlimddv 3141 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2113  wral 3049  wrex 3058  wss 3899  ifcif 4476   class class class wbr 5095  cmpt 5176  dom cdm 5621  ran crn 5622   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  supcsup 9334  cr 11015  0cc0 11016  +∞cpnf 11153  *cxr 11155   < clt 11156  cle 11157  cmin 11354   / cdiv 11784  cn 12135  2c2 12190  +crp 12900  [,)cico 13257  [,]cicc 13258  volcvol 25401  MblFncmbf 25552  2citg2 25554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cc 10336  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-dju 9804  df-card 9842  df-acn 9845  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-n0 12392  df-z 12479  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-seq 13919  df-exp 13979  df-hash 14248  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-clim 15405  df-rlim 15406  df-sum 15604  df-rest 17336  df-topgen 17357  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-top 22819  df-topon 22836  df-bases 22871  df-cmp 23312  df-ovol 25402  df-vol 25403  df-mbf 25557  df-itg1 25558  df-itg2 25559  df-0p 25608
This theorem is referenced by:  itgcn  25783
  Copyright terms: Public domain W3C validator