MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cn Structured version   Visualization version   GIF version

Theorem itg2cn 25671
Description: A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a 25951 which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itg2cn.1 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2cn.2 (𝜑𝐹 ∈ MblFn)
itg2cn.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2cn.4 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
itg2cn (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Distinct variable groups:   𝑢,𝑑,𝑥,𝐶   𝐹,𝑑,𝑢,𝑥   𝜑,𝑢,𝑥
Allowed substitution hint:   𝜑(𝑑)

Proof of Theorem itg2cn
Dummy variables 𝑚 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2cn.3 . . . . . 6 (𝜑 → (∫2𝐹) ∈ ℝ)
2 itg2cn.4 . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
32rphalfcld 13014 . . . . . 6 (𝜑 → (𝐶 / 2) ∈ ℝ+)
41, 3ltsubrpd 13034 . . . . 5 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) < (∫2𝐹))
53rpred 13002 . . . . . . 7 (𝜑 → (𝐶 / 2) ∈ ℝ)
61, 5resubcld 11613 . . . . . 6 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ)
76, 1ltnled 11328 . . . . 5 (𝜑 → (((∫2𝐹) − (𝐶 / 2)) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2))))
84, 7mpbid 232 . . . 4 (𝜑 → ¬ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2)))
9 itg2cn.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:ℝ⟶(0[,)+∞))
109ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
11 elrege0 13422 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1210, 11sylib 218 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
1312simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1413rexrd 11231 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ*)
1512simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
16 elxrge0 13425 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
1714, 15, 16sylanbrc 583 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
18 0e0iccpnf 13427 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
19 ifcl 4537 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2017, 18, 19sylancl 586 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2120adantlr 715 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) ∈ (0[,]+∞))
2221fmpttd 7090 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
23 itg2cl 25640 . . . . . . . . 9 ((𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) ∈ ℝ*)
2422, 23syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) ∈ ℝ*)
2524fmpttd 7090 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))):ℕ⟶ℝ*)
2625frnd 6699 . . . . . 6 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) ⊆ ℝ*)
276rexrd 11231 . . . . . 6 (𝜑 → ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ*)
28 supxrleub 13293 . . . . . 6 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) ⊆ ℝ* ∧ ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2))))
2926, 27, 28syl2anc 584 . . . . 5 (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2))))
30 itg2cn.2 . . . . . . 7 (𝜑𝐹 ∈ MblFn)
319, 30, 1itg2cnlem1 25669 . . . . . 6 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) = (∫2𝐹))
3231breq1d 5120 . . . . 5 (𝜑 → (sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))), ℝ*, < ) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2))))
3325ffnd 6692 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ)
34 breq1 5113 . . . . . . . 8 (𝑧 = ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) → (𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2))))
3534ralrn 7063 . . . . . . 7 ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2))))
36 breq2 5114 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝐹𝑥) ≤ 𝑛 ↔ (𝐹𝑥) ≤ 𝑚))
3736ifbid 4515 . . . . . . . . . . . 12 (𝑛 = 𝑚 → if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0) = if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))
3837mpteq2dv 5204 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)))
3938fveq2d 6865 . . . . . . . . . 10 (𝑛 = 𝑚 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
40 eqid 2730 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))
41 fvex 6874 . . . . . . . . . 10 (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ∈ V
4239, 40, 41fvmpt 6971 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))))
4342breq1d 5120 . . . . . . . 8 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4443ralbiia 3074 . . . . . . 7 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))‘𝑚) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
4535, 44bitrdi 287 . . . . . 6 ((𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0)))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4633, 45syl 17 . . . . 5 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑛, (𝐹𝑥), 0))))𝑧 ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
4729, 32, 463bitr3d 309 . . . 4 (𝜑 → ((∫2𝐹) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
488, 47mtbid 324 . . 3 (𝜑 → ¬ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
49 rexnal 3083 . . 3 (∃𝑚 ∈ ℕ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ ¬ ∀𝑚 ∈ ℕ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
5048, 49sylibr 234 . 2 (𝜑 → ∃𝑚 ∈ ℕ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
519adantr 480 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐹:ℝ⟶(0[,)+∞))
5230adantr 480 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐹 ∈ MblFn)
531adantr 480 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → (∫2𝐹) ∈ ℝ)
542adantr 480 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝐶 ∈ ℝ+)
55 simprl 770 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → 𝑚 ∈ ℕ)
56 simprr 772 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
57 fveq2 6861 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5857breq1d 5120 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑥) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
5958, 57ifbieq1d 4516 . . . . . . . 8 (𝑥 = 𝑦 → if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0) = if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
6059cbvmptv 5214 . . . . . . 7 (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0)) = (𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))
6160fveq2i 6864 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0)))
6261breq1i 5117 . . . . 5 ((∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)) ↔ (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
6356, 62sylnib 328 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ¬ (∫2‘(𝑦 ∈ ℝ ↦ if((𝐹𝑦) ≤ 𝑚, (𝐹𝑦), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
6451, 52, 53, 54, 55, 63itg2cnlem2 25670 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
65 elequ1 2116 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝑢𝑦𝑢))
6665, 57ifbieq1d 4516 . . . . . . . . 9 (𝑥 = 𝑦 → if(𝑥𝑢, (𝐹𝑥), 0) = if(𝑦𝑢, (𝐹𝑦), 0))
6766cbvmptv 5214 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0)) = (𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))
6867fveq2i 6864 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) = (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0)))
6968breq1i 5117 . . . . . 6 ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶 ↔ (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶)
7069imbi2i 336 . . . . 5 (((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7170ralbii 3076 . . . 4 (∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7271rexbii 3077 . . 3 (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, (𝐹𝑦), 0))) < 𝐶))
7364, 72sylibr 234 . 2 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑚, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
7450, 73rexlimddv 3141 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wral 3045  wrex 3054  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  supcsup 9398  cr 11074  0cc0 11075  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  +crp 12958  [,)cico 13315  [,]cicc 13316  volcvol 25371  MblFncmbf 25522  2citg2 25524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-0p 25578
This theorem is referenced by:  itgcn  25753
  Copyright terms: Public domain W3C validator