MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isibl2 Structured version   Visualization version   GIF version

Theorem isibl2 24618
Description: The predicate "𝐹 is integrable" when 𝐹 is a mapping operation. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
isibl.1 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
isibl.2 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))))
isibl2.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
isibl2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘   𝜑,𝑘,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥,𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑘)

Proof of Theorem isibl2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isibl.1 . . 3 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
2 nfv 1922 . . . . . . 7 𝑥 𝑦𝐴
3 nfcv 2897 . . . . . . . 8 𝑥0
4 nfcv 2897 . . . . . . . 8 𝑥
5 nfcv 2897 . . . . . . . . 9 𝑥
6 nffvmpt1 6706 . . . . . . . . . 10 𝑥((𝑥𝐴𝐵)‘𝑦)
7 nfcv 2897 . . . . . . . . . 10 𝑥 /
8 nfcv 2897 . . . . . . . . . 10 𝑥(i↑𝑘)
96, 7, 8nfov 7221 . . . . . . . . 9 𝑥(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))
105, 9nffv 6705 . . . . . . . 8 𝑥(ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))
113, 4, 10nfbr 5086 . . . . . . 7 𝑥0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))
122, 11nfan 1907 . . . . . 6 𝑥(𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))))
1312, 10, 3nfif 4455 . . . . 5 𝑥if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0)
14 nfcv 2897 . . . . 5 𝑦if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0)
15 eleq1w 2813 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
16 fveq2 6695 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑥))
1716fvoveq1d 7213 . . . . . . . 8 (𝑦 = 𝑥 → (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))) = (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))))
1817breq2d 5051 . . . . . . 7 (𝑦 = 𝑥 → (0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))))
1915, 18anbi12d 634 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))))))
2019, 17ifbieq1d 4449 . . . . 5 (𝑦 = 𝑥 → if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0))
2113, 14, 20cbvmpt 5141 . . . 4 (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0))
22 simpr 488 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
23 isibl2.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
24 eqid 2736 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
2524fvmpt2 6807 . . . . . . . . 9 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2622, 23, 25syl2anc 587 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2726fvoveq1d 7213 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
28 isibl.2 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))))
2927, 28eqtr4d 2774 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))) = 𝑇)
3029ibllem 24616 . . . . 5 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
3130mpteq2dv 5136 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
3221, 31syl5eq 2783 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
331, 32eqtr4d 2774 . 2 (𝜑𝐺 = (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0)))
34 eqidd 2737 . 2 ((𝜑𝑦𝐴) → (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))) = (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))))
3524, 23dmmptd 6501 . 2 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
36 eqidd 2737 . 2 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑦))
3733, 34, 35, 36isibl 24617 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  ifcif 4425   class class class wbr 5039  cmpt 5120  cfv 6358  (class class class)co 7191  cr 10693  0cc0 10694  ici 10696  cle 10833   / cdiv 11454  3c3 11851  ...cfz 13060  cexp 13600  cre 14625  MblFncmbf 24465  2citg2 24467  𝐿1cibl 24468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fv 6366  df-ov 7194  df-ibl 24473
This theorem is referenced by:  iblitg  24620  iblcnlem1  24639  iblss  24656  iblss2  24657  itgeqa  24665  iblconst  24669  iblabsr  24681  iblmulc2  24682  iblmulc2nc  35528  iblsplit  43125
  Copyright terms: Public domain W3C validator