MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isibl2 Structured version   Visualization version   GIF version

Theorem isibl2 24927
Description: The predicate "𝐹 is integrable" when 𝐹 is a mapping operation. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
isibl.1 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
isibl.2 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))))
isibl2.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
isibl2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘   𝜑,𝑘,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥,𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑘)

Proof of Theorem isibl2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isibl.1 . . 3 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
2 nfv 1921 . . . . . . 7 𝑥 𝑦𝐴
3 nfcv 2909 . . . . . . . 8 𝑥0
4 nfcv 2909 . . . . . . . 8 𝑥
5 nfcv 2909 . . . . . . . . 9 𝑥
6 nffvmpt1 6780 . . . . . . . . . 10 𝑥((𝑥𝐴𝐵)‘𝑦)
7 nfcv 2909 . . . . . . . . . 10 𝑥 /
8 nfcv 2909 . . . . . . . . . 10 𝑥(i↑𝑘)
96, 7, 8nfov 7299 . . . . . . . . 9 𝑥(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))
105, 9nffv 6779 . . . . . . . 8 𝑥(ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))
113, 4, 10nfbr 5126 . . . . . . 7 𝑥0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))
122, 11nfan 1906 . . . . . 6 𝑥(𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))))
1312, 10, 3nfif 4495 . . . . 5 𝑥if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0)
14 nfcv 2909 . . . . 5 𝑦if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0)
15 eleq1w 2823 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
16 fveq2 6769 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑥))
1716fvoveq1d 7291 . . . . . . . 8 (𝑦 = 𝑥 → (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))) = (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))))
1817breq2d 5091 . . . . . . 7 (𝑦 = 𝑥 → (0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))))
1915, 18anbi12d 631 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))))))
2019, 17ifbieq1d 4489 . . . . 5 (𝑦 = 𝑥 → if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0))
2113, 14, 20cbvmpt 5190 . . . 4 (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0))
22 simpr 485 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
23 isibl2.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
24 eqid 2740 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
2524fvmpt2 6881 . . . . . . . . 9 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2622, 23, 25syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2726fvoveq1d 7291 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
28 isibl.2 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))))
2927, 28eqtr4d 2783 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))) = 𝑇)
3029ibllem 24925 . . . . 5 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
3130mpteq2dv 5181 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
3221, 31eqtrid 2792 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
331, 32eqtr4d 2783 . 2 (𝜑𝐺 = (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0)))
34 eqidd 2741 . 2 ((𝜑𝑦𝐴) → (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))) = (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))))
3524, 23dmmptd 6575 . 2 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
36 eqidd 2741 . 2 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑦))
3733, 34, 35, 36isibl 24926 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  ifcif 4465   class class class wbr 5079  cmpt 5162  cfv 6431  (class class class)co 7269  cr 10869  0cc0 10870  ici 10872  cle 11009   / cdiv 11630  3c3 12027  ...cfz 13236  cexp 13778  cre 14804  MblFncmbf 24774  2citg2 24776  𝐿1cibl 24777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fv 6439  df-ov 7272  df-ibl 24782
This theorem is referenced by:  iblitg  24929  iblcnlem1  24948  iblss  24965  iblss2  24966  itgeqa  24974  iblconst  24978  iblabsr  24990  iblmulc2  24991  iblmulc2nc  35836  iblsplit  43476
  Copyright terms: Public domain W3C validator