Step | Hyp | Ref
| Expression |
1 | | isibl.1 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) |
2 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑦 ∈ 𝐴 |
3 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑥0 |
4 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑥
≤ |
5 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑥ℜ |
6 | | nffvmpt1 6785 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
7 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑥
/ |
8 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(i↑𝑘) |
9 | 6, 7, 8 | nfov 7305 |
. . . . . . . . 9
⊢
Ⅎ𝑥(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘)) |
10 | 5, 9 | nffv 6784 |
. . . . . . . 8
⊢
Ⅎ𝑥(ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘))) |
11 | 3, 4, 10 | nfbr 5121 |
. . . . . . 7
⊢
Ⅎ𝑥0 ≤
(ℜ‘(((𝑥 ∈
𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘))) |
12 | 2, 11 | nfan 1902 |
. . . . . 6
⊢
Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘)))) |
13 | 12, 10, 3 | nfif 4489 |
. . . . 5
⊢
Ⅎ𝑥if((𝑦 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘))), 0) |
14 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑦if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘))), 0) |
15 | | eleq1w 2821 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
16 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
17 | 16 | fvoveq1d 7297 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘))) = (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘)))) |
18 | 17 | breq2d 5086 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (0 ≤ (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘))))) |
19 | 15, 18 | anbi12d 631 |
. . . . . 6
⊢ (𝑦 = 𝑥 → ((𝑦 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘)))) ↔ (𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘)))))) |
20 | 19, 17 | ifbieq1d 4483 |
. . . . 5
⊢ (𝑦 = 𝑥 → if((𝑦 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘))), 0)) |
21 | 13, 14, 20 | cbvmpt 5185 |
. . . 4
⊢ (𝑦 ∈ ℝ ↦
if((𝑦 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(((𝑥 ∈
𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘))), 0)) |
22 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
23 | | isibl2.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
24 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
25 | 24 | fvmpt2 6886 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
26 | 22, 23, 25 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
27 | 26 | fvoveq1d 7297 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))) |
28 | | isibl.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))) |
29 | 27, 28 | eqtr4d 2781 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘))) = 𝑇) |
30 | 29 | ibllem 24929 |
. . . . 5
⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)) |
31 | 30 | mpteq2dv 5176 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) |
32 | 21, 31 | eqtrid 2790 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if((𝑦 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) |
33 | 1, 32 | eqtr4d 2781 |
. 2
⊢ (𝜑 → 𝐺 = (𝑦 ∈ ℝ ↦ if((𝑦 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘))), 0))) |
34 | | eqidd 2739 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘))) = (ℜ‘(((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) / (i↑𝑘)))) |
35 | 24, 23 | dmmptd 6578 |
. 2
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
36 | | eqidd 2739 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)) |
37 | 33, 34, 35, 36 | isibl 24930 |
1
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘𝐺) ∈ ℝ))) |