MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isibl2 Structured version   Visualization version   GIF version

Theorem isibl2 24836
Description: The predicate "𝐹 is integrable" when 𝐹 is a mapping operation. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
isibl.1 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
isibl.2 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))))
isibl2.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
isibl2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘   𝜑,𝑘,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥,𝑘)   𝐺(𝑥,𝑘)   𝑉(𝑘)

Proof of Theorem isibl2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isibl.1 . . 3 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
2 nfv 1918 . . . . . . 7 𝑥 𝑦𝐴
3 nfcv 2906 . . . . . . . 8 𝑥0
4 nfcv 2906 . . . . . . . 8 𝑥
5 nfcv 2906 . . . . . . . . 9 𝑥
6 nffvmpt1 6767 . . . . . . . . . 10 𝑥((𝑥𝐴𝐵)‘𝑦)
7 nfcv 2906 . . . . . . . . . 10 𝑥 /
8 nfcv 2906 . . . . . . . . . 10 𝑥(i↑𝑘)
96, 7, 8nfov 7285 . . . . . . . . 9 𝑥(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))
105, 9nffv 6766 . . . . . . . 8 𝑥(ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))
113, 4, 10nfbr 5117 . . . . . . 7 𝑥0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))
122, 11nfan 1903 . . . . . 6 𝑥(𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))))
1312, 10, 3nfif 4486 . . . . 5 𝑥if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0)
14 nfcv 2906 . . . . 5 𝑦if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0)
15 eleq1w 2821 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
16 fveq2 6756 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑥))
1716fvoveq1d 7277 . . . . . . . 8 (𝑦 = 𝑥 → (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))) = (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))))
1817breq2d 5082 . . . . . . 7 (𝑦 = 𝑥 → (0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))))
1915, 18anbi12d 630 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))))))
2019, 17ifbieq1d 4480 . . . . 5 (𝑦 = 𝑥 → if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0))
2113, 14, 20cbvmpt 5181 . . . 4 (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0))
22 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
23 isibl2.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
24 eqid 2738 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
2524fvmpt2 6868 . . . . . . . . 9 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2622, 23, 25syl2anc 583 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2726fvoveq1d 7277 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
28 isibl.2 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))))
2927, 28eqtr4d 2781 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))) = 𝑇)
3029ibllem 24834 . . . . 5 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
3130mpteq2dv 5172 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑥) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
3221, 31syl5eq 2791 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
331, 32eqtr4d 2781 . 2 (𝜑𝐺 = (𝑦 ∈ ℝ ↦ if((𝑦𝐴 ∧ 0 ≤ (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘)))), (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))), 0)))
34 eqidd 2739 . 2 ((𝜑𝑦𝐴) → (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))) = (ℜ‘(((𝑥𝐴𝐵)‘𝑦) / (i↑𝑘))))
3524, 23dmmptd 6562 . 2 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
36 eqidd 2739 . 2 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑦))
3733, 34, 35, 36isibl 24835 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2𝐺) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  ifcif 4456   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  ici 10804  cle 10941   / cdiv 11562  3c3 11959  ...cfz 13168  cexp 13710  cre 14736  MblFncmbf 24683  2citg2 24685  𝐿1cibl 24686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-ibl 24691
This theorem is referenced by:  iblitg  24838  iblcnlem1  24857  iblss  24874  iblss2  24875  itgeqa  24883  iblconst  24887  iblabsr  24899  iblmulc2  24900  iblmulc2nc  35769  iblsplit  43397
  Copyright terms: Public domain W3C validator