MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblcnlem1 Structured version   Visualization version   GIF version

Theorem iblcnlem1 25745
Description: Lemma for iblcnlem 25746. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r š‘… = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜šµ)), (ā„œā€˜šµ), 0)))
itgcnlem.s š‘† = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ -(ā„œā€˜šµ)), -(ā„œā€˜šµ), 0)))
itgcnlem.t š‘‡ = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„‘ā€˜šµ)), (ā„‘ā€˜šµ), 0)))
itgcnlem.u š‘ˆ = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ -(ā„‘ā€˜šµ)), -(ā„‘ā€˜šµ), 0)))
itgcnlem1.v ((šœ‘ ∧ š‘„ ∈ š“) → šµ ∈ ā„‚)
Assertion
Ref Expression
iblcnlem1 (šœ‘ → ((š‘„ ∈ š“ ↦ šµ) ∈ šæ1 ↔ ((š‘„ ∈ š“ ↦ šµ) ∈ MblFn ∧ (š‘… ∈ ā„ ∧ š‘† ∈ ā„) ∧ (š‘‡ ∈ ā„ ∧ š‘ˆ ∈ ā„))))
Distinct variable groups:   š‘„,š“   šœ‘,š‘„
Allowed substitution hints:   šµ(š‘„)   š‘…(š‘„)   š‘†(š‘„)   š‘‡(š‘„)   š‘ˆ(š‘„)

Proof of Theorem iblcnlem1
Dummy variable š‘˜ is distinct from all other variables.
StepHypRef Expression
1 eqidd 2729 . . 3 (šœ‘ → (š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0)) = (š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0)))
2 eqidd 2729 . . 3 ((šœ‘ ∧ š‘„ ∈ š“) → (ā„œā€˜(šµ / (iā†‘š‘˜))) = (ā„œā€˜(šµ / (iā†‘š‘˜))))
3 itgcnlem1.v . . 3 ((šœ‘ ∧ š‘„ ∈ š“) → šµ ∈ ā„‚)
41, 2, 3isibl2 25724 . 2 (šœ‘ → ((š‘„ ∈ š“ ↦ šµ) ∈ šæ1 ↔ ((š‘„ ∈ š“ ↦ šµ) ∈ MblFn ∧ āˆ€š‘˜ ∈ (0...3)(∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„)))
5 c0ex 11248 . . . . . . . 8 0 ∈ V
6 1ex 11250 . . . . . . . 8 1 ∈ V
7 ax-icn 11207 . . . . . . . . . . 11 i ∈ ā„‚
8 exp0 14072 . . . . . . . . . . 11 (i ∈ ā„‚ → (i↑0) = 1)
97, 8ax-mp 5 . . . . . . . . . 10 (i↑0) = 1
109itgvallem 25742 . . . . . . . . 9 (š‘˜ = 0 → (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / 1))), (ā„œā€˜(šµ / 1)), 0))))
1110eleq1d 2814 . . . . . . . 8 (š‘˜ = 0 → ((∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ↔ (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / 1))), (ā„œā€˜(šµ / 1)), 0))) ∈ ā„))
12 exp1 14074 . . . . . . . . . . 11 (i ∈ ā„‚ → (i↑1) = i)
137, 12ax-mp 5 . . . . . . . . . 10 (i↑1) = i
1413itgvallem 25742 . . . . . . . . 9 (š‘˜ = 1 → (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / i))), (ā„œā€˜(šµ / i)), 0))))
1514eleq1d 2814 . . . . . . . 8 (š‘˜ = 1 → ((∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ↔ (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / i))), (ā„œā€˜(šµ / i)), 0))) ∈ ā„))
165, 6, 11, 15ralpr 4709 . . . . . . 7 (āˆ€š‘˜ ∈ {0, 1} (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ↔ ((∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / 1))), (ā„œā€˜(šµ / 1)), 0))) ∈ ā„ ∧ (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / i))), (ā„œā€˜(šµ / i)), 0))) ∈ ā„))
173div1d 12022 . . . . . . . . . . . . . 14 ((šœ‘ ∧ š‘„ ∈ š“) → (šµ / 1) = šµ)
1817fveq2d 6906 . . . . . . . . . . . . 13 ((šœ‘ ∧ š‘„ ∈ š“) → (ā„œā€˜(šµ / 1)) = (ā„œā€˜šµ))
1918ibllem 25722 . . . . . . . . . . . 12 (šœ‘ → if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / 1))), (ā„œā€˜(šµ / 1)), 0) = if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜šµ)), (ā„œā€˜šµ), 0))
2019mpteq2dv 5254 . . . . . . . . . . 11 (šœ‘ → (š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / 1))), (ā„œā€˜(šµ / 1)), 0)) = (š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜šµ)), (ā„œā€˜šµ), 0)))
2120fveq2d 6906 . . . . . . . . . 10 (šœ‘ → (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / 1))), (ā„œā€˜(šµ / 1)), 0))) = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜šµ)), (ā„œā€˜šµ), 0))))
22 itgcnlem.r . . . . . . . . . 10 š‘… = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜šµ)), (ā„œā€˜šµ), 0)))
2321, 22eqtr4di 2786 . . . . . . . . 9 (šœ‘ → (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / 1))), (ā„œā€˜(šµ / 1)), 0))) = š‘…)
2423eleq1d 2814 . . . . . . . 8 (šœ‘ → ((∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / 1))), (ā„œā€˜(šµ / 1)), 0))) ∈ ā„ ↔ š‘… ∈ ā„))
25 itgcnlem.t . . . . . . . . . 10 š‘‡ = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„‘ā€˜šµ)), (ā„‘ā€˜šµ), 0)))
26 imval 15096 . . . . . . . . . . . . . 14 (šµ ∈ ā„‚ → (ā„‘ā€˜šµ) = (ā„œā€˜(šµ / i)))
273, 26syl 17 . . . . . . . . . . . . 13 ((šœ‘ ∧ š‘„ ∈ š“) → (ā„‘ā€˜šµ) = (ā„œā€˜(šµ / i)))
2827ibllem 25722 . . . . . . . . . . . 12 (šœ‘ → if((š‘„ ∈ š“ ∧ 0 ≤ (ā„‘ā€˜šµ)), (ā„‘ā€˜šµ), 0) = if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / i))), (ā„œā€˜(šµ / i)), 0))
2928mpteq2dv 5254 . . . . . . . . . . 11 (šœ‘ → (š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„‘ā€˜šµ)), (ā„‘ā€˜šµ), 0)) = (š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / i))), (ā„œā€˜(šµ / i)), 0)))
3029fveq2d 6906 . . . . . . . . . 10 (šœ‘ → (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„‘ā€˜šµ)), (ā„‘ā€˜šµ), 0))) = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / i))), (ā„œā€˜(šµ / i)), 0))))
3125, 30eqtr2id 2781 . . . . . . . . 9 (šœ‘ → (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / i))), (ā„œā€˜(šµ / i)), 0))) = š‘‡)
3231eleq1d 2814 . . . . . . . 8 (šœ‘ → ((∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / i))), (ā„œā€˜(šµ / i)), 0))) ∈ ā„ ↔ š‘‡ ∈ ā„))
3324, 32anbi12d 630 . . . . . . 7 (šœ‘ → (((∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / 1))), (ā„œā€˜(šµ / 1)), 0))) ∈ ā„ ∧ (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / i))), (ā„œā€˜(šµ / i)), 0))) ∈ ā„) ↔ (š‘… ∈ ā„ ∧ š‘‡ ∈ ā„)))
3416, 33bitrid 282 . . . . . 6 (šœ‘ → (āˆ€š‘˜ ∈ {0, 1} (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ↔ (š‘… ∈ ā„ ∧ š‘‡ ∈ ā„)))
35 2ex 12329 . . . . . . . 8 2 ∈ V
36 3ex 12334 . . . . . . . 8 3 ∈ V
37 i2 14207 . . . . . . . . . 10 (i↑2) = -1
3837itgvallem 25742 . . . . . . . . 9 (š‘˜ = 2 → (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -1))), (ā„œā€˜(šµ / -1)), 0))))
3938eleq1d 2814 . . . . . . . 8 (š‘˜ = 2 → ((∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ↔ (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -1))), (ā„œā€˜(šµ / -1)), 0))) ∈ ā„))
40 i3 14208 . . . . . . . . . 10 (i↑3) = -i
4140itgvallem 25742 . . . . . . . . 9 (š‘˜ = 3 → (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -i))), (ā„œā€˜(šµ / -i)), 0))))
4241eleq1d 2814 . . . . . . . 8 (š‘˜ = 3 → ((∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ↔ (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -i))), (ā„œā€˜(šµ / -i)), 0))) ∈ ā„))
4335, 36, 39, 42ralpr 4709 . . . . . . 7 (āˆ€š‘˜ ∈ {2, 3} (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ↔ ((∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -1))), (ā„œā€˜(šµ / -1)), 0))) ∈ ā„ ∧ (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -i))), (ā„œā€˜(šµ / -i)), 0))) ∈ ā„))
44 itgcnlem.s . . . . . . . . . 10 š‘† = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ -(ā„œā€˜šµ)), -(ā„œā€˜šµ), 0)))
453renegd 15198 . . . . . . . . . . . . . 14 ((šœ‘ ∧ š‘„ ∈ š“) → (ā„œā€˜-šµ) = -(ā„œā€˜šµ))
46 ax-1cn 11206 . . . . . . . . . . . . . . . . . . 19 1 ∈ ā„‚
4746negnegi 11570 . . . . . . . . . . . . . . . . . 18 --1 = 1
4847oveq2i 7437 . . . . . . . . . . . . . . . . 17 (-šµ / --1) = (-šµ / 1)
493negcld 11598 . . . . . . . . . . . . . . . . . 18 ((šœ‘ ∧ š‘„ ∈ š“) → -šµ ∈ ā„‚)
5049div1d 12022 . . . . . . . . . . . . . . . . 17 ((šœ‘ ∧ š‘„ ∈ š“) → (-šµ / 1) = -šµ)
5148, 50eqtrid 2780 . . . . . . . . . . . . . . . 16 ((šœ‘ ∧ š‘„ ∈ š“) → (-šµ / --1) = -šµ)
5246negcli 11568 . . . . . . . . . . . . . . . . . 18 -1 ∈ ā„‚
53 neg1ne0 12368 . . . . . . . . . . . . . . . . . 18 -1 ≠ 0
54 div2neg 11977 . . . . . . . . . . . . . . . . . 18 ((šµ ∈ ā„‚ ∧ -1 ∈ ā„‚ ∧ -1 ≠ 0) → (-šµ / --1) = (šµ / -1))
5552, 53, 54mp3an23 1449 . . . . . . . . . . . . . . . . 17 (šµ ∈ ā„‚ → (-šµ / --1) = (šµ / -1))
563, 55syl 17 . . . . . . . . . . . . . . . 16 ((šœ‘ ∧ š‘„ ∈ š“) → (-šµ / --1) = (šµ / -1))
5751, 56eqtr3d 2770 . . . . . . . . . . . . . . 15 ((šœ‘ ∧ š‘„ ∈ š“) → -šµ = (šµ / -1))
5857fveq2d 6906 . . . . . . . . . . . . . 14 ((šœ‘ ∧ š‘„ ∈ š“) → (ā„œā€˜-šµ) = (ā„œā€˜(šµ / -1)))
5945, 58eqtr3d 2770 . . . . . . . . . . . . 13 ((šœ‘ ∧ š‘„ ∈ š“) → -(ā„œā€˜šµ) = (ā„œā€˜(šµ / -1)))
6059ibllem 25722 . . . . . . . . . . . 12 (šœ‘ → if((š‘„ ∈ š“ ∧ 0 ≤ -(ā„œā€˜šµ)), -(ā„œā€˜šµ), 0) = if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -1))), (ā„œā€˜(šµ / -1)), 0))
6160mpteq2dv 5254 . . . . . . . . . . 11 (šœ‘ → (š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ -(ā„œā€˜šµ)), -(ā„œā€˜šµ), 0)) = (š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -1))), (ā„œā€˜(šµ / -1)), 0)))
6261fveq2d 6906 . . . . . . . . . 10 (šœ‘ → (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ -(ā„œā€˜šµ)), -(ā„œā€˜šµ), 0))) = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -1))), (ā„œā€˜(šµ / -1)), 0))))
6344, 62eqtr2id 2781 . . . . . . . . 9 (šœ‘ → (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -1))), (ā„œā€˜(šµ / -1)), 0))) = š‘†)
6463eleq1d 2814 . . . . . . . 8 (šœ‘ → ((∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -1))), (ā„œā€˜(šµ / -1)), 0))) ∈ ā„ ↔ š‘† ∈ ā„))
65 itgcnlem.u . . . . . . . . . 10 š‘ˆ = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ -(ā„‘ā€˜šµ)), -(ā„‘ā€˜šµ), 0)))
66 imval 15096 . . . . . . . . . . . . . . 15 (-šµ ∈ ā„‚ → (ā„‘ā€˜-šµ) = (ā„œā€˜(-šµ / i)))
6749, 66syl 17 . . . . . . . . . . . . . 14 ((šœ‘ ∧ š‘„ ∈ š“) → (ā„‘ā€˜-šµ) = (ā„œā€˜(-šµ / i)))
683imnegd 15199 . . . . . . . . . . . . . 14 ((šœ‘ ∧ š‘„ ∈ š“) → (ā„‘ā€˜-šµ) = -(ā„‘ā€˜šµ))
697negnegi 11570 . . . . . . . . . . . . . . . . . 18 --i = i
7069eqcomi 2737 . . . . . . . . . . . . . . . . 17 i = --i
7170oveq2i 7437 . . . . . . . . . . . . . . . 16 (-šµ / i) = (-šµ / --i)
727negcli 11568 . . . . . . . . . . . . . . . . . 18 -i ∈ ā„‚
73 ine0 11689 . . . . . . . . . . . . . . . . . . 19 i ≠ 0
747, 73negne0i 11575 . . . . . . . . . . . . . . . . . 18 -i ≠ 0
75 div2neg 11977 . . . . . . . . . . . . . . . . . 18 ((šµ ∈ ā„‚ ∧ -i ∈ ā„‚ ∧ -i ≠ 0) → (-šµ / --i) = (šµ / -i))
7672, 74, 75mp3an23 1449 . . . . . . . . . . . . . . . . 17 (šµ ∈ ā„‚ → (-šµ / --i) = (šµ / -i))
773, 76syl 17 . . . . . . . . . . . . . . . 16 ((šœ‘ ∧ š‘„ ∈ š“) → (-šµ / --i) = (šµ / -i))
7871, 77eqtrid 2780 . . . . . . . . . . . . . . 15 ((šœ‘ ∧ š‘„ ∈ š“) → (-šµ / i) = (šµ / -i))
7978fveq2d 6906 . . . . . . . . . . . . . 14 ((šœ‘ ∧ š‘„ ∈ š“) → (ā„œā€˜(-šµ / i)) = (ā„œā€˜(šµ / -i)))
8067, 68, 793eqtr3d 2776 . . . . . . . . . . . . 13 ((šœ‘ ∧ š‘„ ∈ š“) → -(ā„‘ā€˜šµ) = (ā„œā€˜(šµ / -i)))
8180ibllem 25722 . . . . . . . . . . . 12 (šœ‘ → if((š‘„ ∈ š“ ∧ 0 ≤ -(ā„‘ā€˜šµ)), -(ā„‘ā€˜šµ), 0) = if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -i))), (ā„œā€˜(šµ / -i)), 0))
8281mpteq2dv 5254 . . . . . . . . . . 11 (šœ‘ → (š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ -(ā„‘ā€˜šµ)), -(ā„‘ā€˜šµ), 0)) = (š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -i))), (ā„œā€˜(šµ / -i)), 0)))
8382fveq2d 6906 . . . . . . . . . 10 (šœ‘ → (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ -(ā„‘ā€˜šµ)), -(ā„‘ā€˜šµ), 0))) = (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -i))), (ā„œā€˜(šµ / -i)), 0))))
8465, 83eqtr2id 2781 . . . . . . . . 9 (šœ‘ → (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -i))), (ā„œā€˜(šµ / -i)), 0))) = š‘ˆ)
8584eleq1d 2814 . . . . . . . 8 (šœ‘ → ((∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -i))), (ā„œā€˜(šµ / -i)), 0))) ∈ ā„ ↔ š‘ˆ ∈ ā„))
8664, 85anbi12d 630 . . . . . . 7 (šœ‘ → (((∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -1))), (ā„œā€˜(šµ / -1)), 0))) ∈ ā„ ∧ (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / -i))), (ā„œā€˜(šµ / -i)), 0))) ∈ ā„) ↔ (š‘† ∈ ā„ ∧ š‘ˆ ∈ ā„)))
8743, 86bitrid 282 . . . . . 6 (šœ‘ → (āˆ€š‘˜ ∈ {2, 3} (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ↔ (š‘† ∈ ā„ ∧ š‘ˆ ∈ ā„)))
8834, 87anbi12d 630 . . . . 5 (šœ‘ → ((āˆ€š‘˜ ∈ {0, 1} (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ∧ āˆ€š‘˜ ∈ {2, 3} (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„) ↔ ((š‘… ∈ ā„ ∧ š‘‡ ∈ ā„) ∧ (š‘† ∈ ā„ ∧ š‘ˆ ∈ ā„))))
89 fz0to3un2pr 13645 . . . . . . 7 (0...3) = ({0, 1} ∪ {2, 3})
9089raleqi 3321 . . . . . 6 (āˆ€š‘˜ ∈ (0...3)(∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ↔ āˆ€š‘˜ ∈ ({0, 1} ∪ {2, 3})(∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„)
91 ralunb 4193 . . . . . 6 (āˆ€š‘˜ ∈ ({0, 1} ∪ {2, 3})(∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ↔ (āˆ€š‘˜ ∈ {0, 1} (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ∧ āˆ€š‘˜ ∈ {2, 3} (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„))
9290, 91bitri 274 . . . . 5 (āˆ€š‘˜ ∈ (0...3)(∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ↔ (āˆ€š‘˜ ∈ {0, 1} (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ∧ āˆ€š‘˜ ∈ {2, 3} (∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„))
93 an4 654 . . . . 5 (((š‘… ∈ ā„ ∧ š‘† ∈ ā„) ∧ (š‘‡ ∈ ā„ ∧ š‘ˆ ∈ ā„)) ↔ ((š‘… ∈ ā„ ∧ š‘‡ ∈ ā„) ∧ (š‘† ∈ ā„ ∧ š‘ˆ ∈ ā„)))
9488, 92, 933bitr4g 313 . . . 4 (šœ‘ → (āˆ€š‘˜ ∈ (0...3)(∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„ ↔ ((š‘… ∈ ā„ ∧ š‘† ∈ ā„) ∧ (š‘‡ ∈ ā„ ∧ š‘ˆ ∈ ā„))))
9594anbi2d 628 . . 3 (šœ‘ → (((š‘„ ∈ š“ ↦ šµ) ∈ MblFn ∧ āˆ€š‘˜ ∈ (0...3)(∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„) ↔ ((š‘„ ∈ š“ ↦ šµ) ∈ MblFn ∧ ((š‘… ∈ ā„ ∧ š‘† ∈ ā„) ∧ (š‘‡ ∈ ā„ ∧ š‘ˆ ∈ ā„)))))
96 3anass 1092 . . 3 (((š‘„ ∈ š“ ↦ šµ) ∈ MblFn ∧ (š‘… ∈ ā„ ∧ š‘† ∈ ā„) ∧ (š‘‡ ∈ ā„ ∧ š‘ˆ ∈ ā„)) ↔ ((š‘„ ∈ š“ ↦ šµ) ∈ MblFn ∧ ((š‘… ∈ ā„ ∧ š‘† ∈ ā„) ∧ (š‘‡ ∈ ā„ ∧ š‘ˆ ∈ ā„))))
9795, 96bitr4di 288 . 2 (šœ‘ → (((š‘„ ∈ š“ ↦ šµ) ∈ MblFn ∧ āˆ€š‘˜ ∈ (0...3)(∫2ā€˜(š‘„ ∈ ā„ ↦ if((š‘„ ∈ š“ ∧ 0 ≤ (ā„œā€˜(šµ / (iā†‘š‘˜)))), (ā„œā€˜(šµ / (iā†‘š‘˜))), 0))) ∈ ā„) ↔ ((š‘„ ∈ š“ ↦ šµ) ∈ MblFn ∧ (š‘… ∈ ā„ ∧ š‘† ∈ ā„) ∧ (š‘‡ ∈ ā„ ∧ š‘ˆ ∈ ā„))))
984, 97bitrd 278 1 (šœ‘ → ((š‘„ ∈ š“ ↦ šµ) ∈ šæ1 ↔ ((š‘„ ∈ š“ ↦ šµ) ∈ MblFn ∧ (š‘… ∈ ā„ ∧ š‘† ∈ ā„) ∧ (š‘‡ ∈ ā„ ∧ š‘ˆ ∈ ā„))))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   ≠ wne 2937  āˆ€wral 3058   ∪ cun 3947  ifcif 4532  {cpr 4634   class class class wbr 5152   ↦ cmpt 5235  ā€˜cfv 6553  (class class class)co 7426  ā„‚cc 11146  ā„cr 11147  0cc0 11148  1c1 11149  ici 11150   ≤ cle 11289  -cneg 11485   / cdiv 11911  2c2 12307  3c3 12308  ...cfz 13526  ā†‘cexp 14068  ā„œcre 15086  ā„‘cim 15087  MblFncmbf 25571  āˆ«2citg2 25573  šæ1cibl 25574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-div 11912  df-nn 12253  df-2 12315  df-3 12316  df-n0 12513  df-z 12599  df-uz 12863  df-fz 13527  df-seq 14009  df-exp 14069  df-cj 15088  df-re 15089  df-im 15090  df-ibl 25579
This theorem is referenced by:  iblcnlem  25746  iblcn  25756  bddiblnc  25799
  Copyright terms: Public domain W3C validator