MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblcnlem1 Structured version   Visualization version   GIF version

Theorem iblcnlem1 25716
Description: Lemma for iblcnlem 25717. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
itgcnlem.s 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
itgcnlem.t 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
itgcnlem.u 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
itgcnlem1.v ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
iblcnlem1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)

Proof of Theorem iblcnlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
2 eqidd 2732 . . 3 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
3 itgcnlem1.v . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
41, 2, 3isibl2 25694 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)))
5 c0ex 11106 . . . . . . . 8 0 ∈ V
6 1ex 11108 . . . . . . . 8 1 ∈ V
7 ax-icn 11065 . . . . . . . . . . 11 i ∈ ℂ
8 exp0 13972 . . . . . . . . . . 11 (i ∈ ℂ → (i↑0) = 1)
97, 8ax-mp 5 . . . . . . . . . 10 (i↑0) = 1
109itgvallem 25713 . . . . . . . . 9 (𝑘 = 0 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))))
1110eleq1d 2816 . . . . . . . 8 (𝑘 = 0 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) ∈ ℝ))
12 exp1 13974 . . . . . . . . . . 11 (i ∈ ℂ → (i↑1) = i)
137, 12ax-mp 5 . . . . . . . . . 10 (i↑1) = i
1413itgvallem 25713 . . . . . . . . 9 (𝑘 = 1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
1514eleq1d 2816 . . . . . . . 8 (𝑘 = 1 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) ∈ ℝ))
165, 6, 11, 15ralpr 4650 . . . . . . 7 (∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) ∈ ℝ))
173div1d 11889 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐵 / 1) = 𝐵)
1817fveq2d 6826 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / 1)) = (ℜ‘𝐵))
1918ibllem 25692 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
2019mpteq2dv 5183 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
2120fveq2d 6826 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))))
22 itgcnlem.r . . . . . . . . . 10 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
2321, 22eqtr4di 2784 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) = 𝑅)
2423eleq1d 2816 . . . . . . . 8 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) ∈ ℝ ↔ 𝑅 ∈ ℝ))
25 itgcnlem.t . . . . . . . . . 10 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
26 imval 15014 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
273, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
2827ibllem 25692 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))
2928mpteq2dv 5183 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))
3029fveq2d 6826 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
3125, 30eqtr2id 2779 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) = 𝑇)
3231eleq1d 2816 . . . . . . . 8 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) ∈ ℝ ↔ 𝑇 ∈ ℝ))
3324, 32anbi12d 632 . . . . . . 7 (𝜑 → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) ∈ ℝ) ↔ (𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ)))
3416, 33bitrid 283 . . . . . 6 (𝜑 → (∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ)))
35 2ex 12202 . . . . . . . 8 2 ∈ V
36 3ex 12207 . . . . . . . 8 3 ∈ V
37 i2 14109 . . . . . . . . . 10 (i↑2) = -1
3837itgvallem 25713 . . . . . . . . 9 (𝑘 = 2 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
3938eleq1d 2816 . . . . . . . 8 (𝑘 = 2 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) ∈ ℝ))
40 i3 14110 . . . . . . . . . 10 (i↑3) = -i
4140itgvallem 25713 . . . . . . . . 9 (𝑘 = 3 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
4241eleq1d 2816 . . . . . . . 8 (𝑘 = 3 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) ∈ ℝ))
4335, 36, 39, 42ralpr 4650 . . . . . . 7 (∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) ∈ ℝ))
44 itgcnlem.s . . . . . . . . . 10 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
453renegd 15116 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
46 ax-1cn 11064 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
4746negnegi 11431 . . . . . . . . . . . . . . . . . 18 --1 = 1
4847oveq2i 7357 . . . . . . . . . . . . . . . . 17 (-𝐵 / --1) = (-𝐵 / 1)
493negcld 11459 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
5049div1d 11889 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (-𝐵 / 1) = -𝐵)
5148, 50eqtrid 2778 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (-𝐵 / --1) = -𝐵)
5246negcli 11429 . . . . . . . . . . . . . . . . . 18 -1 ∈ ℂ
53 neg1ne0 12112 . . . . . . . . . . . . . . . . . 18 -1 ≠ 0
54 div2neg 11844 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℂ ∧ -1 ∈ ℂ ∧ -1 ≠ 0) → (-𝐵 / --1) = (𝐵 / -1))
5552, 53, 54mp3an23 1455 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℂ → (-𝐵 / --1) = (𝐵 / -1))
563, 55syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (-𝐵 / --1) = (𝐵 / -1))
5751, 56eqtr3d 2768 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → -𝐵 = (𝐵 / -1))
5857fveq2d 6826 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = (ℜ‘(𝐵 / -1)))
5945, 58eqtr3d 2768 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(ℜ‘𝐵) = (ℜ‘(𝐵 / -1)))
6059ibllem 25692 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))
6160mpteq2dv 5183 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))
6261fveq2d 6826 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
6344, 62eqtr2id 2779 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) = 𝑆)
6463eleq1d 2816 . . . . . . . 8 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) ∈ ℝ ↔ 𝑆 ∈ ℝ))
65 itgcnlem.u . . . . . . . . . 10 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
66 imval 15014 . . . . . . . . . . . . . . 15 (-𝐵 ∈ ℂ → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
6749, 66syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
683imnegd 15117 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
697negnegi 11431 . . . . . . . . . . . . . . . . . 18 --i = i
7069eqcomi 2740 . . . . . . . . . . . . . . . . 17 i = --i
7170oveq2i 7357 . . . . . . . . . . . . . . . 16 (-𝐵 / i) = (-𝐵 / --i)
727negcli 11429 . . . . . . . . . . . . . . . . . 18 -i ∈ ℂ
73 ine0 11552 . . . . . . . . . . . . . . . . . . 19 i ≠ 0
747, 73negne0i 11436 . . . . . . . . . . . . . . . . . 18 -i ≠ 0
75 div2neg 11844 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℂ ∧ -i ∈ ℂ ∧ -i ≠ 0) → (-𝐵 / --i) = (𝐵 / -i))
7672, 74, 75mp3an23 1455 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℂ → (-𝐵 / --i) = (𝐵 / -i))
773, 76syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (-𝐵 / --i) = (𝐵 / -i))
7871, 77eqtrid 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (-𝐵 / i) = (𝐵 / -i))
7978fveq2d 6826 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℜ‘(-𝐵 / i)) = (ℜ‘(𝐵 / -i)))
8067, 68, 793eqtr3d 2774 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(ℑ‘𝐵) = (ℜ‘(𝐵 / -i)))
8180ibllem 25692 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))
8281mpteq2dv 5183 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))
8382fveq2d 6826 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
8465, 83eqtr2id 2779 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) = 𝑈)
8584eleq1d 2816 . . . . . . . 8 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) ∈ ℝ ↔ 𝑈 ∈ ℝ))
8664, 85anbi12d 632 . . . . . . 7 (𝜑 → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) ∈ ℝ) ↔ (𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
8743, 86bitrid 283 . . . . . 6 (𝜑 → (∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
8834, 87anbi12d 632 . . . . 5 (𝜑 → ((∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ∧ ∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) ↔ ((𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ) ∧ (𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
89 fz0to3un2pr 13529 . . . . . . 7 (0...3) = ({0, 1} ∪ {2, 3})
9089raleqi 3290 . . . . . 6 (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ ∀𝑘 ∈ ({0, 1} ∪ {2, 3})(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
91 ralunb 4144 . . . . . 6 (∀𝑘 ∈ ({0, 1} ∪ {2, 3})(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ∧ ∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ))
9290, 91bitri 275 . . . . 5 (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ∧ ∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ))
93 an4 656 . . . . 5 (((𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) ↔ ((𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ) ∧ (𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
9488, 92, 933bitr4g 314 . . . 4 (𝜑 → (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ ((𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
9594anbi2d 630 . . 3 (𝜑 → (((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ((𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))))
96 3anass 1094 . . 3 (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ((𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
9795, 96bitr4di 289 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
984, 97bitrd 279 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  cun 3895  ifcif 4472  {cpr 4575   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007  ici 11008  cle 11147  -cneg 11345   / cdiv 11774  2c2 12180  3c3 12181  ...cfz 13407  cexp 13968  cre 15004  cim 15005  MblFncmbf 25542  2citg2 25544  𝐿1cibl 25545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-ibl 25550
This theorem is referenced by:  iblcnlem  25717  iblcn  25727  bddiblnc  25770
  Copyright terms: Public domain W3C validator