MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblcnlem Structured version   Visualization version   GIF version

Theorem iblcnlem 25688
Description: Expand out the universal quantifier in isibl2 25665. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
itgcnlem.s 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
itgcnlem.t 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
itgcnlem.u 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
itgcnlem.v ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
iblcnlem (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)

Proof of Theorem iblcnlem
StepHypRef Expression
1 iblmbf 25666 . . 3 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
21a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn))
3 simp1 1136 . . 3 (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) → (𝑥𝐴𝐵) ∈ MblFn)
43a1i 11 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) → (𝑥𝐴𝐵) ∈ MblFn))
5 eqid 2729 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
6 eqid 2729 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
7 eqid 2729 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
8 eqid 2729 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
9 0cn 11107 . . . . . . . 8 0 ∈ ℂ
109elimel 4546 . . . . . . 7 if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ
1110a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ)
125, 6, 7, 8, 11iblcnlem1 25687 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ))))
1312adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ))))
14 eqid 2729 . . . . . 6 𝐴 = 𝐴
15 mbff 25524 . . . . . . . . 9 ((𝑥𝐴𝐵) ∈ MblFn → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
16 eqid 2729 . . . . . . . . . . . 12 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
17 itgcnlem.v . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝑉)
1816, 17dmmptd 6627 . . . . . . . . . . 11 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
1918feq2d 6636 . . . . . . . . . 10 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ))
2019biimpa 476 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ) → (𝑥𝐴𝐵):𝐴⟶ℂ)
2115, 20sylan2 593 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴𝐵):𝐴⟶ℂ)
2216fmpt 7044 . . . . . . . 8 (∀𝑥𝐴 𝐵 ∈ ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ)
2321, 22sylibr 234 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥𝐴 𝐵 ∈ ℂ)
24 iftrue 4482 . . . . . . . 8 (𝐵 ∈ ℂ → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
2524ralimi 3066 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
2623, 25syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
27 mpteq12 5180 . . . . . 6 ((𝐴 = 𝐴 ∧ ∀𝑥𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵) → (𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) = (𝑥𝐴𝐵))
2814, 26, 27sylancr 587 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) = (𝑥𝐴𝐵))
2928eleq1d 2813 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔ (𝑥𝐴𝐵) ∈ 𝐿1))
3028eleq1d 2813 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ↔ (𝑥𝐴𝐵) ∈ MblFn))
31 eqid 2729 . . . . . . . . . 10 ℝ = ℝ
3224imim2i 16 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥𝐴 → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵))
3332imp 406 . . . . . . . . . . . . . . 15 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
3433fveq2d 6826 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = (ℜ‘𝐵))
3534ibllem 25663 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
3635a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
3736ralimi2 3061 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
3823, 37syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
39 mpteq12 5180 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4031, 38, 39sylancr 587 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4140fveq2d 6826 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))))
42 itgcnlem.r . . . . . . . 8 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4341, 42eqtr4di 2782 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑅)
4443eleq1d 2813 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑅 ∈ ℝ))
4534negeqd 11357 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = -(ℜ‘𝐵))
4645ibllem 25663 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))
4746a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
4847ralimi2 3061 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))
4923, 48syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))
50 mpteq12 5180 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
5131, 49, 50sylancr 587 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
5251fveq2d 6826 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))))
53 itgcnlem.s . . . . . . . 8 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
5452, 53eqtr4di 2782 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑆)
5554eleq1d 2813 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑆 ∈ ℝ))
5644, 55anbi12d 632 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ↔ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ)))
5733fveq2d 6826 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = (ℑ‘𝐵))
5857ibllem 25663 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))
5958a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6059ralimi2 3061 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))
6123, 60syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))
62 mpteq12 5180 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6331, 61, 62sylancr 587 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6463fveq2d 6826 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))))
65 itgcnlem.t . . . . . . . 8 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6664, 65eqtr4di 2782 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑇)
6766eleq1d 2813 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑇 ∈ ℝ))
6857negeqd 11357 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = -(ℑ‘𝐵))
6968ibllem 25663 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))
7069a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7170ralimi2 3061 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))
7223, 71syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))
73 mpteq12 5180 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7431, 72, 73sylancr 587 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7574fveq2d 6826 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))))
76 itgcnlem.u . . . . . . . 8 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7775, 76eqtr4di 2782 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑈)
7877eleq1d 2813 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑈 ∈ ℝ))
7967, 78anbi12d 632 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ↔ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
8030, 56, 793anbi123d 1438 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ)) ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
8113, 29, 803bitr3d 309 . . 3 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
8281ex 412 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))))
832, 4, 82pm5.21ndd 379 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  ifcif 4476   class class class wbr 5092  cmpt 5173  dom cdm 5619  wf 6478  cfv 6482  cc 11007  cr 11008  0cc0 11009  cle 11150  -cneg 11348  cre 15004  cim 15005  MblFncmbf 25513  2citg2 25515  𝐿1cibl 25516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-mbf 25518  df-ibl 25521
This theorem is referenced by:  itgcnlem  25689  iblrelem  25690  ibladd  25720  ibladdnc  37667
  Copyright terms: Public domain W3C validator