Proof of Theorem iblcnlem
Step | Hyp | Ref
| Expression |
1 | | iblmbf 24932 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn)) |
3 | | simp1 1135 |
. . 3
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
4 | 3 | a1i 11 |
. 2
⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn)) |
5 | | eqid 2738 |
. . . . . 6
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) |
6 | | eqid 2738 |
. . . . . 6
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) |
7 | | eqid 2738 |
. . . . . 6
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) |
8 | | eqid 2738 |
. . . . . 6
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) |
9 | | 0cn 10967 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
10 | 9 | elimel 4528 |
. . . . . . 7
⊢ if(𝐵 ∈ ℂ, 𝐵, 0) ∈
ℂ |
11 | 10 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ) |
12 | 5, 6, 7, 8, 11 | iblcnlem1 24952 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ)
∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈
ℝ)))) |
13 | 12 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → ((𝑥 ∈ 𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ)
∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈
ℝ)))) |
14 | | eqid 2738 |
. . . . . 6
⊢ 𝐴 = 𝐴 |
15 | | mbff 24789 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ) |
16 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
17 | | itgcnlem.v |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
18 | 16, 17 | dmmptd 6578 |
. . . . . . . . . . 11
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
19 | 18 | feq2d 6586 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ)) |
20 | 19 | biimpa 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
21 | 15, 20 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
22 | 16 | fmpt 6984 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℂ ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
23 | 21, 22 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ) |
24 | | iftrue 4465 |
. . . . . . . 8
⊢ (𝐵 ∈ ℂ → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵) |
25 | 24 | ralimi 3087 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ 𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵) |
26 | 23, 25 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → ∀𝑥 ∈ 𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵) |
27 | | mpteq12 5166 |
. . . . . 6
⊢ ((𝐴 = 𝐴 ∧ ∀𝑥 ∈ 𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵) → (𝑥 ∈ 𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
28 | 14, 26, 27 | sylancr 587 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → (𝑥 ∈ 𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
29 | 28 | eleq1d 2823 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → ((𝑥 ∈ 𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔
(𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1)) |
30 | 28 | eleq1d 2823 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → ((𝑥 ∈ 𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn)) |
31 | | eqid 2738 |
. . . . . . . . . 10
⊢ ℝ =
ℝ |
32 | 24 | imim2i 16 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)) |
33 | 32 | imp 407 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵) |
34 | 33 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = (ℜ‘𝐵)) |
35 | 34 | ibllem 24929 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)) |
36 | 35 | a1d 25 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) |
37 | 36 | ralimi2 3084 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)) |
38 | 23, 37 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)) |
39 | | mpteq12 5166 |
. . . . . . . . . 10
⊢ ((ℝ
= ℝ ∧ ∀𝑥
∈ ℝ if((𝑥 ∈
𝐴 ∧ 0 ≤
(ℜ‘if(𝐵 ∈
ℂ, 𝐵, 0))),
(ℜ‘if(𝐵 ∈
ℂ, 𝐵, 0)), 0) =
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘𝐵)),
(ℜ‘𝐵), 0))
→ (𝑥 ∈ ℝ
↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘if(𝐵 ∈
ℂ, 𝐵, 0))),
(ℜ‘if(𝐵 ∈
ℂ, 𝐵, 0)), 0)) =
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘𝐵)),
(ℜ‘𝐵),
0))) |
40 | 31, 38, 39 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) |
41 | 40 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))) |
42 | | itgcnlem.r |
. . . . . . . 8
⊢ 𝑅 =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) |
43 | 41, 42 | eqtr4di 2796 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑅) |
44 | 43 | eleq1d 2823 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ
↔ 𝑅 ∈
ℝ)) |
45 | 34 | negeqd 11215 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = -(ℜ‘𝐵)) |
46 | 45 | ibllem 24929 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) |
47 | 46 | a1d 25 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) |
48 | 47 | ralimi2 3084 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) |
49 | 23, 48 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) |
50 | | mpteq12 5166 |
. . . . . . . . . 10
⊢ ((ℝ
= ℝ ∧ ∀𝑥
∈ ℝ if((𝑥 ∈
𝐴 ∧ 0 ≤
-(ℜ‘if(𝐵 ∈
ℂ, 𝐵, 0))),
-(ℜ‘if(𝐵 ∈
ℂ, 𝐵, 0)), 0) =
if((𝑥 ∈ 𝐴 ∧ 0 ≤
-(ℜ‘𝐵)),
-(ℜ‘𝐵), 0))
→ (𝑥 ∈ ℝ
↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤
-(ℜ‘if(𝐵 ∈
ℂ, 𝐵, 0))),
-(ℜ‘if(𝐵 ∈
ℂ, 𝐵, 0)), 0)) =
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
-(ℜ‘𝐵)),
-(ℜ‘𝐵),
0))) |
51 | 31, 49, 50 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) |
52 | 51 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))) |
53 | | itgcnlem.s |
. . . . . . . 8
⊢ 𝑆 =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) |
54 | 52, 53 | eqtr4di 2796 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑆) |
55 | 54 | eleq1d 2823 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ
↔ 𝑆 ∈
ℝ)) |
56 | 44, 55 | anbi12d 631 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) →
(((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ)
↔ (𝑅 ∈ ℝ
∧ 𝑆 ∈
ℝ))) |
57 | 33 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = (ℑ‘𝐵)) |
58 | 57 | ibllem 24929 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) |
59 | 58 | a1d 25 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) |
60 | 59 | ralimi2 3084 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) |
61 | 23, 60 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) |
62 | | mpteq12 5166 |
. . . . . . . . . 10
⊢ ((ℝ
= ℝ ∧ ∀𝑥
∈ ℝ if((𝑥 ∈
𝐴 ∧ 0 ≤
(ℑ‘if(𝐵 ∈
ℂ, 𝐵, 0))),
(ℑ‘if(𝐵 ∈
ℂ, 𝐵, 0)), 0) =
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℑ‘𝐵)),
(ℑ‘𝐵), 0))
→ (𝑥 ∈ ℝ
↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℑ‘if(𝐵 ∈
ℂ, 𝐵, 0))),
(ℑ‘if(𝐵 ∈
ℂ, 𝐵, 0)), 0)) =
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℑ‘𝐵)),
(ℑ‘𝐵),
0))) |
63 | 31, 61, 62 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) |
64 | 63 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))) |
65 | | itgcnlem.t |
. . . . . . . 8
⊢ 𝑇 =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) |
66 | 64, 65 | eqtr4di 2796 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑇) |
67 | 66 | eleq1d 2823 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ
↔ 𝑇 ∈
ℝ)) |
68 | 57 | negeqd 11215 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = -(ℑ‘𝐵)) |
69 | 68 | ibllem 24929 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) |
70 | 69 | a1d 25 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) |
71 | 70 | ralimi2 3084 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) |
72 | 23, 71 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) |
73 | | mpteq12 5166 |
. . . . . . . . . 10
⊢ ((ℝ
= ℝ ∧ ∀𝑥
∈ ℝ if((𝑥 ∈
𝐴 ∧ 0 ≤
-(ℑ‘if(𝐵 ∈
ℂ, 𝐵, 0))),
-(ℑ‘if(𝐵 ∈
ℂ, 𝐵, 0)), 0) =
if((𝑥 ∈ 𝐴 ∧ 0 ≤
-(ℑ‘𝐵)),
-(ℑ‘𝐵), 0))
→ (𝑥 ∈ ℝ
↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤
-(ℑ‘if(𝐵 ∈
ℂ, 𝐵, 0))),
-(ℑ‘if(𝐵 ∈
ℂ, 𝐵, 0)), 0)) =
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
-(ℑ‘𝐵)),
-(ℑ‘𝐵),
0))) |
74 | 31, 72, 73 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) |
75 | 74 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))) |
76 | | itgcnlem.u |
. . . . . . . 8
⊢ 𝑈 =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) |
77 | 75, 76 | eqtr4di 2796 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑈) |
78 | 77 | eleq1d 2823 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ
↔ 𝑈 ∈
ℝ)) |
79 | 67, 78 | anbi12d 631 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) →
(((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ)
↔ (𝑇 ∈ ℝ
∧ 𝑈 ∈
ℝ))) |
80 | 30, 56, 79 | 3anbi123d 1435 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → (((𝑥 ∈ 𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ)
∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ))
↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))) |
81 | 13, 29, 80 | 3bitr3d 309 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))) |
82 | 81 | ex 413 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))) |
83 | 2, 4, 82 | pm5.21ndd 381 |
1
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))) |