MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblcnlem Structured version   Visualization version   GIF version

Theorem iblcnlem 25844
Description: Expand out the universal quantifier in isibl2 25821. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
itgcnlem.s 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
itgcnlem.t 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
itgcnlem.u 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
itgcnlem.v ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
iblcnlem (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)

Proof of Theorem iblcnlem
StepHypRef Expression
1 iblmbf 25822 . . 3 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
21a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn))
3 simp1 1136 . . 3 (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) → (𝑥𝐴𝐵) ∈ MblFn)
43a1i 11 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) → (𝑥𝐴𝐵) ∈ MblFn))
5 eqid 2740 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
6 eqid 2740 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
7 eqid 2740 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
8 eqid 2740 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
9 0cn 11282 . . . . . . . 8 0 ∈ ℂ
109elimel 4617 . . . . . . 7 if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ
1110a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ)
125, 6, 7, 8, 11iblcnlem1 25843 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ))))
1312adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ))))
14 eqid 2740 . . . . . 6 𝐴 = 𝐴
15 mbff 25679 . . . . . . . . 9 ((𝑥𝐴𝐵) ∈ MblFn → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
16 eqid 2740 . . . . . . . . . . . 12 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
17 itgcnlem.v . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝑉)
1816, 17dmmptd 6725 . . . . . . . . . . 11 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
1918feq2d 6733 . . . . . . . . . 10 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ))
2019biimpa 476 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ) → (𝑥𝐴𝐵):𝐴⟶ℂ)
2115, 20sylan2 592 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴𝐵):𝐴⟶ℂ)
2216fmpt 7144 . . . . . . . 8 (∀𝑥𝐴 𝐵 ∈ ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ)
2321, 22sylibr 234 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥𝐴 𝐵 ∈ ℂ)
24 iftrue 4554 . . . . . . . 8 (𝐵 ∈ ℂ → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
2524ralimi 3089 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
2623, 25syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
27 mpteq12 5258 . . . . . 6 ((𝐴 = 𝐴 ∧ ∀𝑥𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵) → (𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) = (𝑥𝐴𝐵))
2814, 26, 27sylancr 586 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) = (𝑥𝐴𝐵))
2928eleq1d 2829 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔ (𝑥𝐴𝐵) ∈ 𝐿1))
3028eleq1d 2829 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ↔ (𝑥𝐴𝐵) ∈ MblFn))
31 eqid 2740 . . . . . . . . . 10 ℝ = ℝ
3224imim2i 16 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥𝐴 → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵))
3332imp 406 . . . . . . . . . . . . . . 15 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
3433fveq2d 6924 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = (ℜ‘𝐵))
3534ibllem 25819 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
3635a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
3736ralimi2 3084 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
3823, 37syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
39 mpteq12 5258 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4031, 38, 39sylancr 586 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4140fveq2d 6924 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))))
42 itgcnlem.r . . . . . . . 8 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4341, 42eqtr4di 2798 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑅)
4443eleq1d 2829 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑅 ∈ ℝ))
4534negeqd 11530 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = -(ℜ‘𝐵))
4645ibllem 25819 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))
4746a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
4847ralimi2 3084 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))
4923, 48syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))
50 mpteq12 5258 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
5131, 49, 50sylancr 586 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
5251fveq2d 6924 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))))
53 itgcnlem.s . . . . . . . 8 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
5452, 53eqtr4di 2798 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑆)
5554eleq1d 2829 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑆 ∈ ℝ))
5644, 55anbi12d 631 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ↔ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ)))
5733fveq2d 6924 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = (ℑ‘𝐵))
5857ibllem 25819 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))
5958a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6059ralimi2 3084 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))
6123, 60syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))
62 mpteq12 5258 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6331, 61, 62sylancr 586 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6463fveq2d 6924 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))))
65 itgcnlem.t . . . . . . . 8 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6664, 65eqtr4di 2798 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑇)
6766eleq1d 2829 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑇 ∈ ℝ))
6857negeqd 11530 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = -(ℑ‘𝐵))
6968ibllem 25819 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))
7069a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7170ralimi2 3084 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))
7223, 71syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))
73 mpteq12 5258 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7431, 72, 73sylancr 586 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7574fveq2d 6924 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))))
76 itgcnlem.u . . . . . . . 8 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7775, 76eqtr4di 2798 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑈)
7877eleq1d 2829 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑈 ∈ ℝ))
7967, 78anbi12d 631 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ↔ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
8030, 56, 793anbi123d 1436 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ)) ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
8113, 29, 803bitr3d 309 . . 3 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
8281ex 412 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))))
832, 4, 82pm5.21ndd 379 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  cc 11182  cr 11183  0cc0 11184  cle 11325  -cneg 11521  cre 15146  cim 15147  MblFncmbf 25668  2citg2 25670  𝐿1cibl 25671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-mbf 25673  df-ibl 25676
This theorem is referenced by:  itgcnlem  25845  iblrelem  25846  ibladd  25876  ibladdnc  37637
  Copyright terms: Public domain W3C validator