MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcnlem Structured version   Visualization version   GIF version

Theorem itgcnlem 25698
Description: Expand out the sum in dfitg 25677. (Contributed by Mario Carneiro, 1-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
itgcnlem.s 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
itgcnlem.t 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
itgcnlem.u 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
itgcnlem.v ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnlem.i (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgcnlem (𝜑 → ∫𝐴𝐵 d𝑥 = ((𝑅𝑆) + (i · (𝑇𝑈))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)

Proof of Theorem itgcnlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
21dfitg 25677 . . 3 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
3 nn0uz 12842 . . . . 5 0 = (ℤ‘0)
4 df-3 12257 . . . . 5 3 = (2 + 1)
5 oveq2 7398 . . . . . . 7 (𝑘 = 3 → (i↑𝑘) = (i↑3))
6 i3 14175 . . . . . . 7 (i↑3) = -i
75, 6eqtrdi 2781 . . . . . 6 (𝑘 = 3 → (i↑𝑘) = -i)
86itgvallem 25693 . . . . . 6 (𝑘 = 3 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
97, 8oveq12d 7408 . . . . 5 (𝑘 = 3 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))))
10 ax-icn 11134 . . . . . . . 8 i ∈ ℂ
1110a1i 11 . . . . . . 7 (𝜑 → i ∈ ℂ)
12 expcl 14051 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
1311, 12sylan 580 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
14 nn0z 12561 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
15 eqidd 2731 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
16 eqidd 2731 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
17 itgcnlem.i . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
18 itgcnlem.v . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
1915, 16, 17, 18iblitg 25676 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
2019recnd 11209 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ)
2114, 20sylan2 593 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ)
2213, 21mulcld 11201 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ)
23 df-2 12256 . . . . . 6 2 = (1 + 1)
24 oveq2 7398 . . . . . . . 8 (𝑘 = 2 → (i↑𝑘) = (i↑2))
25 i2 14174 . . . . . . . 8 (i↑2) = -1
2624, 25eqtrdi 2781 . . . . . . 7 (𝑘 = 2 → (i↑𝑘) = -1)
2725itgvallem 25693 . . . . . . 7 (𝑘 = 2 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
2826, 27oveq12d 7408 . . . . . 6 (𝑘 = 2 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))))
29 1e0p1 12698 . . . . . . 7 1 = (0 + 1)
30 oveq2 7398 . . . . . . . . 9 (𝑘 = 1 → (i↑𝑘) = (i↑1))
31 exp1 14039 . . . . . . . . . 10 (i ∈ ℂ → (i↑1) = i)
3210, 31ax-mp 5 . . . . . . . . 9 (i↑1) = i
3330, 32eqtrdi 2781 . . . . . . . 8 (𝑘 = 1 → (i↑𝑘) = i)
3432itgvallem 25693 . . . . . . . 8 (𝑘 = 1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
3533, 34oveq12d 7408 . . . . . . 7 (𝑘 = 1 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))))
36 0z 12547 . . . . . . . . . 10 0 ∈ ℤ
37 itgcnlem.r . . . . . . . . . . . . . 14 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
38 iblmbf 25675 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
3917, 38syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4039, 18mbfmptcl 25544 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4140div1d 11957 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐵 / 1) = 𝐵)
4241fveq2d 6865 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / 1)) = (ℜ‘𝐵))
4342ibllem 25672 . . . . . . . . . . . . . . . 16 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
4443mpteq2dv 5204 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4544fveq2d 6865 . . . . . . . . . . . . . 14 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))))
4637, 45eqtr4id 2784 . . . . . . . . . . . . 13 (𝜑𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))))
4746oveq2d 7406 . . . . . . . . . . . 12 (𝜑 → (1 · 𝑅) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
48 itgcnlem.s . . . . . . . . . . . . . . . . . 18 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
49 itgcnlem.t . . . . . . . . . . . . . . . . . 18 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
50 itgcnlem.u . . . . . . . . . . . . . . . . . 18 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
5137, 48, 49, 50, 18iblcnlem 25697 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
5217, 51mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
5352simp2d 1143 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ))
5453simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
5554recnd 11209 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℂ)
5655mullidd 11199 . . . . . . . . . . . 12 (𝜑 → (1 · 𝑅) = 𝑅)
5747, 56eqtr3d 2767 . . . . . . . . . . 11 (𝜑 → (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) = 𝑅)
5857, 55eqeltrd 2829 . . . . . . . . . 10 (𝜑 → (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) ∈ ℂ)
59 oveq2 7398 . . . . . . . . . . . . 13 (𝑘 = 0 → (i↑𝑘) = (i↑0))
60 exp0 14037 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑0) = 1)
6110, 60ax-mp 5 . . . . . . . . . . . . 13 (i↑0) = 1
6259, 61eqtrdi 2781 . . . . . . . . . . . 12 (𝑘 = 0 → (i↑𝑘) = 1)
6361itgvallem 25693 . . . . . . . . . . . 12 (𝑘 = 0 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))))
6462, 63oveq12d 7408 . . . . . . . . . . 11 (𝑘 = 0 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6564fsum1 15720 . . . . . . . . . 10 ((0 ∈ ℤ ∧ (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6636, 58, 65sylancr 587 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6766, 57eqtrd 2765 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = 𝑅)
68 0nn0 12464 . . . . . . . 8 0 ∈ ℕ0
6967, 68jctil 519 . . . . . . 7 (𝜑 → (0 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = 𝑅))
70 imval 15080 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
7140, 70syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
7271ibllem 25672 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))
7372mpteq2dv 5204 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))
7473fveq2d 6865 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
7549, 74eqtr2id 2778 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) = 𝑇)
7675oveq2d 7406 . . . . . . . 8 (𝜑 → (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))) = (i · 𝑇))
7776oveq2d 7406 . . . . . . 7 (𝜑 → (𝑅 + (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))) = (𝑅 + (i · 𝑇)))
783, 29, 35, 22, 69, 77fsump1i 15742 . . . . . 6 (𝜑 → (1 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...1)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (𝑅 + (i · 𝑇))))
7940renegd 15182 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
80 ax-1cn 11133 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
8180negnegi 11499 . . . . . . . . . . . . . . . . . . 19 --1 = 1
8281oveq2i 7401 . . . . . . . . . . . . . . . . . 18 (-𝐵 / --1) = (-𝐵 / 1)
8340negcld 11527 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
8483div1d 11957 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (-𝐵 / 1) = -𝐵)
8582, 84eqtrid 2777 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (-𝐵 / --1) = -𝐵)
8680negcli 11497 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
87 neg1ne0 12180 . . . . . . . . . . . . . . . . . . 19 -1 ≠ 0
88 div2neg 11912 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℂ ∧ -1 ∈ ℂ ∧ -1 ≠ 0) → (-𝐵 / --1) = (𝐵 / -1))
8986, 87, 88mp3an23 1455 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℂ → (-𝐵 / --1) = (𝐵 / -1))
9040, 89syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (-𝐵 / --1) = (𝐵 / -1))
9185, 90eqtr3d 2767 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → -𝐵 = (𝐵 / -1))
9291fveq2d 6865 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = (ℜ‘(𝐵 / -1)))
9379, 92eqtr3d 2767 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → -(ℜ‘𝐵) = (ℜ‘(𝐵 / -1)))
9493ibllem 25672 . . . . . . . . . . . . 13 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))
9594mpteq2dv 5204 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))
9695fveq2d 6865 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
9748, 96eqtrid 2777 . . . . . . . . . 10 (𝜑𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
9897oveq2d 7406 . . . . . . . . 9 (𝜑 → (-1 · 𝑆) = (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))))
9953simprd 495 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ)
10099recnd 11209 . . . . . . . . . 10 (𝜑𝑆 ∈ ℂ)
101100mulm1d 11637 . . . . . . . . 9 (𝜑 → (-1 · 𝑆) = -𝑆)
10298, 101eqtr3d 2767 . . . . . . . 8 (𝜑 → (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))) = -𝑆)
103102oveq2d 7406 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) + (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))) = ((𝑅 + (i · 𝑇)) + -𝑆))
10452simp3d 1144 . . . . . . . . . . . 12 (𝜑 → (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))
105104simpld 494 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ)
106105recnd 11209 . . . . . . . . . 10 (𝜑𝑇 ∈ ℂ)
107 mulcl 11159 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝑇 ∈ ℂ) → (i · 𝑇) ∈ ℂ)
10810, 106, 107sylancr 587 . . . . . . . . 9 (𝜑 → (i · 𝑇) ∈ ℂ)
10955, 108addcld 11200 . . . . . . . 8 (𝜑 → (𝑅 + (i · 𝑇)) ∈ ℂ)
110109, 100negsubd 11546 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) + -𝑆) = ((𝑅 + (i · 𝑇)) − 𝑆))
11155, 108, 100addsubd 11561 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) − 𝑆) = ((𝑅𝑆) + (i · 𝑇)))
112103, 110, 1113eqtrd 2769 . . . . . 6 (𝜑 → ((𝑅 + (i · 𝑇)) + (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))) = ((𝑅𝑆) + (i · 𝑇)))
1133, 23, 28, 22, 78, 112fsump1i 15742 . . . . 5 (𝜑 → (2 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...2)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = ((𝑅𝑆) + (i · 𝑇))))
114 imval 15080 . . . . . . . . . . . . . 14 (-𝐵 ∈ ℂ → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
11583, 114syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
11640imnegd 15183 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
11710negnegi 11499 . . . . . . . . . . . . . . . . 17 --i = i
118117eqcomi 2739 . . . . . . . . . . . . . . . 16 i = --i
119118oveq2i 7401 . . . . . . . . . . . . . . 15 (-𝐵 / i) = (-𝐵 / --i)
12010negcli 11497 . . . . . . . . . . . . . . . . 17 -i ∈ ℂ
121 ine0 11620 . . . . . . . . . . . . . . . . . 18 i ≠ 0
12210, 121negne0i 11504 . . . . . . . . . . . . . . . . 17 -i ≠ 0
123 div2neg 11912 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℂ ∧ -i ∈ ℂ ∧ -i ≠ 0) → (-𝐵 / --i) = (𝐵 / -i))
124120, 122, 123mp3an23 1455 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℂ → (-𝐵 / --i) = (𝐵 / -i))
12540, 124syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (-𝐵 / --i) = (𝐵 / -i))
126119, 125eqtrid 2777 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (-𝐵 / i) = (𝐵 / -i))
127126fveq2d 6865 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℜ‘(-𝐵 / i)) = (ℜ‘(𝐵 / -i)))
128115, 116, 1273eqtr3d 2773 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -(ℑ‘𝐵) = (ℜ‘(𝐵 / -i)))
129128ibllem 25672 . . . . . . . . . . 11 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))
130129mpteq2dv 5204 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))
131130fveq2d 6865 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
13250, 131eqtrid 2777 . . . . . . . 8 (𝜑𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
133132oveq2d 7406 . . . . . . 7 (𝜑 → (-i · 𝑈) = (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))))
134104simprd 495 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
135134recnd 11209 . . . . . . . 8 (𝜑𝑈 ∈ ℂ)
136 mulneg12 11623 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑈 ∈ ℂ) → (-i · 𝑈) = (i · -𝑈))
13710, 135, 136sylancr 587 . . . . . . 7 (𝜑 → (-i · 𝑈) = (i · -𝑈))
138133, 137eqtr3d 2767 . . . . . 6 (𝜑 → (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))) = (i · -𝑈))
139138oveq2d 7406 . . . . 5 (𝜑 → (((𝑅𝑆) + (i · 𝑇)) + (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
1403, 4, 9, 22, 113, 139fsump1i 15742 . . . 4 (𝜑 → (3 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈))))
141140simprd 495 . . 3 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
1422, 141eqtrid 2777 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
14355, 100subcld 11540 . . 3 (𝜑 → (𝑅𝑆) ∈ ℂ)
144135negcld 11527 . . . 4 (𝜑 → -𝑈 ∈ ℂ)
145 mulcl 11159 . . . 4 ((i ∈ ℂ ∧ -𝑈 ∈ ℂ) → (i · -𝑈) ∈ ℂ)
14610, 144, 145sylancr 587 . . 3 (𝜑 → (i · -𝑈) ∈ ℂ)
147143, 108, 146addassd 11203 . 2 (𝜑 → (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)) = ((𝑅𝑆) + ((i · 𝑇) + (i · -𝑈))))
14811, 106, 144adddid 11205 . . . 4 (𝜑 → (i · (𝑇 + -𝑈)) = ((i · 𝑇) + (i · -𝑈)))
149106, 135negsubd 11546 . . . . 5 (𝜑 → (𝑇 + -𝑈) = (𝑇𝑈))
150149oveq2d 7406 . . . 4 (𝜑 → (i · (𝑇 + -𝑈)) = (i · (𝑇𝑈)))
151148, 150eqtr3d 2767 . . 3 (𝜑 → ((i · 𝑇) + (i · -𝑈)) = (i · (𝑇𝑈)))
152151oveq2d 7406 . 2 (𝜑 → ((𝑅𝑆) + ((i · 𝑇) + (i · -𝑈))) = ((𝑅𝑆) + (i · (𝑇𝑈))))
153142, 147, 1523eqtrd 2769 1 (𝜑 → ∫𝐴𝐵 d𝑥 = ((𝑅𝑆) + (i · (𝑇𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  ifcif 4491   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  ici 11077   + caddc 11078   · cmul 11080  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  2c2 12248  3c3 12249  0cn0 12449  cz 12536  ...cfz 13475  cexp 14033  cre 15070  cim 15071  Σcsu 15659  MblFncmbf 25522  2citg2 25524  𝐿1cibl 25525  citg 25526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-mbf 25527  df-ibl 25530  df-itg 25531
This theorem is referenced by:  itgrevallem1  25703  itgcnval  25708
  Copyright terms: Public domain W3C validator