MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcnlem Structured version   Visualization version   GIF version

Theorem itgcnlem 25825
Description: Expand out the sum in dfitg 25804. (Contributed by Mario Carneiro, 1-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
itgcnlem.s 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
itgcnlem.t 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
itgcnlem.u 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
itgcnlem.v ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnlem.i (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgcnlem (𝜑 → ∫𝐴𝐵 d𝑥 = ((𝑅𝑆) + (i · (𝑇𝑈))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)

Proof of Theorem itgcnlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
21dfitg 25804 . . 3 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
3 nn0uz 12920 . . . . 5 0 = (ℤ‘0)
4 df-3 12330 . . . . 5 3 = (2 + 1)
5 oveq2 7439 . . . . . . 7 (𝑘 = 3 → (i↑𝑘) = (i↑3))
6 i3 14242 . . . . . . 7 (i↑3) = -i
75, 6eqtrdi 2793 . . . . . 6 (𝑘 = 3 → (i↑𝑘) = -i)
86itgvallem 25820 . . . . . 6 (𝑘 = 3 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
97, 8oveq12d 7449 . . . . 5 (𝑘 = 3 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))))
10 ax-icn 11214 . . . . . . . 8 i ∈ ℂ
1110a1i 11 . . . . . . 7 (𝜑 → i ∈ ℂ)
12 expcl 14120 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
1311, 12sylan 580 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
14 nn0z 12638 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
15 eqidd 2738 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
16 eqidd 2738 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
17 itgcnlem.i . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
18 itgcnlem.v . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
1915, 16, 17, 18iblitg 25803 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
2019recnd 11289 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ)
2114, 20sylan2 593 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ)
2213, 21mulcld 11281 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ)
23 df-2 12329 . . . . . 6 2 = (1 + 1)
24 oveq2 7439 . . . . . . . 8 (𝑘 = 2 → (i↑𝑘) = (i↑2))
25 i2 14241 . . . . . . . 8 (i↑2) = -1
2624, 25eqtrdi 2793 . . . . . . 7 (𝑘 = 2 → (i↑𝑘) = -1)
2725itgvallem 25820 . . . . . . 7 (𝑘 = 2 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
2826, 27oveq12d 7449 . . . . . 6 (𝑘 = 2 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))))
29 1e0p1 12775 . . . . . . 7 1 = (0 + 1)
30 oveq2 7439 . . . . . . . . 9 (𝑘 = 1 → (i↑𝑘) = (i↑1))
31 exp1 14108 . . . . . . . . . 10 (i ∈ ℂ → (i↑1) = i)
3210, 31ax-mp 5 . . . . . . . . 9 (i↑1) = i
3330, 32eqtrdi 2793 . . . . . . . 8 (𝑘 = 1 → (i↑𝑘) = i)
3432itgvallem 25820 . . . . . . . 8 (𝑘 = 1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
3533, 34oveq12d 7449 . . . . . . 7 (𝑘 = 1 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))))
36 0z 12624 . . . . . . . . . 10 0 ∈ ℤ
37 itgcnlem.r . . . . . . . . . . . . . 14 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
38 iblmbf 25802 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
3917, 38syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4039, 18mbfmptcl 25671 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4140div1d 12035 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐵 / 1) = 𝐵)
4241fveq2d 6910 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / 1)) = (ℜ‘𝐵))
4342ibllem 25799 . . . . . . . . . . . . . . . 16 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
4443mpteq2dv 5244 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4544fveq2d 6910 . . . . . . . . . . . . . 14 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))))
4637, 45eqtr4id 2796 . . . . . . . . . . . . 13 (𝜑𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))))
4746oveq2d 7447 . . . . . . . . . . . 12 (𝜑 → (1 · 𝑅) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
48 itgcnlem.s . . . . . . . . . . . . . . . . . 18 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
49 itgcnlem.t . . . . . . . . . . . . . . . . . 18 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
50 itgcnlem.u . . . . . . . . . . . . . . . . . 18 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
5137, 48, 49, 50, 18iblcnlem 25824 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
5217, 51mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
5352simp2d 1144 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ))
5453simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
5554recnd 11289 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℂ)
5655mullidd 11279 . . . . . . . . . . . 12 (𝜑 → (1 · 𝑅) = 𝑅)
5747, 56eqtr3d 2779 . . . . . . . . . . 11 (𝜑 → (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) = 𝑅)
5857, 55eqeltrd 2841 . . . . . . . . . 10 (𝜑 → (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) ∈ ℂ)
59 oveq2 7439 . . . . . . . . . . . . 13 (𝑘 = 0 → (i↑𝑘) = (i↑0))
60 exp0 14106 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑0) = 1)
6110, 60ax-mp 5 . . . . . . . . . . . . 13 (i↑0) = 1
6259, 61eqtrdi 2793 . . . . . . . . . . . 12 (𝑘 = 0 → (i↑𝑘) = 1)
6361itgvallem 25820 . . . . . . . . . . . 12 (𝑘 = 0 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))))
6462, 63oveq12d 7449 . . . . . . . . . . 11 (𝑘 = 0 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6564fsum1 15783 . . . . . . . . . 10 ((0 ∈ ℤ ∧ (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6636, 58, 65sylancr 587 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6766, 57eqtrd 2777 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = 𝑅)
68 0nn0 12541 . . . . . . . 8 0 ∈ ℕ0
6967, 68jctil 519 . . . . . . 7 (𝜑 → (0 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = 𝑅))
70 imval 15146 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
7140, 70syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
7271ibllem 25799 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))
7372mpteq2dv 5244 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))
7473fveq2d 6910 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
7549, 74eqtr2id 2790 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) = 𝑇)
7675oveq2d 7447 . . . . . . . 8 (𝜑 → (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))) = (i · 𝑇))
7776oveq2d 7447 . . . . . . 7 (𝜑 → (𝑅 + (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))) = (𝑅 + (i · 𝑇)))
783, 29, 35, 22, 69, 77fsump1i 15805 . . . . . 6 (𝜑 → (1 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...1)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (𝑅 + (i · 𝑇))))
7940renegd 15248 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
80 ax-1cn 11213 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
8180negnegi 11579 . . . . . . . . . . . . . . . . . . 19 --1 = 1
8281oveq2i 7442 . . . . . . . . . . . . . . . . . 18 (-𝐵 / --1) = (-𝐵 / 1)
8340negcld 11607 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
8483div1d 12035 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (-𝐵 / 1) = -𝐵)
8582, 84eqtrid 2789 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (-𝐵 / --1) = -𝐵)
8680negcli 11577 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
87 neg1ne0 12382 . . . . . . . . . . . . . . . . . . 19 -1 ≠ 0
88 div2neg 11990 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℂ ∧ -1 ∈ ℂ ∧ -1 ≠ 0) → (-𝐵 / --1) = (𝐵 / -1))
8986, 87, 88mp3an23 1455 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℂ → (-𝐵 / --1) = (𝐵 / -1))
9040, 89syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (-𝐵 / --1) = (𝐵 / -1))
9185, 90eqtr3d 2779 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → -𝐵 = (𝐵 / -1))
9291fveq2d 6910 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = (ℜ‘(𝐵 / -1)))
9379, 92eqtr3d 2779 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → -(ℜ‘𝐵) = (ℜ‘(𝐵 / -1)))
9493ibllem 25799 . . . . . . . . . . . . 13 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))
9594mpteq2dv 5244 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))
9695fveq2d 6910 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
9748, 96eqtrid 2789 . . . . . . . . . 10 (𝜑𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
9897oveq2d 7447 . . . . . . . . 9 (𝜑 → (-1 · 𝑆) = (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))))
9953simprd 495 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ)
10099recnd 11289 . . . . . . . . . 10 (𝜑𝑆 ∈ ℂ)
101100mulm1d 11715 . . . . . . . . 9 (𝜑 → (-1 · 𝑆) = -𝑆)
10298, 101eqtr3d 2779 . . . . . . . 8 (𝜑 → (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))) = -𝑆)
103102oveq2d 7447 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) + (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))) = ((𝑅 + (i · 𝑇)) + -𝑆))
10452simp3d 1145 . . . . . . . . . . . 12 (𝜑 → (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))
105104simpld 494 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ)
106105recnd 11289 . . . . . . . . . 10 (𝜑𝑇 ∈ ℂ)
107 mulcl 11239 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝑇 ∈ ℂ) → (i · 𝑇) ∈ ℂ)
10810, 106, 107sylancr 587 . . . . . . . . 9 (𝜑 → (i · 𝑇) ∈ ℂ)
10955, 108addcld 11280 . . . . . . . 8 (𝜑 → (𝑅 + (i · 𝑇)) ∈ ℂ)
110109, 100negsubd 11626 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) + -𝑆) = ((𝑅 + (i · 𝑇)) − 𝑆))
11155, 108, 100addsubd 11641 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) − 𝑆) = ((𝑅𝑆) + (i · 𝑇)))
112103, 110, 1113eqtrd 2781 . . . . . 6 (𝜑 → ((𝑅 + (i · 𝑇)) + (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))) = ((𝑅𝑆) + (i · 𝑇)))
1133, 23, 28, 22, 78, 112fsump1i 15805 . . . . 5 (𝜑 → (2 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...2)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = ((𝑅𝑆) + (i · 𝑇))))
114 imval 15146 . . . . . . . . . . . . . 14 (-𝐵 ∈ ℂ → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
11583, 114syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
11640imnegd 15249 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
11710negnegi 11579 . . . . . . . . . . . . . . . . 17 --i = i
118117eqcomi 2746 . . . . . . . . . . . . . . . 16 i = --i
119118oveq2i 7442 . . . . . . . . . . . . . . 15 (-𝐵 / i) = (-𝐵 / --i)
12010negcli 11577 . . . . . . . . . . . . . . . . 17 -i ∈ ℂ
121 ine0 11698 . . . . . . . . . . . . . . . . . 18 i ≠ 0
12210, 121negne0i 11584 . . . . . . . . . . . . . . . . 17 -i ≠ 0
123 div2neg 11990 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℂ ∧ -i ∈ ℂ ∧ -i ≠ 0) → (-𝐵 / --i) = (𝐵 / -i))
124120, 122, 123mp3an23 1455 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℂ → (-𝐵 / --i) = (𝐵 / -i))
12540, 124syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (-𝐵 / --i) = (𝐵 / -i))
126119, 125eqtrid 2789 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (-𝐵 / i) = (𝐵 / -i))
127126fveq2d 6910 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℜ‘(-𝐵 / i)) = (ℜ‘(𝐵 / -i)))
128115, 116, 1273eqtr3d 2785 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -(ℑ‘𝐵) = (ℜ‘(𝐵 / -i)))
129128ibllem 25799 . . . . . . . . . . 11 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))
130129mpteq2dv 5244 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))
131130fveq2d 6910 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
13250, 131eqtrid 2789 . . . . . . . 8 (𝜑𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
133132oveq2d 7447 . . . . . . 7 (𝜑 → (-i · 𝑈) = (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))))
134104simprd 495 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
135134recnd 11289 . . . . . . . 8 (𝜑𝑈 ∈ ℂ)
136 mulneg12 11701 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑈 ∈ ℂ) → (-i · 𝑈) = (i · -𝑈))
13710, 135, 136sylancr 587 . . . . . . 7 (𝜑 → (-i · 𝑈) = (i · -𝑈))
138133, 137eqtr3d 2779 . . . . . 6 (𝜑 → (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))) = (i · -𝑈))
139138oveq2d 7447 . . . . 5 (𝜑 → (((𝑅𝑆) + (i · 𝑇)) + (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
1403, 4, 9, 22, 113, 139fsump1i 15805 . . . 4 (𝜑 → (3 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈))))
141140simprd 495 . . 3 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
1422, 141eqtrid 2789 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
14355, 100subcld 11620 . . 3 (𝜑 → (𝑅𝑆) ∈ ℂ)
144135negcld 11607 . . . 4 (𝜑 → -𝑈 ∈ ℂ)
145 mulcl 11239 . . . 4 ((i ∈ ℂ ∧ -𝑈 ∈ ℂ) → (i · -𝑈) ∈ ℂ)
14610, 144, 145sylancr 587 . . 3 (𝜑 → (i · -𝑈) ∈ ℂ)
147143, 108, 146addassd 11283 . 2 (𝜑 → (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)) = ((𝑅𝑆) + ((i · 𝑇) + (i · -𝑈))))
14811, 106, 144adddid 11285 . . . 4 (𝜑 → (i · (𝑇 + -𝑈)) = ((i · 𝑇) + (i · -𝑈)))
149106, 135negsubd 11626 . . . . 5 (𝜑 → (𝑇 + -𝑈) = (𝑇𝑈))
150149oveq2d 7447 . . . 4 (𝜑 → (i · (𝑇 + -𝑈)) = (i · (𝑇𝑈)))
151148, 150eqtr3d 2779 . . 3 (𝜑 → ((i · 𝑇) + (i · -𝑈)) = (i · (𝑇𝑈)))
152151oveq2d 7447 . 2 (𝜑 → ((𝑅𝑆) + ((i · 𝑇) + (i · -𝑈))) = ((𝑅𝑆) + (i · (𝑇𝑈))))
153142, 147, 1523eqtrd 2781 1 (𝜑 → ∫𝐴𝐵 d𝑥 = ((𝑅𝑆) + (i · (𝑇𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  ifcif 4525   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156  ici 11157   + caddc 11158   · cmul 11160  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  2c2 12321  3c3 12322  0cn0 12526  cz 12613  ...cfz 13547  cexp 14102  cre 15136  cim 15137  Σcsu 15722  MblFncmbf 25649  2citg2 25651  𝐿1cibl 25652  citg 25653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-mbf 25654  df-ibl 25657  df-itg 25658
This theorem is referenced by:  itgrevallem1  25830  itgcnval  25835
  Copyright terms: Public domain W3C validator