MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcnlem Structured version   Visualization version   GIF version

Theorem itgcnlem 24392
Description: Expand out the sum in dfitg 24372. (Contributed by Mario Carneiro, 1-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
itgcnlem.s 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
itgcnlem.t 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
itgcnlem.u 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
itgcnlem.v ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnlem.i (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgcnlem (𝜑 → ∫𝐴𝐵 d𝑥 = ((𝑅𝑆) + (i · (𝑇𝑈))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)

Proof of Theorem itgcnlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . 4 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
21dfitg 24372 . . 3 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
3 nn0uz 12283 . . . . 5 0 = (ℤ‘0)
4 df-3 11704 . . . . 5 3 = (2 + 1)
5 oveq2 7166 . . . . . . 7 (𝑘 = 3 → (i↑𝑘) = (i↑3))
6 i3 13569 . . . . . . 7 (i↑3) = -i
75, 6syl6eq 2874 . . . . . 6 (𝑘 = 3 → (i↑𝑘) = -i)
86itgvallem 24387 . . . . . 6 (𝑘 = 3 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
97, 8oveq12d 7176 . . . . 5 (𝑘 = 3 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))))
10 ax-icn 10598 . . . . . . . 8 i ∈ ℂ
1110a1i 11 . . . . . . 7 (𝜑 → i ∈ ℂ)
12 expcl 13450 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
1311, 12sylan 582 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
14 nn0z 12008 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
15 eqidd 2824 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
16 eqidd 2824 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
17 itgcnlem.i . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
18 itgcnlem.v . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
1915, 16, 17, 18iblitg 24371 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
2019recnd 10671 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ)
2114, 20sylan2 594 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ)
2213, 21mulcld 10663 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ)
23 df-2 11703 . . . . . 6 2 = (1 + 1)
24 oveq2 7166 . . . . . . . 8 (𝑘 = 2 → (i↑𝑘) = (i↑2))
25 i2 13568 . . . . . . . 8 (i↑2) = -1
2624, 25syl6eq 2874 . . . . . . 7 (𝑘 = 2 → (i↑𝑘) = -1)
2725itgvallem 24387 . . . . . . 7 (𝑘 = 2 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
2826, 27oveq12d 7176 . . . . . 6 (𝑘 = 2 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))))
29 1e0p1 12143 . . . . . . 7 1 = (0 + 1)
30 oveq2 7166 . . . . . . . . 9 (𝑘 = 1 → (i↑𝑘) = (i↑1))
31 exp1 13438 . . . . . . . . . 10 (i ∈ ℂ → (i↑1) = i)
3210, 31ax-mp 5 . . . . . . . . 9 (i↑1) = i
3330, 32syl6eq 2874 . . . . . . . 8 (𝑘 = 1 → (i↑𝑘) = i)
3432itgvallem 24387 . . . . . . . 8 (𝑘 = 1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
3533, 34oveq12d 7176 . . . . . . 7 (𝑘 = 1 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))))
36 0z 11995 . . . . . . . . . 10 0 ∈ ℤ
37 iblmbf 24370 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
3817, 37syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
3938, 18mbfmptcl 24239 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4039div1d 11410 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐵 / 1) = 𝐵)
4140fveq2d 6676 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / 1)) = (ℜ‘𝐵))
4241ibllem 24367 . . . . . . . . . . . . . . . 16 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
4342mpteq2dv 5164 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4443fveq2d 6676 . . . . . . . . . . . . . 14 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))))
45 itgcnlem.r . . . . . . . . . . . . . 14 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4644, 45syl6reqr 2877 . . . . . . . . . . . . 13 (𝜑𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))))
4746oveq2d 7174 . . . . . . . . . . . 12 (𝜑 → (1 · 𝑅) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
48 itgcnlem.s . . . . . . . . . . . . . . . . . 18 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
49 itgcnlem.t . . . . . . . . . . . . . . . . . 18 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
50 itgcnlem.u . . . . . . . . . . . . . . . . . 18 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
5145, 48, 49, 50, 18iblcnlem 24391 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
5217, 51mpbid 234 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
5352simp2d 1139 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ))
5453simpld 497 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
5554recnd 10671 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℂ)
5655mulid2d 10661 . . . . . . . . . . . 12 (𝜑 → (1 · 𝑅) = 𝑅)
5747, 56eqtr3d 2860 . . . . . . . . . . 11 (𝜑 → (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) = 𝑅)
5857, 55eqeltrd 2915 . . . . . . . . . 10 (𝜑 → (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) ∈ ℂ)
59 oveq2 7166 . . . . . . . . . . . . 13 (𝑘 = 0 → (i↑𝑘) = (i↑0))
60 exp0 13436 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑0) = 1)
6110, 60ax-mp 5 . . . . . . . . . . . . 13 (i↑0) = 1
6259, 61syl6eq 2874 . . . . . . . . . . . 12 (𝑘 = 0 → (i↑𝑘) = 1)
6361itgvallem 24387 . . . . . . . . . . . 12 (𝑘 = 0 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))))
6462, 63oveq12d 7176 . . . . . . . . . . 11 (𝑘 = 0 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6564fsum1 15104 . . . . . . . . . 10 ((0 ∈ ℤ ∧ (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6636, 58, 65sylancr 589 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6766, 57eqtrd 2858 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = 𝑅)
68 0nn0 11915 . . . . . . . 8 0 ∈ ℕ0
6967, 68jctil 522 . . . . . . 7 (𝜑 → (0 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = 𝑅))
70 imval 14468 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
7139, 70syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
7271ibllem 24367 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))
7372mpteq2dv 5164 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))
7473fveq2d 6676 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
7549, 74syl5req 2871 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) = 𝑇)
7675oveq2d 7174 . . . . . . . 8 (𝜑 → (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))) = (i · 𝑇))
7776oveq2d 7174 . . . . . . 7 (𝜑 → (𝑅 + (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))) = (𝑅 + (i · 𝑇)))
783, 29, 35, 22, 69, 77fsump1i 15126 . . . . . 6 (𝜑 → (1 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...1)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (𝑅 + (i · 𝑇))))
7939renegd 14570 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
80 ax-1cn 10597 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
8180negnegi 10958 . . . . . . . . . . . . . . . . . . 19 --1 = 1
8281oveq2i 7169 . . . . . . . . . . . . . . . . . 18 (-𝐵 / --1) = (-𝐵 / 1)
8339negcld 10986 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
8483div1d 11410 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (-𝐵 / 1) = -𝐵)
8582, 84syl5eq 2870 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (-𝐵 / --1) = -𝐵)
8680negcli 10956 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
87 neg1ne0 11756 . . . . . . . . . . . . . . . . . . 19 -1 ≠ 0
88 div2neg 11365 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℂ ∧ -1 ∈ ℂ ∧ -1 ≠ 0) → (-𝐵 / --1) = (𝐵 / -1))
8986, 87, 88mp3an23 1449 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℂ → (-𝐵 / --1) = (𝐵 / -1))
9039, 89syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (-𝐵 / --1) = (𝐵 / -1))
9185, 90eqtr3d 2860 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → -𝐵 = (𝐵 / -1))
9291fveq2d 6676 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = (ℜ‘(𝐵 / -1)))
9379, 92eqtr3d 2860 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → -(ℜ‘𝐵) = (ℜ‘(𝐵 / -1)))
9493ibllem 24367 . . . . . . . . . . . . 13 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))
9594mpteq2dv 5164 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))
9695fveq2d 6676 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
9748, 96syl5eq 2870 . . . . . . . . . 10 (𝜑𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
9897oveq2d 7174 . . . . . . . . 9 (𝜑 → (-1 · 𝑆) = (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))))
9953simprd 498 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ)
10099recnd 10671 . . . . . . . . . 10 (𝜑𝑆 ∈ ℂ)
101100mulm1d 11094 . . . . . . . . 9 (𝜑 → (-1 · 𝑆) = -𝑆)
10298, 101eqtr3d 2860 . . . . . . . 8 (𝜑 → (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))) = -𝑆)
103102oveq2d 7174 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) + (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))) = ((𝑅 + (i · 𝑇)) + -𝑆))
10452simp3d 1140 . . . . . . . . . . . 12 (𝜑 → (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))
105104simpld 497 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ)
106105recnd 10671 . . . . . . . . . 10 (𝜑𝑇 ∈ ℂ)
107 mulcl 10623 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝑇 ∈ ℂ) → (i · 𝑇) ∈ ℂ)
10810, 106, 107sylancr 589 . . . . . . . . 9 (𝜑 → (i · 𝑇) ∈ ℂ)
10955, 108addcld 10662 . . . . . . . 8 (𝜑 → (𝑅 + (i · 𝑇)) ∈ ℂ)
110109, 100negsubd 11005 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) + -𝑆) = ((𝑅 + (i · 𝑇)) − 𝑆))
11155, 108, 100addsubd 11020 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) − 𝑆) = ((𝑅𝑆) + (i · 𝑇)))
112103, 110, 1113eqtrd 2862 . . . . . 6 (𝜑 → ((𝑅 + (i · 𝑇)) + (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))) = ((𝑅𝑆) + (i · 𝑇)))
1133, 23, 28, 22, 78, 112fsump1i 15126 . . . . 5 (𝜑 → (2 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...2)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = ((𝑅𝑆) + (i · 𝑇))))
114 imval 14468 . . . . . . . . . . . . . 14 (-𝐵 ∈ ℂ → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
11583, 114syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
11639imnegd 14571 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
11710negnegi 10958 . . . . . . . . . . . . . . . . 17 --i = i
118117eqcomi 2832 . . . . . . . . . . . . . . . 16 i = --i
119118oveq2i 7169 . . . . . . . . . . . . . . 15 (-𝐵 / i) = (-𝐵 / --i)
12010negcli 10956 . . . . . . . . . . . . . . . . 17 -i ∈ ℂ
121 ine0 11077 . . . . . . . . . . . . . . . . . 18 i ≠ 0
12210, 121negne0i 10963 . . . . . . . . . . . . . . . . 17 -i ≠ 0
123 div2neg 11365 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℂ ∧ -i ∈ ℂ ∧ -i ≠ 0) → (-𝐵 / --i) = (𝐵 / -i))
124120, 122, 123mp3an23 1449 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℂ → (-𝐵 / --i) = (𝐵 / -i))
12539, 124syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (-𝐵 / --i) = (𝐵 / -i))
126119, 125syl5eq 2870 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (-𝐵 / i) = (𝐵 / -i))
127126fveq2d 6676 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℜ‘(-𝐵 / i)) = (ℜ‘(𝐵 / -i)))
128115, 116, 1273eqtr3d 2866 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -(ℑ‘𝐵) = (ℜ‘(𝐵 / -i)))
129128ibllem 24367 . . . . . . . . . . 11 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))
130129mpteq2dv 5164 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))
131130fveq2d 6676 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
13250, 131syl5eq 2870 . . . . . . . 8 (𝜑𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
133132oveq2d 7174 . . . . . . 7 (𝜑 → (-i · 𝑈) = (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))))
134104simprd 498 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
135134recnd 10671 . . . . . . . 8 (𝜑𝑈 ∈ ℂ)
136 mulneg12 11080 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑈 ∈ ℂ) → (-i · 𝑈) = (i · -𝑈))
13710, 135, 136sylancr 589 . . . . . . 7 (𝜑 → (-i · 𝑈) = (i · -𝑈))
138133, 137eqtr3d 2860 . . . . . 6 (𝜑 → (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))) = (i · -𝑈))
139138oveq2d 7174 . . . . 5 (𝜑 → (((𝑅𝑆) + (i · 𝑇)) + (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
1403, 4, 9, 22, 113, 139fsump1i 15126 . . . 4 (𝜑 → (3 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈))))
141140simprd 498 . . 3 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
1422, 141syl5eq 2870 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
14355, 100subcld 10999 . . 3 (𝜑 → (𝑅𝑆) ∈ ℂ)
144135negcld 10986 . . . 4 (𝜑 → -𝑈 ∈ ℂ)
145 mulcl 10623 . . . 4 ((i ∈ ℂ ∧ -𝑈 ∈ ℂ) → (i · -𝑈) ∈ ℂ)
14610, 144, 145sylancr 589 . . 3 (𝜑 → (i · -𝑈) ∈ ℂ)
147143, 108, 146addassd 10665 . 2 (𝜑 → (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)) = ((𝑅𝑆) + ((i · 𝑇) + (i · -𝑈))))
14811, 106, 144adddid 10667 . . . 4 (𝜑 → (i · (𝑇 + -𝑈)) = ((i · 𝑇) + (i · -𝑈)))
149106, 135negsubd 11005 . . . . 5 (𝜑 → (𝑇 + -𝑈) = (𝑇𝑈))
150149oveq2d 7174 . . . 4 (𝜑 → (i · (𝑇 + -𝑈)) = (i · (𝑇𝑈)))
151148, 150eqtr3d 2860 . . 3 (𝜑 → ((i · 𝑇) + (i · -𝑈)) = (i · (𝑇𝑈)))
152151oveq2d 7174 . 2 (𝜑 → ((𝑅𝑆) + ((i · 𝑇) + (i · -𝑈))) = ((𝑅𝑆) + (i · (𝑇𝑈))))
153142, 147, 1523eqtrd 2862 1 (𝜑 → ∫𝐴𝐵 d𝑥 = ((𝑅𝑆) + (i · (𝑇𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  ifcif 4469   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540  ici 10541   + caddc 10542   · cmul 10544  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  2c2 11695  3c3 11696  0cn0 11900  cz 11984  ...cfz 12895  cexp 13432  cre 14458  cim 14459  Σcsu 15044  MblFncmbf 24217  2citg2 24219  𝐿1cibl 24220  citg 24221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-mbf 24222  df-ibl 24225  df-itg 24226
This theorem is referenced by:  itgrevallem1  24397  itgcnval  24402
  Copyright terms: Public domain W3C validator