MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcnlem Structured version   Visualization version   GIF version

Theorem itgcnlem 23847
Description: Expand out the sum in dfitg 23827. (Contributed by Mario Carneiro, 1-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
itgcnlem.s 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
itgcnlem.t 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
itgcnlem.u 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
itgcnlem.v ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnlem.i (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgcnlem (𝜑 → ∫𝐴𝐵 d𝑥 = ((𝑅𝑆) + (i · (𝑇𝑈))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)

Proof of Theorem itgcnlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2765 . . . 4 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
21dfitg 23827 . . 3 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
3 nn0uz 11922 . . . . 5 0 = (ℤ‘0)
4 df-3 11336 . . . . 5 3 = (2 + 1)
5 oveq2 6850 . . . . . . 7 (𝑘 = 3 → (i↑𝑘) = (i↑3))
6 i3 13173 . . . . . . 7 (i↑3) = -i
75, 6syl6eq 2815 . . . . . 6 (𝑘 = 3 → (i↑𝑘) = -i)
86itgvallem 23842 . . . . . 6 (𝑘 = 3 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
97, 8oveq12d 6860 . . . . 5 (𝑘 = 3 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))))
10 ax-icn 10248 . . . . . . . 8 i ∈ ℂ
1110a1i 11 . . . . . . 7 (𝜑 → i ∈ ℂ)
12 expcl 13085 . . . . . . 7 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
1311, 12sylan 575 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
14 nn0z 11647 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
15 eqidd 2766 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
16 eqidd 2766 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
17 itgcnlem.i . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
18 itgcnlem.v . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
1915, 16, 17, 18iblitg 23826 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
2019recnd 10322 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ)
2114, 20sylan2 586 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ)
2213, 21mulcld 10314 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ)
23 df-2 11335 . . . . . 6 2 = (1 + 1)
24 oveq2 6850 . . . . . . . 8 (𝑘 = 2 → (i↑𝑘) = (i↑2))
25 i2 13172 . . . . . . . 8 (i↑2) = -1
2624, 25syl6eq 2815 . . . . . . 7 (𝑘 = 2 → (i↑𝑘) = -1)
2725itgvallem 23842 . . . . . . 7 (𝑘 = 2 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
2826, 27oveq12d 6860 . . . . . 6 (𝑘 = 2 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))))
29 1e0p1 11783 . . . . . . 7 1 = (0 + 1)
30 oveq2 6850 . . . . . . . . 9 (𝑘 = 1 → (i↑𝑘) = (i↑1))
31 exp1 13073 . . . . . . . . . 10 (i ∈ ℂ → (i↑1) = i)
3210, 31ax-mp 5 . . . . . . . . 9 (i↑1) = i
3330, 32syl6eq 2815 . . . . . . . 8 (𝑘 = 1 → (i↑𝑘) = i)
3432itgvallem 23842 . . . . . . . 8 (𝑘 = 1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
3533, 34oveq12d 6860 . . . . . . 7 (𝑘 = 1 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))))
36 0z 11635 . . . . . . . . . 10 0 ∈ ℤ
37 iblmbf 23825 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
3817, 37syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
3938, 18mbfmptcl 23694 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4039div1d 11047 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐵 / 1) = 𝐵)
4140fveq2d 6379 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / 1)) = (ℜ‘𝐵))
4241ibllem 23822 . . . . . . . . . . . . . . . 16 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
4342mpteq2dv 4904 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4443fveq2d 6379 . . . . . . . . . . . . . 14 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))))
45 itgcnlem.r . . . . . . . . . . . . . 14 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4644, 45syl6reqr 2818 . . . . . . . . . . . . 13 (𝜑𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))))
4746oveq2d 6858 . . . . . . . . . . . 12 (𝜑 → (1 · 𝑅) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
48 itgcnlem.s . . . . . . . . . . . . . . . . . 18 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
49 itgcnlem.t . . . . . . . . . . . . . . . . . 18 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
50 itgcnlem.u . . . . . . . . . . . . . . . . . 18 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
5145, 48, 49, 50, 18iblcnlem 23846 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
5217, 51mpbid 223 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
5352simp2d 1173 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ))
5453simpld 488 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
5554recnd 10322 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℂ)
5655mulid2d 10312 . . . . . . . . . . . 12 (𝜑 → (1 · 𝑅) = 𝑅)
5747, 56eqtr3d 2801 . . . . . . . . . . 11 (𝜑 → (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) = 𝑅)
5857, 55eqeltrd 2844 . . . . . . . . . 10 (𝜑 → (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) ∈ ℂ)
59 oveq2 6850 . . . . . . . . . . . . 13 (𝑘 = 0 → (i↑𝑘) = (i↑0))
60 exp0 13071 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑0) = 1)
6110, 60ax-mp 5 . . . . . . . . . . . . 13 (i↑0) = 1
6259, 61syl6eq 2815 . . . . . . . . . . . 12 (𝑘 = 0 → (i↑𝑘) = 1)
6361itgvallem 23842 . . . . . . . . . . . 12 (𝑘 = 0 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))))
6462, 63oveq12d 6860 . . . . . . . . . . 11 (𝑘 = 0 → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6564fsum1 14763 . . . . . . . . . 10 ((0 ∈ ℤ ∧ (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6636, 58, 65sylancr 581 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)))))
6766, 57eqtrd 2799 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = 𝑅)
68 0nn0 11555 . . . . . . . 8 0 ∈ ℕ0
6967, 68jctil 515 . . . . . . 7 (𝜑 → (0 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...0)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = 𝑅))
70 imval 14134 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
7139, 70syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
7271ibllem 23822 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))
7372mpteq2dv 4904 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))
7473fveq2d 6379 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
7549, 74syl5req 2812 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) = 𝑇)
7675oveq2d 6858 . . . . . . . 8 (𝜑 → (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))) = (i · 𝑇))
7776oveq2d 6858 . . . . . . 7 (𝜑 → (𝑅 + (i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))) = (𝑅 + (i · 𝑇)))
783, 29, 35, 22, 69, 77fsump1i 14787 . . . . . 6 (𝜑 → (1 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...1)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (𝑅 + (i · 𝑇))))
7939renegd 14236 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
80 ax-1cn 10247 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
8180negnegi 10605 . . . . . . . . . . . . . . . . . . 19 --1 = 1
8281oveq2i 6853 . . . . . . . . . . . . . . . . . 18 (-𝐵 / --1) = (-𝐵 / 1)
8339negcld 10633 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
8483div1d 11047 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (-𝐵 / 1) = -𝐵)
8582, 84syl5eq 2811 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (-𝐵 / --1) = -𝐵)
8680negcli 10603 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
87 neg1ne0 11395 . . . . . . . . . . . . . . . . . . 19 -1 ≠ 0
88 div2neg 11002 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℂ ∧ -1 ∈ ℂ ∧ -1 ≠ 0) → (-𝐵 / --1) = (𝐵 / -1))
8986, 87, 88mp3an23 1577 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℂ → (-𝐵 / --1) = (𝐵 / -1))
9039, 89syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (-𝐵 / --1) = (𝐵 / -1))
9185, 90eqtr3d 2801 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → -𝐵 = (𝐵 / -1))
9291fveq2d 6379 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = (ℜ‘(𝐵 / -1)))
9379, 92eqtr3d 2801 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → -(ℜ‘𝐵) = (ℜ‘(𝐵 / -1)))
9493ibllem 23822 . . . . . . . . . . . . 13 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))
9594mpteq2dv 4904 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))
9695fveq2d 6379 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
9748, 96syl5eq 2811 . . . . . . . . . 10 (𝜑𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
9897oveq2d 6858 . . . . . . . . 9 (𝜑 → (-1 · 𝑆) = (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))))
9953simprd 489 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ)
10099recnd 10322 . . . . . . . . . 10 (𝜑𝑆 ∈ ℂ)
101100mulm1d 10736 . . . . . . . . 9 (𝜑 → (-1 · 𝑆) = -𝑆)
10298, 101eqtr3d 2801 . . . . . . . 8 (𝜑 → (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))) = -𝑆)
103102oveq2d 6858 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) + (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))) = ((𝑅 + (i · 𝑇)) + -𝑆))
10452simp3d 1174 . . . . . . . . . . . 12 (𝜑 → (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))
105104simpld 488 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ)
106105recnd 10322 . . . . . . . . . 10 (𝜑𝑇 ∈ ℂ)
107 mulcl 10273 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝑇 ∈ ℂ) → (i · 𝑇) ∈ ℂ)
10810, 106, 107sylancr 581 . . . . . . . . 9 (𝜑 → (i · 𝑇) ∈ ℂ)
10955, 108addcld 10313 . . . . . . . 8 (𝜑 → (𝑅 + (i · 𝑇)) ∈ ℂ)
110109, 100negsubd 10652 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) + -𝑆) = ((𝑅 + (i · 𝑇)) − 𝑆))
11155, 108, 100addsubd 10667 . . . . . . 7 (𝜑 → ((𝑅 + (i · 𝑇)) − 𝑆) = ((𝑅𝑆) + (i · 𝑇)))
112103, 110, 1113eqtrd 2803 . . . . . 6 (𝜑 → ((𝑅 + (i · 𝑇)) + (-1 · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))) = ((𝑅𝑆) + (i · 𝑇)))
1133, 23, 28, 22, 78, 112fsump1i 14787 . . . . 5 (𝜑 → (2 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...2)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = ((𝑅𝑆) + (i · 𝑇))))
114 imval 14134 . . . . . . . . . . . . . 14 (-𝐵 ∈ ℂ → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
11583, 114syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
11639imnegd 14237 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
11710negnegi 10605 . . . . . . . . . . . . . . . . 17 --i = i
118117eqcomi 2774 . . . . . . . . . . . . . . . 16 i = --i
119118oveq2i 6853 . . . . . . . . . . . . . . 15 (-𝐵 / i) = (-𝐵 / --i)
12010negcli 10603 . . . . . . . . . . . . . . . . 17 -i ∈ ℂ
121 ine0 10719 . . . . . . . . . . . . . . . . . 18 i ≠ 0
12210, 121negne0i 10610 . . . . . . . . . . . . . . . . 17 -i ≠ 0
123 div2neg 11002 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℂ ∧ -i ∈ ℂ ∧ -i ≠ 0) → (-𝐵 / --i) = (𝐵 / -i))
124120, 122, 123mp3an23 1577 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℂ → (-𝐵 / --i) = (𝐵 / -i))
12539, 124syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (-𝐵 / --i) = (𝐵 / -i))
126119, 125syl5eq 2811 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (-𝐵 / i) = (𝐵 / -i))
127126fveq2d 6379 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℜ‘(-𝐵 / i)) = (ℜ‘(𝐵 / -i)))
128115, 116, 1273eqtr3d 2807 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -(ℑ‘𝐵) = (ℜ‘(𝐵 / -i)))
129128ibllem 23822 . . . . . . . . . . 11 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))
130129mpteq2dv 4904 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))
131130fveq2d 6379 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
13250, 131syl5eq 2811 . . . . . . . 8 (𝜑𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
133132oveq2d 6858 . . . . . . 7 (𝜑 → (-i · 𝑈) = (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))))
134104simprd 489 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
135134recnd 10322 . . . . . . . 8 (𝜑𝑈 ∈ ℂ)
136 mulneg12 10722 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑈 ∈ ℂ) → (-i · 𝑈) = (i · -𝑈))
13710, 135, 136sylancr 581 . . . . . . 7 (𝜑 → (-i · 𝑈) = (i · -𝑈))
138133, 137eqtr3d 2801 . . . . . 6 (𝜑 → (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))) = (i · -𝑈))
139138oveq2d 6858 . . . . 5 (𝜑 → (((𝑅𝑆) + (i · 𝑇)) + (-i · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
1403, 4, 9, 22, 113, 139fsump1i 14787 . . . 4 (𝜑 → (3 ∈ ℕ0 ∧ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈))))
141140simprd 489 . . 3 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
1422, 141syl5eq 2811 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)))
14355, 100subcld 10646 . . 3 (𝜑 → (𝑅𝑆) ∈ ℂ)
144135negcld 10633 . . . 4 (𝜑 → -𝑈 ∈ ℂ)
145 mulcl 10273 . . . 4 ((i ∈ ℂ ∧ -𝑈 ∈ ℂ) → (i · -𝑈) ∈ ℂ)
14610, 144, 145sylancr 581 . . 3 (𝜑 → (i · -𝑈) ∈ ℂ)
147143, 108, 146addassd 10316 . 2 (𝜑 → (((𝑅𝑆) + (i · 𝑇)) + (i · -𝑈)) = ((𝑅𝑆) + ((i · 𝑇) + (i · -𝑈))))
14811, 106, 144adddid 10318 . . . 4 (𝜑 → (i · (𝑇 + -𝑈)) = ((i · 𝑇) + (i · -𝑈)))
149106, 135negsubd 10652 . . . . 5 (𝜑 → (𝑇 + -𝑈) = (𝑇𝑈))
150149oveq2d 6858 . . . 4 (𝜑 → (i · (𝑇 + -𝑈)) = (i · (𝑇𝑈)))
151148, 150eqtr3d 2801 . . 3 (𝜑 → ((i · 𝑇) + (i · -𝑈)) = (i · (𝑇𝑈)))
152151oveq2d 6858 . 2 (𝜑 → ((𝑅𝑆) + ((i · 𝑇) + (i · -𝑈))) = ((𝑅𝑆) + (i · (𝑇𝑈))))
153142, 147, 1523eqtrd 2803 1 (𝜑 → ∫𝐴𝐵 d𝑥 = ((𝑅𝑆) + (i · (𝑇𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  ifcif 4243   class class class wbr 4809  cmpt 4888  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190  ici 10191   + caddc 10192   · cmul 10194  cle 10329  cmin 10520  -cneg 10521   / cdiv 10938  2c2 11327  3c3 11328  0cn0 11538  cz 11624  ...cfz 12533  cexp 13067  cre 14124  cim 14125  Σcsu 14703  MblFncmbf 23672  2citg2 23674  𝐿1cibl 23675  citg 23676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-sum 14704  df-mbf 23677  df-ibl 23680  df-itg 23681
This theorem is referenced by:  itgrevallem1  23852  itgcnval  23857
  Copyright terms: Public domain W3C validator