MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblitg Structured version   Visualization version   GIF version

Theorem iblitg 25823
Description: If a function is integrable, then the 2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblitg.1 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
iblitg.2 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
iblitg.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
iblitg.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
iblitg ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝜑,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥)   𝐺(𝑥)

Proof of Theorem iblitg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iblitg.1 . . . . 5 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
21adantr 480 . . . 4 ((𝜑𝐾 ∈ ℤ) → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
3 iblitg.2 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
43adantlr 714 . . . . . . 7 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
5 iexpcyc 14256 . . . . . . . . . 10 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))
65oveq2d 7464 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐵 / (i↑(𝐾 mod 4))) = (𝐵 / (i↑𝐾)))
76fveq2d 6924 . . . . . . . 8 (𝐾 ∈ ℤ → (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))) = (ℜ‘(𝐵 / (i↑𝐾))))
87ad2antlr 726 . . . . . . 7 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))) = (ℜ‘(𝐵 / (i↑𝐾))))
94, 8eqtr4d 2783 . . . . . 6 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))
109ibllem 25819 . . . . 5 ((𝜑𝐾 ∈ ℤ) → if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))
1110mpteq2dv 5268 . . . 4 ((𝜑𝐾 ∈ ℤ) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
122, 11eqtrd 2780 . . 3 ((𝜑𝐾 ∈ ℤ) → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
1312fveq2d 6924 . 2 ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))))
14 oveq2 7456 . . . . . . . . . . 11 (𝑘 = (𝐾 mod 4) → (i↑𝑘) = (i↑(𝐾 mod 4)))
1514oveq2d 7464 . . . . . . . . . 10 (𝑘 = (𝐾 mod 4) → (𝐵 / (i↑𝑘)) = (𝐵 / (i↑(𝐾 mod 4))))
1615fveq2d 6924 . . . . . . . . 9 (𝑘 = (𝐾 mod 4) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))
1716breq2d 5178 . . . . . . . 8 (𝑘 = (𝐾 mod 4) → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))))
1817anbi2d 629 . . . . . . 7 (𝑘 = (𝐾 mod 4) → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))))
1918, 16ifbieq1d 4572 . . . . . 6 (𝑘 = (𝐾 mod 4) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))
2019mpteq2dv 5268 . . . . 5 (𝑘 = (𝐾 mod 4) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
2120fveq2d 6924 . . . 4 (𝑘 = (𝐾 mod 4) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))))
2221eleq1d 2829 . . 3 (𝑘 = (𝐾 mod 4) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) ∈ ℝ))
23 iblitg.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
24 eqidd 2741 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
25 eqidd 2741 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
26 iblitg.4 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
2724, 25, 26isibl2 25821 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)))
2823, 27mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ))
2928simprd 495 . . . 4 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
3029adantr 480 . . 3 ((𝜑𝐾 ∈ ℤ) → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
31 4nn 12376 . . . . . 6 4 ∈ ℕ
32 zmodfz 13944 . . . . . 6 ((𝐾 ∈ ℤ ∧ 4 ∈ ℕ) → (𝐾 mod 4) ∈ (0...(4 − 1)))
3331, 32mpan2 690 . . . . 5 (𝐾 ∈ ℤ → (𝐾 mod 4) ∈ (0...(4 − 1)))
34 4m1e3 12422 . . . . . 6 (4 − 1) = 3
3534oveq2i 7459 . . . . 5 (0...(4 − 1)) = (0...3)
3633, 35eleqtrdi 2854 . . . 4 (𝐾 ∈ ℤ → (𝐾 mod 4) ∈ (0...3))
3736adantl 481 . . 3 ((𝜑𝐾 ∈ ℤ) → (𝐾 mod 4) ∈ (0...3))
3822, 30, 37rspcdva 3636 . 2 ((𝜑𝐾 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) ∈ ℝ)
3913, 38eqeltrd 2844 1 ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185  ici 11186  cle 11325  cmin 11520   / cdiv 11947  cn 12293  3c3 12349  4c4 12350  cz 12639  ...cfz 13567   mod cmo 13920  cexp 14112  cre 15146  MblFncmbf 25668  2citg2 25670  𝐿1cibl 25671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-ibl 25676
This theorem is referenced by:  itgcl  25839  itgcnlem  25845  iblss  25860  iblss2  25861  itgsplit  25891
  Copyright terms: Public domain W3C validator