MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblitg Structured version   Visualization version   GIF version

Theorem iblitg 24376
Description: If a function is integrable, then the 2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblitg.1 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
iblitg.2 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
iblitg.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
iblitg.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
iblitg ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝜑,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥)   𝐺(𝑥)

Proof of Theorem iblitg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iblitg.1 . . . . 5 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
21adantr 484 . . . 4 ((𝜑𝐾 ∈ ℤ) → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
3 iblitg.2 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
43adantlr 714 . . . . . . 7 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
5 iexpcyc 13569 . . . . . . . . . 10 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))
65oveq2d 7155 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐵 / (i↑(𝐾 mod 4))) = (𝐵 / (i↑𝐾)))
76fveq2d 6653 . . . . . . . 8 (𝐾 ∈ ℤ → (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))) = (ℜ‘(𝐵 / (i↑𝐾))))
87ad2antlr 726 . . . . . . 7 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))) = (ℜ‘(𝐵 / (i↑𝐾))))
94, 8eqtr4d 2839 . . . . . 6 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))
109ibllem 24372 . . . . 5 ((𝜑𝐾 ∈ ℤ) → if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))
1110mpteq2dv 5129 . . . 4 ((𝜑𝐾 ∈ ℤ) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
122, 11eqtrd 2836 . . 3 ((𝜑𝐾 ∈ ℤ) → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
1312fveq2d 6653 . 2 ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))))
14 oveq2 7147 . . . . . . . . . . 11 (𝑘 = (𝐾 mod 4) → (i↑𝑘) = (i↑(𝐾 mod 4)))
1514oveq2d 7155 . . . . . . . . . 10 (𝑘 = (𝐾 mod 4) → (𝐵 / (i↑𝑘)) = (𝐵 / (i↑(𝐾 mod 4))))
1615fveq2d 6653 . . . . . . . . 9 (𝑘 = (𝐾 mod 4) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))
1716breq2d 5045 . . . . . . . 8 (𝑘 = (𝐾 mod 4) → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))))
1817anbi2d 631 . . . . . . 7 (𝑘 = (𝐾 mod 4) → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))))
1918, 16ifbieq1d 4451 . . . . . 6 (𝑘 = (𝐾 mod 4) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))
2019mpteq2dv 5129 . . . . 5 (𝑘 = (𝐾 mod 4) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
2120fveq2d 6653 . . . 4 (𝑘 = (𝐾 mod 4) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))))
2221eleq1d 2877 . . 3 (𝑘 = (𝐾 mod 4) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) ∈ ℝ))
23 iblitg.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
24 eqidd 2802 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
25 eqidd 2802 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
26 iblitg.4 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
2724, 25, 26isibl2 24374 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)))
2823, 27mpbid 235 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ))
2928simprd 499 . . . 4 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
3029adantr 484 . . 3 ((𝜑𝐾 ∈ ℤ) → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
31 4nn 11712 . . . . . 6 4 ∈ ℕ
32 zmodfz 13260 . . . . . 6 ((𝐾 ∈ ℤ ∧ 4 ∈ ℕ) → (𝐾 mod 4) ∈ (0...(4 − 1)))
3331, 32mpan2 690 . . . . 5 (𝐾 ∈ ℤ → (𝐾 mod 4) ∈ (0...(4 − 1)))
34 4m1e3 11758 . . . . . 6 (4 − 1) = 3
3534oveq2i 7150 . . . . 5 (0...(4 − 1)) = (0...3)
3633, 35eleqtrdi 2903 . . . 4 (𝐾 ∈ ℤ → (𝐾 mod 4) ∈ (0...3))
3736adantl 485 . . 3 ((𝜑𝐾 ∈ ℤ) → (𝐾 mod 4) ∈ (0...3))
3822, 30, 37rspcdva 3576 . 2 ((𝜑𝐾 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) ∈ ℝ)
3913, 38eqeltrd 2893 1 ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wral 3109  ifcif 4428   class class class wbr 5033  cmpt 5113  cfv 6328  (class class class)co 7139  cr 10529  0cc0 10530  1c1 10531  ici 10532  cle 10669  cmin 10863   / cdiv 11290  cn 11629  3c3 11685  4c4 11686  cz 11973  ...cfz 12889   mod cmo 13236  cexp 13429  cre 14452  MblFncmbf 24222  2citg2 24224  𝐿1cibl 24225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-ibl 24230
This theorem is referenced by:  itgcl  24391  itgcnlem  24397  iblss  24412  iblss2  24413  itgsplit  24443
  Copyright terms: Public domain W3C validator