MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblitg Structured version   Visualization version   GIF version

Theorem iblitg 25696
Description: If a function is integrable, then the 2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblitg.1 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
iblitg.2 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
iblitg.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
iblitg.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
iblitg ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝜑,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥)   𝐺(𝑥)

Proof of Theorem iblitg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iblitg.1 . . . . 5 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
21adantr 480 . . . 4 ((𝜑𝐾 ∈ ℤ) → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
3 iblitg.2 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
43adantlr 715 . . . . . . 7 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
5 iexpcyc 14114 . . . . . . . . . 10 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))
65oveq2d 7362 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐵 / (i↑(𝐾 mod 4))) = (𝐵 / (i↑𝐾)))
76fveq2d 6826 . . . . . . . 8 (𝐾 ∈ ℤ → (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))) = (ℜ‘(𝐵 / (i↑𝐾))))
87ad2antlr 727 . . . . . . 7 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))) = (ℜ‘(𝐵 / (i↑𝐾))))
94, 8eqtr4d 2769 . . . . . 6 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))
109ibllem 25692 . . . . 5 ((𝜑𝐾 ∈ ℤ) → if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))
1110mpteq2dv 5183 . . . 4 ((𝜑𝐾 ∈ ℤ) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
122, 11eqtrd 2766 . . 3 ((𝜑𝐾 ∈ ℤ) → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
1312fveq2d 6826 . 2 ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))))
14 oveq2 7354 . . . . . . . . . . 11 (𝑘 = (𝐾 mod 4) → (i↑𝑘) = (i↑(𝐾 mod 4)))
1514oveq2d 7362 . . . . . . . . . 10 (𝑘 = (𝐾 mod 4) → (𝐵 / (i↑𝑘)) = (𝐵 / (i↑(𝐾 mod 4))))
1615fveq2d 6826 . . . . . . . . 9 (𝑘 = (𝐾 mod 4) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))
1716breq2d 5101 . . . . . . . 8 (𝑘 = (𝐾 mod 4) → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))))
1817anbi2d 630 . . . . . . 7 (𝑘 = (𝐾 mod 4) → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))))
1918, 16ifbieq1d 4497 . . . . . 6 (𝑘 = (𝐾 mod 4) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))
2019mpteq2dv 5183 . . . . 5 (𝑘 = (𝐾 mod 4) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
2120fveq2d 6826 . . . 4 (𝑘 = (𝐾 mod 4) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))))
2221eleq1d 2816 . . 3 (𝑘 = (𝐾 mod 4) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) ∈ ℝ))
23 iblitg.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
24 eqidd 2732 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
25 eqidd 2732 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
26 iblitg.4 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
2724, 25, 26isibl2 25694 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)))
2823, 27mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ))
2928simprd 495 . . . 4 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
3029adantr 480 . . 3 ((𝜑𝐾 ∈ ℤ) → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
31 4nn 12208 . . . . . 6 4 ∈ ℕ
32 zmodfz 13797 . . . . . 6 ((𝐾 ∈ ℤ ∧ 4 ∈ ℕ) → (𝐾 mod 4) ∈ (0...(4 − 1)))
3331, 32mpan2 691 . . . . 5 (𝐾 ∈ ℤ → (𝐾 mod 4) ∈ (0...(4 − 1)))
34 4m1e3 12249 . . . . . 6 (4 − 1) = 3
3534oveq2i 7357 . . . . 5 (0...(4 − 1)) = (0...3)
3633, 35eleqtrdi 2841 . . . 4 (𝐾 ∈ ℤ → (𝐾 mod 4) ∈ (0...3))
3736adantl 481 . . 3 ((𝜑𝐾 ∈ ℤ) → (𝐾 mod 4) ∈ (0...3))
3822, 30, 37rspcdva 3573 . 2 ((𝜑𝐾 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) ∈ ℝ)
3913, 38eqeltrd 2831 1 ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  ifcif 4472   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007  ici 11008  cle 11147  cmin 11344   / cdiv 11774  cn 12125  3c3 12181  4c4 12182  cz 12468  ...cfz 13407   mod cmo 13773  cexp 13968  cre 15004  MblFncmbf 25542  2citg2 25544  𝐿1cibl 25545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-ibl 25550
This theorem is referenced by:  itgcl  25712  itgcnlem  25718  iblss  25733  iblss2  25734  itgsplit  25764
  Copyright terms: Public domain W3C validator