MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblitg Structured version   Visualization version   GIF version

Theorem iblitg 25803
Description: If a function is integrable, then the 2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblitg.1 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
iblitg.2 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
iblitg.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
iblitg.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
iblitg ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝜑,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥)   𝐺(𝑥)

Proof of Theorem iblitg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iblitg.1 . . . . 5 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
21adantr 480 . . . 4 ((𝜑𝐾 ∈ ℤ) → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
3 iblitg.2 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
43adantlr 715 . . . . . . 7 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
5 iexpcyc 14246 . . . . . . . . . 10 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))
65oveq2d 7447 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐵 / (i↑(𝐾 mod 4))) = (𝐵 / (i↑𝐾)))
76fveq2d 6910 . . . . . . . 8 (𝐾 ∈ ℤ → (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))) = (ℜ‘(𝐵 / (i↑𝐾))))
87ad2antlr 727 . . . . . . 7 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))) = (ℜ‘(𝐵 / (i↑𝐾))))
94, 8eqtr4d 2780 . . . . . 6 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))
109ibllem 25799 . . . . 5 ((𝜑𝐾 ∈ ℤ) → if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))
1110mpteq2dv 5244 . . . 4 ((𝜑𝐾 ∈ ℤ) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
122, 11eqtrd 2777 . . 3 ((𝜑𝐾 ∈ ℤ) → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
1312fveq2d 6910 . 2 ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))))
14 oveq2 7439 . . . . . . . . . . 11 (𝑘 = (𝐾 mod 4) → (i↑𝑘) = (i↑(𝐾 mod 4)))
1514oveq2d 7447 . . . . . . . . . 10 (𝑘 = (𝐾 mod 4) → (𝐵 / (i↑𝑘)) = (𝐵 / (i↑(𝐾 mod 4))))
1615fveq2d 6910 . . . . . . . . 9 (𝑘 = (𝐾 mod 4) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))
1716breq2d 5155 . . . . . . . 8 (𝑘 = (𝐾 mod 4) → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))))
1817anbi2d 630 . . . . . . 7 (𝑘 = (𝐾 mod 4) → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))))
1918, 16ifbieq1d 4550 . . . . . 6 (𝑘 = (𝐾 mod 4) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))
2019mpteq2dv 5244 . . . . 5 (𝑘 = (𝐾 mod 4) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
2120fveq2d 6910 . . . 4 (𝑘 = (𝐾 mod 4) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))))
2221eleq1d 2826 . . 3 (𝑘 = (𝐾 mod 4) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) ∈ ℝ))
23 iblitg.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
24 eqidd 2738 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
25 eqidd 2738 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
26 iblitg.4 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
2724, 25, 26isibl2 25801 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)))
2823, 27mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ))
2928simprd 495 . . . 4 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
3029adantr 480 . . 3 ((𝜑𝐾 ∈ ℤ) → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
31 4nn 12349 . . . . . 6 4 ∈ ℕ
32 zmodfz 13933 . . . . . 6 ((𝐾 ∈ ℤ ∧ 4 ∈ ℕ) → (𝐾 mod 4) ∈ (0...(4 − 1)))
3331, 32mpan2 691 . . . . 5 (𝐾 ∈ ℤ → (𝐾 mod 4) ∈ (0...(4 − 1)))
34 4m1e3 12395 . . . . . 6 (4 − 1) = 3
3534oveq2i 7442 . . . . 5 (0...(4 − 1)) = (0...3)
3633, 35eleqtrdi 2851 . . . 4 (𝐾 ∈ ℤ → (𝐾 mod 4) ∈ (0...3))
3736adantl 481 . . 3 ((𝜑𝐾 ∈ ℤ) → (𝐾 mod 4) ∈ (0...3))
3822, 30, 37rspcdva 3623 . 2 ((𝜑𝐾 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) ∈ ℝ)
3913, 38eqeltrd 2841 1 ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  ifcif 4525   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156  ici 11157  cle 11296  cmin 11492   / cdiv 11920  cn 12266  3c3 12322  4c4 12323  cz 12613  ...cfz 13547   mod cmo 13909  cexp 14102  cre 15136  MblFncmbf 25649  2citg2 25651  𝐿1cibl 25652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-ibl 25657
This theorem is referenced by:  itgcl  25819  itgcnlem  25825  iblss  25840  iblss2  25841  itgsplit  25871
  Copyright terms: Public domain W3C validator