Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeqa Structured version   Visualization version   GIF version

Theorem itgeqa 24513
 Description: Approximate equality of integrals. If 𝐶(𝑥) = 𝐷(𝑥) for almost all 𝑥, then ∫𝐵𝐶(𝑥) d𝑥 = ∫𝐵𝐷(𝑥) d𝑥 and one is integrable iff the other is. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgeqa.1 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
itgeqa.2 ((𝜑𝑥𝐵) → 𝐷 ∈ ℂ)
itgeqa.3 (𝜑𝐴 ⊆ ℝ)
itgeqa.4 (𝜑 → (vol*‘𝐴) = 0)
itgeqa.5 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
Assertion
Ref Expression
itgeqa (𝜑 → (((𝑥𝐵𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐷) ∈ 𝐿1) ∧ ∫𝐵𝐶 d𝑥 = ∫𝐵𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem itgeqa
Dummy variables 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgeqa.3 . . . . 5 (𝜑𝐴 ⊆ ℝ)
2 itgeqa.4 . . . . 5 (𝜑 → (vol*‘𝐴) = 0)
3 itgeqa.5 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
4 itgeqa.1 . . . . 5 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
5 itgeqa.2 . . . . 5 ((𝜑𝑥𝐵) → 𝐷 ∈ ℂ)
61, 2, 3, 4, 5mbfeqa 24343 . . . 4 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ↔ (𝑥𝐵𝐷) ∈ MblFn))
7 ifan 4473 . . . . . . . . . 10 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
84adantlr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 𝐶 ∈ ℂ)
9 ax-icn 10634 . . . . . . . . . . . . . . . . 17 i ∈ ℂ
10 ine0 11113 . . . . . . . . . . . . . . . . 17 i ≠ 0
11 elfzelz 12956 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
1211ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 𝑘 ∈ ℤ)
13 expclz 13504 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
149, 10, 12, 13mp3an12i 1462 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (i↑𝑘) ∈ ℂ)
15 expne0i 13511 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
169, 10, 12, 15mp3an12i 1462 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (i↑𝑘) ≠ 0)
178, 14, 16divcld 11454 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (𝐶 / (i↑𝑘)) ∈ ℂ)
1817recld 14601 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ)
19 0re 10681 . . . . . . . . . . . . . 14 0 ∈ ℝ
20 ifcl 4465 . . . . . . . . . . . . . 14 (((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ)
2118, 19, 20sylancl 589 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ)
2221rexrd 10729 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ*)
23 max1 12619 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2419, 18, 23sylancr 590 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 0 ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
25 elxrge0 12889 . . . . . . . . . . . 12 (if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
2622, 24, 25sylanbrc 586 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
27 0e0iccpnf 12891 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
2827a1i 11 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐵) → 0 ∈ (0[,]+∞))
2926, 28ifclda 4455 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
307, 29eqeltrid 2856 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
3130adantr 484 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
3231fmpttd 6870 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
33 ifan 4473 . . . . . . . . . 10 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0), 0)
345adantlr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 𝐷 ∈ ℂ)
3534, 14, 16divcld 11454 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (𝐷 / (i↑𝑘)) ∈ ℂ)
3635recld 14601 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → (ℜ‘(𝐷 / (i↑𝑘))) ∈ ℝ)
37 ifcl 4465 . . . . . . . . . . . . . 14 (((ℜ‘(𝐷 / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ ℝ)
3836, 19, 37sylancl 589 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ ℝ)
3938rexrd 10729 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ ℝ*)
40 max1 12619 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (ℜ‘(𝐷 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
4119, 36, 40sylancr 590 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → 0 ≤ if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
42 elxrge0 12889 . . . . . . . . . . . 12 (if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))
4339, 41, 42sylanbrc 586 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ (0[,]+∞))
4443, 28ifclda 4455 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐷 / (i↑𝑘))), (ℜ‘(𝐷 / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
4533, 44eqeltrid 2856 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ (0[,]+∞))
4645adantr 484 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ (0[,]+∞))
4746fmpttd 6870 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
481adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → 𝐴 ⊆ ℝ)
492adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (vol*‘𝐴) = 0)
50 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → 𝜑)
51 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → 𝑥𝐵)
52 eldifn 4033 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
5352ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
5451, 53eldifd 3869 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐵𝐴))
5550, 54, 3syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → 𝐶 = 𝐷)
5655fvoveq1d 7172 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘))))
5756ibllem 24464 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
58 eldifi 4032 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ)
5958adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 𝑥 ∈ ℝ)
60 fvex 6671 . . . . . . . . . . . . . 14 (ℜ‘(𝐶 / (i↑𝑘))) ∈ V
61 c0ex 10673 . . . . . . . . . . . . . 14 0 ∈ V
6260, 61ifex 4470 . . . . . . . . . . . . 13 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ V
63 eqid 2758 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
6463fvmpt2 6770 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
6559, 62, 64sylancl 589 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
66 fvex 6671 . . . . . . . . . . . . . 14 (ℜ‘(𝐷 / (i↑𝑘))) ∈ V
6766, 61ifex 4470 . . . . . . . . . . . . 13 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ V
68 eqid 2758 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
6968fvmpt2 6770 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
7059, 67, 69sylancl 589 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))
7157, 65, 703eqtr4d 2803 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥))
7271ralrimiva 3113 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (ℝ ∖ 𝐴)((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥))
73 nfv 1915 . . . . . . . . . . 11 𝑦((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥)
74 nffvmpt1 6669 . . . . . . . . . . . 12 𝑥((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦)
75 nffvmpt1 6669 . . . . . . . . . . . 12 𝑥((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦)
7674, 75nfeq 2932 . . . . . . . . . . 11 𝑥((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦)
77 fveq2 6658 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦))
78 fveq2 6658 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
7977, 78eqeq12d 2774 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) ↔ ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦)))
8073, 76, 79cbvralw 3352 . . . . . . . . . 10 (∀𝑥 ∈ (ℝ ∖ 𝐴)((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑥) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑥) ↔ ∀𝑦 ∈ (ℝ ∖ 𝐴)((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
8172, 80sylib 221 . . . . . . . . 9 (𝜑 → ∀𝑦 ∈ (ℝ ∖ 𝐴)((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
8281r19.21bi 3137 . . . . . . . 8 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
8382adantlr 714 . . . . . . 7 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑦 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))‘𝑦))
8432, 47, 48, 49, 83itg2eqa 24445 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))))
8584eleq1d 2836 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))) ∈ ℝ))
8685ralbidva 3125 . . . 4 (𝜑 → (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ ↔ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))) ∈ ℝ))
876, 86anbi12d 633 . . 3 (𝜑 → (((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) ↔ ((𝑥𝐵𝐷) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))) ∈ ℝ)))
88 eqidd 2759 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
89 eqidd 2759 . . . 4 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
9088, 89, 4isibl2 24466 . . 3 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
91 eqidd 2759 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))
92 eqidd 2759 . . . 4 ((𝜑𝑥𝐵) → (ℜ‘(𝐷 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘))))
9391, 92, 5isibl2 24466 . . 3 (𝜑 → ((𝑥𝐵𝐷) ∈ 𝐿1 ↔ ((𝑥𝐵𝐷) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))) ∈ ℝ)))
9487, 90, 933bitr4d 314 . 2 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐷) ∈ 𝐿1))
9584oveq2d 7166 . . . 4 ((𝜑𝑘 ∈ (0...3)) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))))
9695sumeq2dv 15108 . . 3 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0)))))
97 eqid 2758 . . . 4 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
9897dfitg 24469 . . 3 𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
99 eqid 2758 . . . 4 (ℜ‘(𝐷 / (i↑𝑘))) = (ℜ‘(𝐷 / (i↑𝑘)))
10099dfitg 24469 . . 3 𝐵𝐷 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐷 / (i↑𝑘)))), (ℜ‘(𝐷 / (i↑𝑘))), 0))))
10196, 98, 1003eqtr4g 2818 . 2 (𝜑 → ∫𝐵𝐶 d𝑥 = ∫𝐵𝐷 d𝑥)
10294, 101jca 515 1 (𝜑 → (((𝑥𝐵𝐶) ∈ 𝐿1 ↔ (𝑥𝐵𝐷) ∈ 𝐿1) ∧ ∫𝐵𝐶 d𝑥 = ∫𝐵𝐷 d𝑥))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  Vcvv 3409   ∖ cdif 3855   ⊆ wss 3858  ifcif 4420   class class class wbr 5032   ↦ cmpt 5112  ‘cfv 6335  (class class class)co 7150  ℂcc 10573  ℝcr 10574  0cc0 10575  ici 10577   · cmul 10580  +∞cpnf 10710  ℝ*cxr 10712   ≤ cle 10714   / cdiv 11335  3c3 11730  ℤcz 12020  [,]cicc 12782  ...cfz 12939  ↑cexp 13479  ℜcre 14504  Σcsu 15090  vol*covol 24162  MblFncmbf 24314  ∫2citg2 24316  𝐿1cibl 24317  ∫citg 24318 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-symdif 4147  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-disj 4998  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-ofr 7406  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-dju 9363  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-clim 14893  df-sum 15091  df-rest 16754  df-topgen 16775  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-top 21594  df-topon 21611  df-bases 21646  df-cmp 22087  df-ovol 24164  df-vol 24165  df-mbf 24319  df-itg1 24320  df-itg2 24321  df-ibl 24322  df-itg 24323 This theorem is referenced by:  itgss3  24514
 Copyright terms: Public domain W3C validator