MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeqa Structured version   Visualization version   GIF version

Theorem itgeqa 25100
Description: Approximate equality of integrals. If ๐ถ(๐‘ฅ) = ๐ท(๐‘ฅ) for almost all ๐‘ฅ, then โˆซ๐ต๐ถ(๐‘ฅ) d๐‘ฅ = โˆซ๐ต๐ท(๐‘ฅ) d๐‘ฅ and one is integrable iff the other is. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgeqa.1 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ ๐ถ โˆˆ โ„‚)
itgeqa.2 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ ๐ท โˆˆ โ„‚)
itgeqa.3 (๐œ‘ โ†’ ๐ด โŠ† โ„)
itgeqa.4 (๐œ‘ โ†’ (vol*โ€˜๐ด) = 0)
itgeqa.5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (๐ต โˆ– ๐ด)) โ†’ ๐ถ = ๐ท)
Assertion
Ref Expression
itgeqa (๐œ‘ โ†’ (((๐‘ฅ โˆˆ ๐ต โ†ฆ ๐ถ) โˆˆ ๐ฟ1 โ†” (๐‘ฅ โˆˆ ๐ต โ†ฆ ๐ท) โˆˆ ๐ฟ1) โˆง โˆซ๐ต๐ถ d๐‘ฅ = โˆซ๐ต๐ท d๐‘ฅ))
Distinct variable groups:   ๐‘ฅ,๐ด   ๐‘ฅ,๐ต   ๐œ‘,๐‘ฅ
Allowed substitution hints:   ๐ถ(๐‘ฅ)   ๐ท(๐‘ฅ)

Proof of Theorem itgeqa
Dummy variables ๐‘ฆ ๐‘˜ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgeqa.3 . . . . 5 (๐œ‘ โ†’ ๐ด โŠ† โ„)
2 itgeqa.4 . . . . 5 (๐œ‘ โ†’ (vol*โ€˜๐ด) = 0)
3 itgeqa.5 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (๐ต โˆ– ๐ด)) โ†’ ๐ถ = ๐ท)
4 itgeqa.1 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ ๐ถ โˆˆ โ„‚)
5 itgeqa.2 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ ๐ท โˆˆ โ„‚)
61, 2, 3, 4, 5mbfeqa 24929 . . . 4 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ ๐ถ) โˆˆ MblFn โ†” (๐‘ฅ โˆˆ ๐ต โ†ฆ ๐ท) โˆˆ MblFn))
7 ifan 4538 . . . . . . . . . 10 if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0) = if(๐‘ฅ โˆˆ ๐ต, if(0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0), 0)
84adantlr 714 . . . . . . . . . . . . . . . 16 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ ๐ถ โˆˆ โ„‚)
9 ax-icn 11044 . . . . . . . . . . . . . . . . 17 i โˆˆ โ„‚
10 ine0 11524 . . . . . . . . . . . . . . . . 17 i โ‰  0
11 elfzelz 13370 . . . . . . . . . . . . . . . . . 18 (๐‘˜ โˆˆ (0...3) โ†’ ๐‘˜ โˆˆ โ„ค)
1211ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ ๐‘˜ โˆˆ โ„ค)
13 expclz 13921 . . . . . . . . . . . . . . . . 17 ((i โˆˆ โ„‚ โˆง i โ‰  0 โˆง ๐‘˜ โˆˆ โ„ค) โ†’ (iโ†‘๐‘˜) โˆˆ โ„‚)
149, 10, 12, 13mp3an12i 1466 . . . . . . . . . . . . . . . 16 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ (iโ†‘๐‘˜) โˆˆ โ„‚)
15 expne0i 13929 . . . . . . . . . . . . . . . . 17 ((i โˆˆ โ„‚ โˆง i โ‰  0 โˆง ๐‘˜ โˆˆ โ„ค) โ†’ (iโ†‘๐‘˜) โ‰  0)
169, 10, 12, 15mp3an12i 1466 . . . . . . . . . . . . . . . 16 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ (iโ†‘๐‘˜) โ‰  0)
178, 14, 16divcld 11865 . . . . . . . . . . . . . . 15 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ (๐ถ / (iโ†‘๐‘˜)) โˆˆ โ„‚)
1817recld 15013 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))) โˆˆ โ„)
19 0re 11091 . . . . . . . . . . . . . 14 0 โˆˆ โ„
20 ifcl 4530 . . . . . . . . . . . . . 14 (((โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))) โˆˆ โ„ โˆง 0 โˆˆ โ„) โ†’ if(0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0) โˆˆ โ„)
2118, 19, 20sylancl 587 . . . . . . . . . . . . 13 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ if(0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0) โˆˆ โ„)
2221rexrd 11139 . . . . . . . . . . . 12 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ if(0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0) โˆˆ โ„*)
23 max1 13033 . . . . . . . . . . . . 13 ((0 โˆˆ โ„ โˆง (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))) โˆˆ โ„) โ†’ 0 โ‰ค if(0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))
2419, 18, 23sylancr 588 . . . . . . . . . . . 12 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ 0 โ‰ค if(0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))
25 elxrge0 13303 . . . . . . . . . . . 12 (if(0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0) โˆˆ (0[,]+โˆž) โ†” (if(0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0) โˆˆ โ„* โˆง 0 โ‰ค if(0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)))
2622, 24, 25sylanbrc 584 . . . . . . . . . . 11 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ if(0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0) โˆˆ (0[,]+โˆž))
27 0e0iccpnf 13305 . . . . . . . . . . . 12 0 โˆˆ (0[,]+โˆž)
2827a1i 11 . . . . . . . . . . 11 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ยฌ ๐‘ฅ โˆˆ ๐ต) โ†’ 0 โˆˆ (0[,]+โˆž))
2926, 28ifclda 4520 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ if(๐‘ฅ โˆˆ ๐ต, if(0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0), 0) โˆˆ (0[,]+โˆž))
307, 29eqeltrid 2843 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0) โˆˆ (0[,]+โˆž))
3130adantr 482 . . . . . . . 8 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ โ„) โ†’ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0) โˆˆ (0[,]+โˆž))
3231fmpttd 7058 . . . . . . 7 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)):โ„โŸถ(0[,]+โˆž))
33 ifan 4538 . . . . . . . . . 10 if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0) = if(๐‘ฅ โˆˆ ๐ต, if(0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0), 0)
345adantlr 714 . . . . . . . . . . . . . . . 16 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ ๐ท โˆˆ โ„‚)
3534, 14, 16divcld 11865 . . . . . . . . . . . . . . 15 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ (๐ท / (iโ†‘๐‘˜)) โˆˆ โ„‚)
3635recld 15013 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))) โˆˆ โ„)
37 ifcl 4530 . . . . . . . . . . . . . 14 (((โ„œโ€˜(๐ท / (iโ†‘๐‘˜))) โˆˆ โ„ โˆง 0 โˆˆ โ„) โ†’ if(0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0) โˆˆ โ„)
3836, 19, 37sylancl 587 . . . . . . . . . . . . 13 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ if(0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0) โˆˆ โ„)
3938rexrd 11139 . . . . . . . . . . . 12 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ if(0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0) โˆˆ โ„*)
40 max1 13033 . . . . . . . . . . . . 13 ((0 โˆˆ โ„ โˆง (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))) โˆˆ โ„) โ†’ 0 โ‰ค if(0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))
4119, 36, 40sylancr 588 . . . . . . . . . . . 12 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ 0 โ‰ค if(0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))
42 elxrge0 13303 . . . . . . . . . . . 12 (if(0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0) โˆˆ (0[,]+โˆž) โ†” (if(0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0) โˆˆ โ„* โˆง 0 โ‰ค if(0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0)))
4339, 41, 42sylanbrc 584 . . . . . . . . . . 11 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ if(0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0) โˆˆ (0[,]+โˆž))
4443, 28ifclda 4520 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ if(๐‘ฅ โˆˆ ๐ต, if(0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0), 0) โˆˆ (0[,]+โˆž))
4533, 44eqeltrid 2843 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0) โˆˆ (0[,]+โˆž))
4645adantr 482 . . . . . . . 8 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฅ โˆˆ โ„) โ†’ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0) โˆˆ (0[,]+โˆž))
4746fmpttd 7058 . . . . . . 7 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0)):โ„โŸถ(0[,]+โˆž))
481adantr 482 . . . . . . 7 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ ๐ด โŠ† โ„)
492adantr 482 . . . . . . 7 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ (vol*โ€˜๐ด) = 0)
50 simpll 766 . . . . . . . . . . . . . . 15 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (โ„ โˆ– ๐ด)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ ๐œ‘)
51 simpr 486 . . . . . . . . . . . . . . . 16 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (โ„ โˆ– ๐ด)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ ๐‘ฅ โˆˆ ๐ต)
52 eldifn 4086 . . . . . . . . . . . . . . . . 17 (๐‘ฅ โˆˆ (โ„ โˆ– ๐ด) โ†’ ยฌ ๐‘ฅ โˆˆ ๐ด)
5352ad2antlr 726 . . . . . . . . . . . . . . . 16 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (โ„ โˆ– ๐ด)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ ยฌ ๐‘ฅ โˆˆ ๐ด)
5451, 53eldifd 3920 . . . . . . . . . . . . . . 15 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (โ„ โˆ– ๐ด)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ ๐‘ฅ โˆˆ (๐ต โˆ– ๐ด))
5550, 54, 3syl2anc 585 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (โ„ โˆ– ๐ด)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ ๐ถ = ๐ท)
5655fvoveq1d 7372 . . . . . . . . . . . . 13 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (โ„ โˆ– ๐ด)) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))) = (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))))
5756ibllem 25051 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (โ„ โˆ– ๐ด)) โ†’ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0) = if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))
58 eldifi 4085 . . . . . . . . . . . . . 14 (๐‘ฅ โˆˆ (โ„ โˆ– ๐ด) โ†’ ๐‘ฅ โˆˆ โ„)
5958adantl 483 . . . . . . . . . . . . 13 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (โ„ โˆ– ๐ด)) โ†’ ๐‘ฅ โˆˆ โ„)
60 fvex 6851 . . . . . . . . . . . . . 14 (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))) โˆˆ V
61 c0ex 11083 . . . . . . . . . . . . . 14 0 โˆˆ V
6260, 61ifex 4535 . . . . . . . . . . . . 13 if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0) โˆˆ V
63 eqid 2738 . . . . . . . . . . . . . 14 (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))
6463fvmpt2 6955 . . . . . . . . . . . . 13 ((๐‘ฅ โˆˆ โ„ โˆง if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0) โˆˆ V) โ†’ ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ) = if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))
6559, 62, 64sylancl 587 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (โ„ โˆ– ๐ด)) โ†’ ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ) = if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))
66 fvex 6851 . . . . . . . . . . . . . 14 (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))) โˆˆ V
6766, 61ifex 4535 . . . . . . . . . . . . 13 if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0) โˆˆ V
68 eqid 2738 . . . . . . . . . . . . . 14 (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))
6968fvmpt2 6955 . . . . . . . . . . . . 13 ((๐‘ฅ โˆˆ โ„ โˆง if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0) โˆˆ V) โ†’ ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ) = if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))
7059, 67, 69sylancl 587 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (โ„ โˆ– ๐ด)) โ†’ ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ) = if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))
7157, 65, 703eqtr4d 2788 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (โ„ โˆ– ๐ด)) โ†’ ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ) = ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ))
7271ralrimiva 3142 . . . . . . . . . 10 (๐œ‘ โ†’ โˆ€๐‘ฅ โˆˆ (โ„ โˆ– ๐ด)((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ) = ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ))
73 nfv 1918 . . . . . . . . . . 11 โ„ฒ๐‘ฆ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ) = ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ)
74 nffvmpt1 6849 . . . . . . . . . . . 12 โ„ฒ๐‘ฅ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ)
75 nffvmpt1 6849 . . . . . . . . . . . 12 โ„ฒ๐‘ฅ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ)
7674, 75nfeq 2919 . . . . . . . . . . 11 โ„ฒ๐‘ฅ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ) = ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ)
77 fveq2 6838 . . . . . . . . . . . 12 (๐‘ฅ = ๐‘ฆ โ†’ ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ) = ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ))
78 fveq2 6838 . . . . . . . . . . . 12 (๐‘ฅ = ๐‘ฆ โ†’ ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ) = ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ))
7977, 78eqeq12d 2754 . . . . . . . . . . 11 (๐‘ฅ = ๐‘ฆ โ†’ (((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ) = ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ) โ†” ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ) = ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ)))
8073, 76, 79cbvralw 3288 . . . . . . . . . 10 (โˆ€๐‘ฅ โˆˆ (โ„ โˆ– ๐ด)((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ) = ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฅ) โ†” โˆ€๐‘ฆ โˆˆ (โ„ โˆ– ๐ด)((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ) = ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ))
8172, 80sylib 217 . . . . . . . . 9 (๐œ‘ โ†’ โˆ€๐‘ฆ โˆˆ (โ„ โˆ– ๐ด)((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ) = ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ))
8281r19.21bi 3233 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฆ โˆˆ (โ„ โˆ– ๐ด)) โ†’ ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ) = ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ))
8382adantlr 714 . . . . . . 7 (((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โˆง ๐‘ฆ โˆˆ (โ„ โˆ– ๐ด)) โ†’ ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ) = ((๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))โ€˜๐‘ฆ))
8432, 47, 48, 49, 83itg2eqa 25032 . . . . . 6 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))) = (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))))
8584eleq1d 2823 . . . . 5 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ ((โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))) โˆˆ โ„ โ†” (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))) โˆˆ โ„))
8685ralbidva 3171 . . . 4 (๐œ‘ โ†’ (โˆ€๐‘˜ โˆˆ (0...3)(โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))) โˆˆ โ„ โ†” โˆ€๐‘˜ โˆˆ (0...3)(โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))) โˆˆ โ„))
876, 86anbi12d 632 . . 3 (๐œ‘ โ†’ (((๐‘ฅ โˆˆ ๐ต โ†ฆ ๐ถ) โˆˆ MblFn โˆง โˆ€๐‘˜ โˆˆ (0...3)(โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))) โˆˆ โ„) โ†” ((๐‘ฅ โˆˆ ๐ต โ†ฆ ๐ท) โˆˆ MblFn โˆง โˆ€๐‘˜ โˆˆ (0...3)(โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))) โˆˆ โ„)))
88 eqidd 2739 . . . 4 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)))
89 eqidd 2739 . . . 4 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))) = (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))))
9088, 89, 4isibl2 25053 . . 3 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ ๐ถ) โˆˆ ๐ฟ1 โ†” ((๐‘ฅ โˆˆ ๐ต โ†ฆ ๐ถ) โˆˆ MblFn โˆง โˆ€๐‘˜ โˆˆ (0...3)(โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))) โˆˆ โ„)))
91 eqidd 2739 . . . 4 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0)))
92 eqidd 2739 . . . 4 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))) = (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))))
9391, 92, 5isibl2 25053 . . 3 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ ๐ท) โˆˆ ๐ฟ1 โ†” ((๐‘ฅ โˆˆ ๐ต โ†ฆ ๐ท) โˆˆ MblFn โˆง โˆ€๐‘˜ โˆˆ (0...3)(โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))) โˆˆ โ„)))
9487, 90, 933bitr4d 311 . 2 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ ๐ถ) โˆˆ ๐ฟ1 โ†” (๐‘ฅ โˆˆ ๐ต โ†ฆ ๐ท) โˆˆ ๐ฟ1))
9584oveq2d 7366 . . . 4 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ ((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)))) = ((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0)))))
9695sumeq2dv 15523 . . 3 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ (0...3)((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0)))) = ฮฃ๐‘˜ โˆˆ (0...3)((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0)))))
97 eqid 2738 . . . 4 (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))) = (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))
9897dfitg 25056 . . 3 โˆซ๐ต๐ถ d๐‘ฅ = ฮฃ๐‘˜ โˆˆ (0...3)((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ถ / (iโ†‘๐‘˜))), 0))))
99 eqid 2738 . . . 4 (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))) = (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))
10099dfitg 25056 . . 3 โˆซ๐ต๐ท d๐‘ฅ = ฮฃ๐‘˜ โˆˆ (0...3)((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ต โˆง 0 โ‰ค (โ„œโ€˜(๐ท / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ท / (iโ†‘๐‘˜))), 0))))
10196, 98, 1003eqtr4g 2803 . 2 (๐œ‘ โ†’ โˆซ๐ต๐ถ d๐‘ฅ = โˆซ๐ต๐ท d๐‘ฅ)
10294, 101jca 513 1 (๐œ‘ โ†’ (((๐‘ฅ โˆˆ ๐ต โ†ฆ ๐ถ) โˆˆ ๐ฟ1 โ†” (๐‘ฅ โˆˆ ๐ต โ†ฆ ๐ท) โˆˆ ๐ฟ1) โˆง โˆซ๐ต๐ถ d๐‘ฅ = โˆซ๐ต๐ท d๐‘ฅ))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107   โ‰  wne 2942  โˆ€wral 3063  Vcvv 3444   โˆ– cdif 3906   โŠ† wss 3909  ifcif 4485   class class class wbr 5104   โ†ฆ cmpt 5187  โ€˜cfv 6492  (class class class)co 7350  โ„‚cc 10983  โ„cr 10984  0cc0 10985  ici 10987   ยท cmul 10990  +โˆžcpnf 11120  โ„*cxr 11122   โ‰ค cle 11124   / cdiv 11746  3c3 12143  โ„คcz 12433  [,]cicc 13196  ...cfz 13353  โ†‘cexp 13896  โ„œcre 14916  ฮฃcsu 15505  vol*covol 24748  MblFncmbf 24900  โˆซ2citg2 24902  ๐ฟ1cibl 24903  โˆซcitg 24904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-inf2 9511  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062  ax-pre-sup 11063  ax-addf 11064
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-symdif 4201  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-disj 5070  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-isom 6501  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-of 7608  df-ofr 7609  df-om 7794  df-1st 7912  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8582  df-map 8701  df-pm 8702  df-en 8818  df-dom 8819  df-sdom 8820  df-fin 8821  df-fi 9281  df-sup 9312  df-inf 9313  df-oi 9380  df-dju 9771  df-card 9809  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-nn 12088  df-2 12150  df-3 12151  df-n0 12348  df-z 12434  df-uz 12697  df-q 12803  df-rp 12845  df-xneg 12962  df-xadd 12963  df-xmul 12964  df-ioo 13197  df-ico 13199  df-icc 13200  df-fz 13354  df-fzo 13497  df-fl 13626  df-seq 13836  df-exp 13897  df-hash 14159  df-cj 14918  df-re 14919  df-im 14920  df-sqrt 15054  df-abs 15055  df-clim 15305  df-sum 15506  df-rest 17239  df-topgen 17260  df-psmet 20711  df-xmet 20712  df-met 20713  df-bl 20714  df-mopn 20715  df-top 22165  df-topon 22182  df-bases 22218  df-cmp 22660  df-ovol 24750  df-vol 24751  df-mbf 24905  df-itg1 24906  df-itg2 24907  df-ibl 24908  df-itg 24909
This theorem is referenced by:  itgss3  25101
  Copyright terms: Public domain W3C validator