Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diameetN Structured version   Visualization version   GIF version

Theorem diameetN 40569
Description: Partial isomorphism A of a lattice meet. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diam.m ∧ = (meetβ€˜πΎ)
diam.h 𝐻 = (LHypβ€˜πΎ)
diam.i 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
diameetN (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ π‘Œ ∈ dom 𝐼)) β†’ (πΌβ€˜(𝑋 ∧ π‘Œ)) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Œ)))

Proof of Theorem diameetN
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . . 4 (glbβ€˜πΎ) = (glbβ€˜πΎ)
2 diam.m . . . 4 ∧ = (meetβ€˜πΎ)
3 simpll 765 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ π‘Œ ∈ dom 𝐼)) β†’ 𝐾 ∈ HL)
4 eqid 2728 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
5 diam.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
6 diam.i . . . . . 6 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
74, 5, 6diadmclN 40550 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) β†’ 𝑋 ∈ (Baseβ€˜πΎ))
87adantrr 715 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ π‘Œ ∈ dom 𝐼)) β†’ 𝑋 ∈ (Baseβ€˜πΎ))
94, 5, 6diadmclN 40550 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘Œ ∈ dom 𝐼) β†’ π‘Œ ∈ (Baseβ€˜πΎ))
109adantrl 714 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ π‘Œ ∈ dom 𝐼)) β†’ π‘Œ ∈ (Baseβ€˜πΎ))
111, 2, 3, 8, 10meetval 18392 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ π‘Œ ∈ dom 𝐼)) β†’ (𝑋 ∧ π‘Œ) = ((glbβ€˜πΎ)β€˜{𝑋, π‘Œ}))
1211fveq2d 6906 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ π‘Œ ∈ dom 𝐼)) β†’ (πΌβ€˜(𝑋 ∧ π‘Œ)) = (πΌβ€˜((glbβ€˜πΎ)β€˜{𝑋, π‘Œ})))
13 simpl 481 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ π‘Œ ∈ dom 𝐼)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
14 prssi 4829 . . . 4 ((𝑋 ∈ dom 𝐼 ∧ π‘Œ ∈ dom 𝐼) β†’ {𝑋, π‘Œ} βŠ† dom 𝐼)
1514adantl 480 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ π‘Œ ∈ dom 𝐼)) β†’ {𝑋, π‘Œ} βŠ† dom 𝐼)
16 prnzg 4787 . . . 4 (𝑋 ∈ dom 𝐼 β†’ {𝑋, π‘Œ} β‰  βˆ…)
1716ad2antrl 726 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ π‘Œ ∈ dom 𝐼)) β†’ {𝑋, π‘Œ} β‰  βˆ…)
181, 5, 6diaglbN 40568 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ({𝑋, π‘Œ} βŠ† dom 𝐼 ∧ {𝑋, π‘Œ} β‰  βˆ…)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜{𝑋, π‘Œ})) = ∩ π‘₯ ∈ {𝑋, π‘Œ} (πΌβ€˜π‘₯))
1913, 15, 17, 18syl12anc 835 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ π‘Œ ∈ dom 𝐼)) β†’ (πΌβ€˜((glbβ€˜πΎ)β€˜{𝑋, π‘Œ})) = ∩ π‘₯ ∈ {𝑋, π‘Œ} (πΌβ€˜π‘₯))
20 fveq2 6902 . . . 4 (π‘₯ = 𝑋 β†’ (πΌβ€˜π‘₯) = (πΌβ€˜π‘‹))
21 fveq2 6902 . . . 4 (π‘₯ = π‘Œ β†’ (πΌβ€˜π‘₯) = (πΌβ€˜π‘Œ))
2220, 21iinxprg 5096 . . 3 ((𝑋 ∈ dom 𝐼 ∧ π‘Œ ∈ dom 𝐼) β†’ ∩ π‘₯ ∈ {𝑋, π‘Œ} (πΌβ€˜π‘₯) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Œ)))
2322adantl 480 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ π‘Œ ∈ dom 𝐼)) β†’ ∩ π‘₯ ∈ {𝑋, π‘Œ} (πΌβ€˜π‘₯) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Œ)))
2412, 19, 233eqtrd 2772 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ π‘Œ ∈ dom 𝐼)) β†’ (πΌβ€˜(𝑋 ∧ π‘Œ)) = ((πΌβ€˜π‘‹) ∩ (πΌβ€˜π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098   β‰  wne 2937   ∩ cin 3948   βŠ† wss 3949  βˆ…c0 4326  {cpr 4634  βˆ© ciin 5001  dom cdm 5682  β€˜cfv 6553  (class class class)co 7426  Basecbs 17189  glbcglb 18311  meetcmee 18313  HLchlt 38862  LHypclh 39497  DIsoAcdia 40541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-map 8855  df-proset 18296  df-poset 18314  df-plt 18331  df-lub 18347  df-glb 18348  df-join 18349  df-meet 18350  df-p0 18426  df-p1 18427  df-lat 18433  df-clat 18500  df-oposet 38688  df-ol 38690  df-oml 38691  df-covers 38778  df-ats 38779  df-atl 38810  df-cvlat 38834  df-hlat 38863  df-lhyp 39501  df-laut 39502  df-ldil 39617  df-ltrn 39618  df-trl 39672  df-disoa 40542
This theorem is referenced by:  diainN  40570  djajN  40650
  Copyright terms: Public domain W3C validator