Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diameetN Structured version   Visualization version   GIF version

Theorem diameetN 41043
Description: Partial isomorphism A of a lattice meet. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diam.m = (meet‘𝐾)
diam.h 𝐻 = (LHyp‘𝐾)
diam.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diameetN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

Proof of Theorem diameetN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (glb‘𝐾) = (glb‘𝐾)
2 diam.m . . . 4 = (meet‘𝐾)
3 simpll 766 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝐾 ∈ HL)
4 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
5 diam.h . . . . . 6 𝐻 = (LHyp‘𝐾)
6 diam.i . . . . . 6 𝐼 = ((DIsoA‘𝐾)‘𝑊)
74, 5, 6diadmclN 41024 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾))
87adantrr 717 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑋 ∈ (Base‘𝐾))
94, 5, 6diadmclN 41024 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ dom 𝐼) → 𝑌 ∈ (Base‘𝐾))
109adantrl 716 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑌 ∈ (Base‘𝐾))
111, 2, 3, 8, 10meetval 18330 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
1211fveq2d 6844 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})))
13 simpl 482 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 prssi 4781 . . . 4 ((𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼) → {𝑋, 𝑌} ⊆ dom 𝐼)
1514adantl 481 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → {𝑋, 𝑌} ⊆ dom 𝐼)
16 prnzg 4738 . . . 4 (𝑋 ∈ dom 𝐼 → {𝑋, 𝑌} ≠ ∅)
1716ad2antrl 728 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → {𝑋, 𝑌} ≠ ∅)
181, 5, 6diaglbN 41042 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ({𝑋, 𝑌} ⊆ dom 𝐼 ∧ {𝑋, 𝑌} ≠ ∅)) → (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥))
1913, 15, 17, 18syl12anc 836 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥))
20 fveq2 6840 . . . 4 (𝑥 = 𝑋 → (𝐼𝑥) = (𝐼𝑋))
21 fveq2 6840 . . . 4 (𝑥 = 𝑌 → (𝐼𝑥) = (𝐼𝑌))
2220, 21iinxprg 5048 . . 3 ((𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
2322adantl 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → 𝑥 ∈ {𝑋, 𝑌} (𝐼𝑥) = ((𝐼𝑋) ∩ (𝐼𝑌)))
2412, 19, 233eqtrd 2768 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ dom 𝐼𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cin 3910  wss 3911  c0 4292  {cpr 4587   ciin 4952  dom cdm 5631  cfv 6499  (class class class)co 7369  Basecbs 17155  glbcglb 18251  meetcmee 18253  HLchlt 39336  LHypclh 39971  DIsoAcdia 41015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-lhyp 39975  df-laut 39976  df-ldil 40091  df-ltrn 40092  df-trl 40146  df-disoa 41016
This theorem is referenced by:  diainN  41044  djajN  41124
  Copyright terms: Public domain W3C validator